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1 Linear Regression

In this section, we will consider the following linear regression model:

For each data point in D = {(xi, yi)}ni=1,

yi = wTxi + ϵ where yi, ϵ ∈ R and w,xi ∈ Rd+1

In matrix notation, we can express this linear relationship for all data points as:

y = Xw + ϵ where y, ϵ ∈ Rn,X ∈ Rn×(d+1), and w ∈ Rd+1

1.1 Ordinary Least Squares (OLS)

In class, we saw that one way to optimize w is to minimize the least squares error:

w∗
LS = argmin

w
||y −Xw||22

= argmin
w

(y −Xw)T (y −Xw)

1. Derive the least squares optimal solution w∗
LS. You may assume any matrix inversion

that naturally appears is possible.
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We can solve by setting the derivative w.r.t w of the minimized statement to 0

∂

∂w
(y −Xw)T (y −Xw) =

∂

∂w
(yTy − (Xw)Ty − yT (Xw) + (Xw)TXw)

In this situation, we can look at how to derive and/or combine the matrix products
above. For yTy the derivative is just 0, due to it not involving w. Since Xw is size
n x 1 and y is size n x 1, (Xw)Ty and yT (Xw) are both scalars so they can just be
combined.

=
∂

∂w
(yTy − (Xw)Ty − yT (Xw) + (Xw)TXw)

=
∂

∂w
(−2(Xw)Ty + (Xw)TXw)

If we expand out Xw, we get a n x 1 vector [x1w
T ,x2w

T , ...,xnw
T ] where xi is the ith

row of x.

Then, expanding (Xw)TXw, we get the scalar (x1w
T )2 + ...+ (xnw

T )2

Deriving by w for each i, we get 2(xiw
T )xi. This scalar sum is equivalent to 2XTXw

Thus, we have the final derivative:

=
∂

∂w
(−2(Xw)Ty + (Xw)TXw)

=− 2XTy + 2XTXw

(1)

Solving for −2XTy + 2XTXw = 0, we get that w = (XTX)−1XTy
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2. Now let us consider the following: In general, when we have some matrix A ∈ Rm×n and
b ∈ Rn, the orthogonal projection of b onto the column space of A can be done using
the projection matrix A(ATA)−1AT . With this in mind, what can we say about w∗

LS?

Notice that since w∗
LS = (XTX)−1XTy, we have

ŷ = X(XTX)−1XTy

This shows that ŷ is an orthogonal projection of y onto the column space of X. That is,
from a geometric perspective, we are finding the value of w that gives us this orthogonal
projection matrix when minimizing the least squares error.
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2 MLE/MAP

2.1 Definitions

• Likelihood: L(θ) = P(D|θ) and l(θ) = logP(D|θ)

• Posterior: P(θ|D) = P(D|θ)P(θ)
P(D)

∝ P(D|θ)P(θ)

• MLE estimate: θMLE = argmaxθ P(D|θ) = argmaxθ logP(D|θ)

• MAP estimate: θMAP = argmaxθ P(D|θ)P(θ) = argmaxθ logP(D|θ) + logP(θ)

2.2 MLE/MAP Practice problem

Imagine you are a data scientist working in a hospital, and the emergency department is
interested in knowing the probability of diagnosing any given patient that visits the ER with
the flu. The following observed data is given to you (you know they are i.i.d.):

D1 Monday 80/100 patients
D2 Tuesday 15/200 patients
D3 Wednesday 5/150 patients

Assume that the probability of k patients having the flu out of n total patients that visit
the ER on any given day is determined by a binomial distribution. Namely

P(patientsflu = k) =

(
n

k

)
pk(1− p)n−k

Using the data observed above, calculate pMLE. Do you find this answer to be particularly
useful or interesting? How is it similar to calculate pMLE for a Bernoulli random variable?
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Define the log-likelihood function, since data is iid:

logL(p) = logP(D|p)

= log
3∏

i=1

P(D|p)

=
3∑

i=1

logP(D|p)

=
3∑

i=1

log

[(
ni

ki

)
pki(1− p)ni−ki

]

=
3∑

i=1

[
log

(
ni

ki

)
+ ki log p+ (ni − ki) log(1− p)

]

=
3∑

i=1

log

(
ni

ki

)
+ log p

[
3∑

i=1

ki

]
+ log(1− p)

[
3∑

i=1

(ni − ki)

]

Take the partial derivative with respect to p:

∂l(p)

∂p
=

1

p

3∑
i=1

ki −
1

1− p

3∑
i=1

(ni − ki)

Set the partial derivative to zero and solve for p:

1

p

3∑
i=1

ki −
1

1− p

3∑
i=1

(ni − ki) = 0

p =

∑3
i=1 ki∑3

i=1 ki +
∑3

i=1(ni − ki)
=

∑3
i=1 ki∑3
i=1 ni

pMLE = 100/450 ≈ 0.22

The answer is the same as if you were to just intuit that the total number of patients with
flu divided by the total number of patients that visited the ER. We didn’t learn much,
especially considering the disproportionate number of people that come to the ER with the
flu on Monday. If we cared about making this prediction to better prepare for staffing or
supplies needs, knowing the average percent of ER patients with flu isn’t going to help us.
The answer is the same as if we had observed 450 patients and modeled the outcome (flu)
as a Bernoulli random variable.
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pMLE = 100/450 ≈ 0.22
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Now we’ll assume that we’ve entered flu season, and to incorporate this information to our
estimate, we’ve decided to use a beta prior:

P(p) =
pα−1(1− p)β−1

B(α, β)

where B(α, β) is a normalizing constant. In particular, we’ll use α = 101, β = 51.

Find the posterior distribution and calculate the MAP estimate, pMAP .
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Let’s first find the form of the posterior:

P(p | D) =
P(D | p)P(p)

P(D)

∝ P(D | p)P(p)

=

(
3∏

i=1

(
ni

ki

)
pki(1− p)ni−ki

)
· 1

B(α, β)
pα−1(1− p)β−1

=

(
1

B(α, β)

3∏
i=1

(
ni

ki

))
· pα−1+

∑3
i=1 ki(1− p)β−1+

∑3
i=1(ni−ki)

∝ pα−1+
∑3

i=1 ki(1− p)β−1+
∑3

i=1(ni−ki)

It turns out that the beta distribution is the conjugate prior, so the posterior is another beta
distribution, with α′ = α +

∑
ki and β′ = β +

∑
(ni − ki).

Now let’s calculate the MAP estimate by maximizing the posterior:

pMAP = argmax
p

P(p | D)

= argmax
p

logP(p | D)

= argmax
p

log
(
pα−1+

∑3
i=1 ki(1− p)β−1+

∑3
i=1(ni−ki)

)
= argmax

p
log p ·

(
α− 1 ·+

3∑
i=1

ki

)
+ log(1− p) ·

(
β − 1 +

3∑
i=1

(ni − ki)

)

Taking the partial derivative with respect to p and setting equal to zero:

1

p

(
α− 1 ·+

3∑
i=1

ki

)
− 1

1− p

(
β − 1 +

3∑
i=1

(ni − ki)

)
= 0

p =
α− 1 +

∑3
i=1 ki

(α− 1) + (β − 1) +
∑3

i=1 ni

pMAP =
(101− 1) + 100

(101− 1) + (51− 1) + 450
≈ 0.33
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Now compare the MLE and MAP estimates, and interpret the meaning of Beta prior’s
parameters α and β in our context.

The answer to the MAP estimate is along same lines as the MLE estimate, but if we hypo-
thetically had also previously observed α − 1 flu patients and β − 1 non-flu patients. Since
α−1
β−1

= 2
3
was higher than our MLE estimate, our MAP estimate ends up moving in that

direction and increases as well.

However, it’s important to note that even if we keep the ratio of α−1
β−1

the same, the larger we
make α and β, the more the prior dominates the MAP estimate and ignores the observed
data. Alternatively the smaller we make α and β, the more the MAP estimate ignores the
prior and is dominated by the observed data.

2.3 Gaussian MLE

Given that we have i.i.d samples D = {x1, ..., xN}, where each point is identically dis-
tributed according to a Gaussian distribution, find the MLE for the mean and variance.

Hint: p(x|µ, σ) = 1
σ
√
2π
e−

(x−µ)2

2σ2
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Solution:

µ∗ = argmax
µ

P(D|µ, σ)

= argmax
µ

n∏
i=1

P(xi|µ, σ)

= argmax
µ

n∏
i=1

(
1

σ
√
2π

· exp
(
−(xi − µ)2

2σ2

))

= argmax
µ

{
ln

((
1

σ
√
2π

)n)
+

n∑
i=1

−(xi − µ)2

2σ2

}

Then we can solve for µ∗ by solve for ∂/∂µ (since the function is concave)

∂

∂µ

{
n ln

(
1

σ
√
2π

)
+

n∑
i=1

−
(
(xi − µ)2

2σ2

)}
=

1

2σ2
· 2

n∑
i=1

(xi − µ)

Hence, we have µ∗ be the solution of
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n∑
i=1

(xi − µ) = 0

That is, we have µ∗ = 1
n
·
∑n

i=1 xi.

For σ∗, we have something similar here

σ∗ = argmax
σ

P(D|µ, σ)

= · · · (same as above)

= argmax
σ

{
n ln

(
1

σ
√
2π

)
+

n∑
i=1

(
−(xi − µ)2

2σ2

)}

We can solve σ∗ by solving ∂/∂σ = 0.

∂

∂σ

{
n ln

(
1

σ
√
2π

)
+

n∑
i=1

(
−(xi − µ)2

2σ2

)}
= −n

σ
+

(
n∑

i=1

(xi − µ)2

)
· 1

σ3

Hence, we have the solution of σ∗ being the solution of

−n

σ
+

(
n∑

i=1

(xi − µ)2

)
· 1

σ3

That is,

(σ∗)2 =
1

n

n∑
i=1

(xi − µ)2
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