# 10-701: Introduction to Machine Learning Lecture 9 – Neural Networks

Henry Chai

2/14/24

#### **Front Matter**

- Announcements
  - HW2 released 2/7, due **2/19** (previously 2/16) at 11:59 PM
  - HW3 released 2/19 (previously 2/16), due 2/28 (previously 2/26) at 11:59 PM
  - Lecture schedule has been updated, see the course website for full details
    - Lecture on 2/21 (Wednesday) and Recitation on 2/23 (Friday) have been swapped
- Recommended Readings
  - Mitchell, <u>Chapters 4.1 4.6</u>
  - Zhang, Lipton, Li & Smola, Chapters 5.1 5.3

### Biological Neural Network



### Recall: Linear Models



Where do linear decision boundaries come from?



#### The equation of a line is

$$\mathbf{w}^T \mathbf{x} = b$$



The equation of a line is

$$\mathbf{w}^T \mathbf{x} = 0$$

(bias term prepended to w)

The line defines two halfspaces in  $\mathbb{R}^D$ :

So the model

$$h(x) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

gives rise to linear decision boundaries!









### Perceptrons $h(x) = sign(w^T x)$

- Linear model for classification
- Predictions are +1 or -1



### **Combining Perceptrons**



$$h(x) = \begin{cases} +1 \text{ if } (h_1(x) = +1 \text{ and } h_2(x) = -1) \text{ or } (h_1(x) = -1 \text{ and } h_2(x) = +1) \\ -1 \text{ otherwise} \end{cases}$$



$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

### Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
  - Negation:  $\neg z = -1 * z$

• And: 
$$AND(z_1, z_2) = \begin{cases} +1 \text{ if both } z_1 \text{ and } z_2 \text{ equal } +1 \\ -1 \text{ otherwise} \end{cases}$$

• Or: 
$$OR(z_1, z_2) = \begin{cases} +1 \text{ if either } z_1 \text{ or } z_2 \text{ equals } +1 \\ -1 \text{ otherwise} \end{cases}$$

### Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
  - Negation:  $\neg z = -1 * z$

• And:  $AND(z_1, z_2) = sign(z_1 + z_2 - 1.5)$ 

• Or:  $OR(z_1, z_2) = sign(z_1 + z_2 + 1.5)$ 

### Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
  - Negation:  $\neg z = -1 * z$

• And: 
$$AND(z_1, z_2) = \text{sign}\left( [-1.5, 1, 1] \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

• Or: 
$$OR(z_1, z_2) = sign\left( [1.5, 1, 1] \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

## Building a Network

### Building a Network

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$



### Building a Network

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$



### Building a Network

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$



## Building a Network



### Building a Network



$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

### Multi-Layer Perceptron (MLP)



# (Fully-Connected) Feed Forward Neural Network



$$\theta(\cdot)$$

Hyperbolic tangent:

$$\tanh(z) = \frac{\sinh(z)}{\cosh(z)} = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

• 
$$\frac{\partial \tanh(z)}{\partial z} = 1 - \tanh(z)^2$$



# Other Activation Functions

| Logistic, sigmoid, or soft step                          | $\sigma(x) = rac{1}{1+e^{-x}}$                                                                                                 |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Hyperbolic tangent (tanh)                                | $	anh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$                                                                                    |
| Rectified linear unit (ReLU) <sup>[7]</sup>              | $egin{cases} 0 & 	ext{if } x \leq 0 \ x & 	ext{if } x > 0 \ = & 	ext{max}\{0,x\} = x 1_{x>0} \end{cases}$                       |
| Gaussian Error Linear Unit (GELU) <sup>[4]</sup>         | $rac{1}{2}x\left(1+	ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$                                                   |
| Softplus <sup>[8]</sup>                                  | $\ln(1+e^x)$                                                                                                                    |
| Exponential linear unit (ELU) <sup>[9]</sup>             | $\begin{cases} \alpha \left( e^x - 1 \right) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ with parameter $\alpha$ |
| Leaky rectified linear unit (Leaky ReLU) <sup>[11]</sup> | $\left\{egin{array}{ll} 0.01x & 	ext{if } x < 0 \ x & 	ext{if } x \geq 0 \end{array} ight.$                                     |
| Parametric rectified linear unit (PReLU) <sup>[12]</sup> | $\left\{egin{array}{ll} lpha x & 	ext{if } x < 0 \ x & 	ext{if } x \geq 0 \ \end{array} ight.$ with parameter $lpha$            |

### Linear Regression as a Neural Network



### Logistic Regression as a Neural Network



(Fully-Connected)
Feed Forward
Neural Network

Output layer: Input layer: Hidden layers:  $l \in \{1, \dots, L-1\}$ l = Ll = 0 $\theta$  $\chi_1$  $\theta$ h(x) $D^{(0)}$ :  $\theta$  $x_D$ 

Layer l has dimension  $D^{(l)} \to \text{Layer } l$  has  $D^{(l)} + 1$  nodes, counting the bias node

# (Fully-Connected) Feed Forward Neural Network

The weights between layer l-1 and layer l are a matrix:



 $w_{j,i}^{(l)}$  is the weight between node i in layer l-1 and node j in layer l

# Signal and Outputs

Every node has an incoming signal and outgoing output



# Signal and Outputs

Every node has an incoming signal and outgoing output



$$\mathbf{s}^{(l)} = W^{(l)} \mathbf{o}^{(l-1)}$$
 and  $\mathbf{o}^{(l)} = \begin{bmatrix} 1, \theta(\mathbf{s}^{(l)}) \end{bmatrix}^T$ 

# Forward Propagation for Making Predictions

• Input: weights  $W^{(1)}$ , ...,  $W^{(L)}$  and a query data point  $\boldsymbol{x}$ 

• Initialize 
$$o^{(0)} = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

• For 
$$l = 1, ..., L$$

• 
$$s^{(l)} = W^{(l)}o^{(l-1)}$$

$$\bullet \mathbf{o}^{(l)} = \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(l)}) \end{bmatrix}$$

• Output:  $h_{W^{(1)},...,W^{(L)}}(x) = o^{(L)}$ 

### Stochastic Gradient Descent for Learning

- Input:  $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N, \eta^{(0)}$
- Initialize all weights  $W_{(0)}^{(1)}$ , ...,  $W_{(0)}^{(L)}$  to small, random numbers and set t=0
- While TERMINATION CRITERION is not satisfied
  - For  $i \in \text{shuffle}(\{1, ..., N\})$ 
    - For l = 1, ..., L
      - Compute  $G^{(l)} = \nabla_{W^{(l)}} \ell^{(i)} \left( W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$
      - Update  $W^{(l)}$ :  $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta^{(0)}G^{(l)}$
    - Increment t: t = t + 1
- Output:  $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

#### Two questions:

# 1. What is this loss function $\ell^{(i)}$ ?

2. How on earth do we take these gradients?

- Input:  $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N, \eta^{(0)}$
- Initialize all weights  $W_{(0)}^{(1)}, \dots, W_{(0)}^{(L)}$  to small, random numbers and set t=0 (???)
- While TERMINATION CRITERION is not satisfied (???)
  - For  $i \in \text{shuffle}(\{1, ..., N\})$ 
    - For l = 1, ..., L
      - Compute  $G^{(l)} = \nabla_{W^{(l)}} \ell^{(i)} \left( W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$  (???)
      - Update  $W^{(l)}$ :  $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta^{(0)} G^{(l)}$
    - Increment t: t = t + 1
- Output:  $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

### Loss Functions for Neural Networks

Regression - squared error (same as linear regression!)

$$\ell^{(i)}\left(W_{(t)}^{(1)},\ldots,W_{(t)}^{(L)}\right) = \left(h_{W^{(1)},\ldots,W^{(L)}}(\boldsymbol{x}^{(i)}) - y^{(i)}\right)^2$$

Binary classification - cross-entropy loss

• Assume 
$$P(Y = 1 | x, W^{(1)}, ..., W^{(L)}) = h_{W^{(1)},...,W^{(L)}}(x)$$

$$\ell^{(i)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = -\log P\left(y^{(i)}|\boldsymbol{x}^{(i)}, W^{(1)}, \dots, W^{(L)}\right)$$

$$= -\log\left(h_{W^{(1)},\dots,W^{(L)}}(\boldsymbol{x}^{(i)})^{y^{(i)}}\left(1 - h_{W^{(1)},\dots,W^{(L)}}(\boldsymbol{x}^{(i)})\right)^{1 - y^{(i)}}\right)$$

$$= -y^{(i)}\log(h_{W^{(1)},...,W^{(L)}}(\mathbf{x}^{(i)}))$$

$$-(1-y^{(i)})\log(1-h_{W^{(1)},...,W^{(L)}}(x^{(i)}))$$

### Loss Functions for Neural Networks

- Multi-class classification also the cross-entropy loss!
  - Express the label as a one-hot or one-of-*C* vector e.g.,

$$y = [0 \ 0 \ 1 \ 0 \ \cdots \ 0]$$

Assume the neural network output is also a vector of length C

$$P(y[c] = 1 | x, W^{(1)}, ..., W^{(L)}) = h_{W^{(1)}, ..., W^{(L)}}(x)[c]$$

Then the cross-entropy loss is

$$\ell^{(i)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = -\log P(y^{(i)}|\mathbf{x}^{(i)}, W^{(1)}, \dots, W^{(L)})$$

$$= -\sum_{c=1}^{C} y[c] \log h_{W^{(1)}, \dots, W^{(L)}}(\mathbf{x}^{(n)})[c]$$

### Multidimensional Outputs



### Key Takeaways

- Many common machine learning models can be represented as neural networks.
- Perceptrons can be combined to achieve non-linear decision boundaries
- Feed-forward neural network model:
  - Activation function
  - Layers: input, hidden & output
  - Weight matrices
  - Signals & outputs
- Forward propagation for making predictions
- Neural networks can use the same loss functions as other machine learning models