
Recitation 3
Gradient Descent, Gaussian Naive Bayes, Logistic Regression

10-701: Introduction to Machine Learning

02/09/2024

1 Gradient Descent

Gradient descent (GD) is one of the most commonly used optimization algorithms in machine
learning. Here we will go over 1) why we are using gradients in the first place and 2) why
stochastic gradient descent (SGD) works.

1.1 Gradient Points in the Direction of Steepest Ascent

In class, we saw a pictorial sketch of why gradient descent makes sense; we will discuss it
more formally here.

One way of thinking about this is that for a differentiable multivariate function f : Rd → R,
the gradient at point x ∈ Rd (i.e. ∇f(x)) points in the direction of steepest ascent at x.

Recall from calculus that we define the directional derivative with respect to some unit vector
u ∈ Rd as

Duf(x) = lim
h→0

f(x+ hu)− f(x)

h

In words, the directional derivative describes how the function value instantaneously changes
if we step along the direction of u from point x. With some calculation, one can show that

Duf(x) = uT∇f(x)
= ||u||||∇f(x)|| cos θ (∵ inner product)

where θ is the angle between u and ∇f(x). We know ||u|| = 1, and it is easy to see that
when θ = 0, Duf(x) is maximized.

Thus, at each point, we should step in the direction of the gradient to maximally increase
the function value (gradient ascent). Meanwhile, we should step in the direction opposite of
the gradient to maximally decrease the function value (gradient descent). Whether we want
to use gradient ascent or descent will depend on whether we want to maximize or minimize
some objective function.

1.2 Stochastic Gradient Descent

In lecture, you are introduced with the concept of gradient descent (GD). However, the
stochastic gradient descent (SGD) is more common in practice than the vanilla GD, as the

10-701: Recitation 3 Page 2 of 10 09/18/20

gradient updates in SGD are computationally cheaper when working with large datasets but
still lead to good, generalizable solutions (often even better). An in-depth discussion of SGD
is beyond the scope of this course, but here we will see why it makes sense at a high level.

Suppose we have some ML model (e.g., linear regression, logistic regression, neural network)
and we want to optimize the parameters w of that model using data D = {(xi,yi)}ni=1. And
let’s say that our loss function is

Ltotal =
1

n

n∑
i=1

L(xi,yi)

which is an average of the loss L for each data point (xi,yi) across our dataset.

Now, we want to use the following SGD algorithm to iteratively update wt:

1. Randomly sample (without replacement) m indices from {1, . . . , n}. Call the set of
sampled indices B.

2. Calculate the loss using the sampled data points

L̃ = 1
m

∑n
i=1 L(xi,yi) 1[i ∈ B]︸ ︷︷ ︸

indicator

3. Update wt+1 ← wt − η ∂L̃
∂w

Based on this setup, answer the question below.

1. In statistics, the bias of an estimator (or bias function) is the difference between this
estimator’s expected value and the true value of the parameter being estimated.

Bias(θ̂, θ) = Ex|θ[θ̂ − θ]

An estimator or decision rule with zero bias is called unbiased. Show that the stochastic
gradient is an unbiased estimator of the gradient, i.e. show that:

E

[
∂L̃
∂w

]
=

∂L
∂w(

Hint: E
[
1[i ∈ B]

]
= p(i ∈ B). Also check out the remark below if you need better

10-701: Recitation 3 Page 3 of 10 09/18/20

intuition.
)

E

[
∂L̃
∂w

]
=

1

m

n∑
i=1

∂L(xi,yi)

∂w
E
[
1[i ∈ B]

]
=

1

m

n∑
i=1

∂L(xi,yi)

∂w

m

n

=
1

n

n∑
i=1

∂L(xi,yi)

∂w

=
∂L
∂w

The fact that the stochastic gradient is an unbiased estimator of the full-batch gradient
is an important justification for using SGD. In fact, showing unbiasedness is generally
important in many stochastic algorithms.

Remark: Randomly choosing the data points for updating the parameters at each iteration
is what makes SGD stochastic. Try comparing ∂L

∂w
and ∂L̃

∂w
; you should notice that since we

are only using a random subset of all of our training points to calculate the gradient, ∂L̃
∂w

can
be thought of as an approximation of ∂L

∂w
.

10-701: Recitation 3 Page 4 of 10 09/18/20

2 Naive Bayes

2.1 Sample Problem

Suppose that there are d binary features (X1, X2, . . . , Xd). Assume d is even. Consider the
following pairing of the d features:

(X1, X2), (X3, X4), . . . , (Xd−1, Xd)

For each of the above pairs (Xi, Xi+1), assume Xi and Xi+1 are dependent. However,
assume the 2 pairs (Xi, Xi+1) and (Xj, Xj+1) are themselves independent when i ̸= j given
the class.

If the class-conditional distribution of each pair of features is known (as well as the class
prior), is it possible to construct a classification algorithm using the Naive Bayes approach?
If it’s possible, how would you do it? If it’s not possible, why is it not?

Since the features are all pairwise independent, we can construct a truth table for each
of the pairs of features, since the distribution is known. I.e P (X1 = 0, X2 = 0, Y1 =
1), P (X1 = 0, X2 = 1, Y1 = 1), etc. Then we can use the Naive Bayes assumption to
calculate P (Y1|X1, ...Xn) = P (X1, X2|Y1)P (X3, X4|Y1)...P (Xn−1Xn|Y1, where each of the
values are known since the distribution of each pair is known. This is analogous to letting a
separate random variable represent the distribution Xk, Xk+1 for each k.

2.2 Gaussian Contour Plots

For a one-dimensional Gaussian, the probability density looks similar to bell curve. For
a two-dimensional Gaussian, if both coordinates are independent of one another then the
density concentrates in circles. If the two coordinates are not independent, then the density
will look elliptical like in the figure above.

For each dataset below, determine if the Naive Bayes assumption is valid. Assume that the
data given the class label is distributed as a multivariate Gaussian.

10-701: Recitation 3 Page 5 of 10 09/18/20

FIRST DATASET: Given that the class label is 1 (all the orange points), we see that the
data appears to be distributed circularly, meaning the two coordinates are independent.
From our assumption that it is a multivariate Gaussian, we conclude that conditioning on
the class label being 1 does indeed make the features independent of one another. The same
logic holds for the blue points.

SECOND DATASET: Given that the class label is 1, we see that the coordinates are not
independent of one another. The Naive Bayes assumption will build a linear decision bound-
ary assuming that it is a circle, which will diminish our performance. Similar logic holds for
the blue points.

2.3 Exam Style Practice Problems

1. Select All that Apply: In a Naive Bayes problem, suppose we are trying to compute
P (Y |X1, X2, X3, X4). Furthermore, suppose X2 and X3 are identical (i.e., X3 is just a
copy of X2). Finally, assume X2 is not independent of Y . Which of the following are
true in this case?

□ Naive Bayes will learn identical parameter values for P (X2|Y) and P (X3|Y).

□ Naive Bayes will predict P (Y |X1, X2, X3, X4) < P (Y |X1, X2, X4).

□ Naive Bayes will predict P (Y |X1, X2, X3, X4) > P (Y |X1, X2, X4).

□ None of the above

(a),(b)

Naive Bayes will learn identical parameter values for P (X2|Y) and P (X3|Y) - this is
because in Naive Bayes features are considered independent of each other, hence the

10-701: Recitation 3 Page 6 of 10 09/18/20

estimated probabilities for these identical features will be the same. Naive Bayes will
output probabilities P (Y |X1, X2, X3, X4) that are closer to 0 and 1 than they would
be if we removed the feature corresponding to X3 - consider the expression.

P (Y |X1, X2, X3, X4) =
P (Y,X1, X2, X3, X4)

P (X1, X2, X3, X4)
=

P (X1|Y)P (X2|Y)P (X3|Y)P (X4|Y)P (Y)

P (X1, X2, X3, X4)

The denominator does not change - as the features are identical, P (X1, X2, X3, X4) is
the same as P (X1, X2, X4). The numerator however is multiplied by a number P (X3|Y)
which is lesser than 1. Hence the output probabilities are different.

2. Select All that Apply: Gaussian Naive Bayes, in general, can learn non-linear
decision boundaries. Consider the simple case where we have just one real-valued
feature X1 ∈ IR from which we wish to infer the value of label Y ∈ {0, 1}. The
corresponding generative story would be:

Y ∼ Bernoulli(ϕ)
X1 ∼ Gaussian(µy, σ

2
y)

where the parameters are the Bernoulli parameter ϕ and the class-conditional Gaussian
parameters µ0, σ

2
0, µ1, σ

2
1 corresponding to Y = 0 and Y = 1 , respectively.

Consider a linear decision boundary in one dimension described by the rule: if X1 > c,
then Y = 1, else Y = 0, where c is a real-valued threshold. Is it possible (in the 1D
case) to construct a Gaussian Naive Bayes classifier with a decision boundary that
cannot be expressed by a rule in the above form?

□ Yes, this can occur if the Gaussians are of equal means and equal variances.

□ Yes, this can occur if the Gaussians are of equal means and unequal variances.

□ Yes, this can occur if the Gaussians are of unequal means and equal variances.

□ Yes, this can occur if the Gaussians are of unequal means and unequal variances.

□ No, it is not possible.

10-701: Recitation 3 Page 7 of 10 09/18/20

(b),(d)

Yes, this can occur if the Gaussians are of equal means and unequal variances. We then have
two decision boundaries, as you can see from the figure below. Recall that we choose the
class to be the one that gives higher probability at any x.

10-701: Recitation 3 Page 8 of 10 09/18/20

3 Logistic Regression

1. For a probability value p ∈ (0, 1), what is the range of the odds, p
1−p

, and the log-odds,

log
(

p
1−p

)
? Explain why this makes the log-odds a desirable transformation of our data

to fit with our affine model.

The range of the odds is (0,+∞). The range of the log-odds is (−∞,+∞). Since the
range of an affine function is (−∞,+∞), the log-odds is a reasonable choice to fit with
a simple affine model. If we fit the probabilities or odds directly with a linear model,
the range of the linear model would be a superset of the range of the data, requiring
a constraint on the regression coefficients to ensure meaningful outputs for all data
points. Fitting the log-odds avoids such issues.

2. We consider the following models of logistic regression for a binary classification with
a sigmoid function g(z) = 1

1+e−z :

• Model 1: P (Y = 1 | X,w1, w2) = g(w1X1 + w2X2)

• Model 2: P (Y = 1 | X,w0, w1, w2) = g(w0 + w1X1 + w2X2)

We have three training examples:

x(1) = [1, 1]T x(2) = [1, 0]T x(3) = [0, 0]T

y(1) = 1 y(2) = 0 y(3) = 1

Does it matter how the third example is labeled in Model 1? i.e., would the learned
value of w = (w1, w2) be different if we change the label of the third example to 0?
Does it matter in Model 2? Briefly explain your answer.

It does not matter in Model 1 because x(3) = (0, 0) makes w1x1 + w2x2 always zero,
and hence the likelihood of the model does not depend on the value of w. But it does
matter in Model 2.

3. For each of the following figures, compare the performance of a Logistic Regression
model vs a Gaussian Naive Bayes model. To be more precise, if a model is able to
classify the given points, indicate the appropriate decision boundary. If not, provide a
reasonable justification as to why the model is unable to classify the particular set of
points.

10-701: Recitation 3 Page 9 of 10 09/18/20

In figure 1, both Gaussian Naive Bayes and Logistic Regression can separate the data.

In figure 2, only Logistic Regression can separate the data. This is because, while
a linear decision boundary can be obtained, the features are correlated in this case,
which goes against the assumption of Gaussian Naive Bayes.

10-701: Recitation 3 Page 10 of 10 09/18/20

Neither of the models can separate the points in figure 3, since Logistic Regression can
only solve for a linear decision boundary, and Gaussian Naive Bayes cannot model a
mixture of Gaussians.

	Gradient Descent
	Gradient Points in the Direction of Steepest Ascent
	Stochastic Gradient Descent

	Naive Bayes
	Sample Problem
	Gaussian Contour Plots
	Exam Style Practice Problems

	Logistic Regression

