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1 Neural Networks

Neural Networks Warmup

For this section, we will label the input layer nodes as x1 and x2 from top to bottom. We
will label the hidden layer nodes as h1 and h2. We will label the output node as o1, and we
will denote the activation function for the hidden layers as σ.
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1. Let us denote t1 to be the input to the h1 node and t2 to be the input to the h2 node.
What are t1 and t2? Express your answer in terms of the inputs, weights, and biases.

The input to h1 is w11x1 +w21x2 +w31x3 +w41x4 + b11 and the input to h2 is w12x1 +
w22x2 + w32x3 + w42x4 + b12

2. What is the output of the h1 node?

σ(w11x1 + w21x2 + w31x3 + w41x4 + b11)

3. Denoting h1 as the output of node h1 and h2 as the output of the node h2, what is the
output o1?

o1 = a11h1 + a21h2 + b21

1.1 Translating to Vector Notation

Let us define X = (x1, x2, x3, x4)
T , b1 = (b11, b12)

T and

W =


w11 w12

w21 w22

w31 w32

w41 w42

 A =
(
a11 a21

)
1. Let us define the vector of inputs to the hidden layer as t. What is the vector equation

that gives us t? Express your answer in terms of x, b1, and W.

t = WTx+ b1

2. Let us define h to be the vector that represents the outputs of the hidden layer, that
is h = (h1, h2)

T . Express h in terms of t.

h = σ(t), where the notation denotes that the activation function σ is applied element-
wise to h.
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3. Express o1 in terms of h, b21, and A.

o1 = Ah+ b21

4. Represent the output of the neural network, o1, with a single equation using all of the
variables mentioned above.

o1 = A(σ(WTx+ b1)) + b21

2 Computation Graphs and Automatic Differentiation

Automatic differentiation is a cornerstone technique that enables efficient computation of
derivatives, which is essential for efficiently training neural networks. This section guides
you through the basic concepts and approaches to differentiation, with a focus on symbolic
and automatic differentiation.

Given f : RD → R, our goal is to compute the gradient ∇xf(x) =
∂f(x)
∂x

. Let’s explore three
fundamental approaches.

2.1 Approach 1: Finite difference method

The finite difference method approximates the derivative of f with respect to xi as follows:

∂f(x)

∂xi

≈ f(x+ ϵdi)− f(x− ϵdi)

2ϵ

where di is a one-hot vector with a 1 in the i-th position.

𝑓 𝑥

𝑥𝜖 𝜖

The choice of ϵ is critical; it must be small for accuracy but not too small to avoid floating-
point issues. Getting the full gradient requires computing the above approximation for each
dimension of the input.
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Pros:

1. Useful for verifying more complex differentiation methods.

Cons:

1. Requires the ability to call f(x).

2. Computationally expensive, especially for high-dimensional inputs.
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2.2 Approach 2: Symbolic Differentiation

We will use computation graphs to help with understanding differentiation. A computation
graph represents an algorithm and is structured as follows:

• Nodes are represented as rectangles with one node corresponding to an intermediate
variable within the algorithm. Each node is labeled with the function that it computes
(inside the box) and the variable name (outside the box).

• For neural networks, each weight, feature value, label and bias term appears as a node.

• Edges indicate the flow of computation between nodes. Edges are directed and do not
have labels.

Symbolic differentiation uses mathematical expressions to obtain derivatives, where the ob-
jectives are often composite functions. To differentiate them, we use the chain rule:

1. If y = f(z) and z = g(x), then the corresponding computation graph is
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2. If y = f(z1, z2) and z1 = g1(x), z2 = g2(x), then
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⟹
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Consider the function:

y = f(x, z) = exz +
xz

ln(x)
+

sin(ln(x))

xz

Compute ∂y
∂x

and ∂y
∂z

at x = 2, z = 3.

∂y

∂x
=

∂

∂x
(exz) +

∂

∂x

( xz

ln(x)

)
+

∂

∂x

( sin(ln(x))
xz

)
= zexz +

z

ln(x)
− z

ln(x)2
+

cos(ln(x))

x2z
− sin(ln(x))

x2z

= 3e6 +
3

ln(2)
− 3

ln(2)2
+

cos(ln(2))

12
− sin(ln(2))

12

∂y

∂z
=

∂

∂z
(exz) +

∂

∂z

( xz

ln(x)

)
+

∂

∂z

( sin(ln(x))
xz

)
= 2e6 +

2

ln(2)
− sin(ln(2))

18

Pros:

1. Provides exact derivatives.

Cons:

1. Requires systematic knowledge of derivatives.

2. Can be computationally expensive if poorly implemented.

2.3 Approach 3: Automatic Differentiation (reverse mode)

Automatic differentiation computes derivatives efficiently by utilizing the chain rule in a
structured manner. For a given function, we first perform a forward pass to compute inter-
mediate variables and then a reverse pass to calculate gradients. Specifically, this method
constructs a computation graph that breaks down complex functions into simpler operations.
Derivatives are then computed by propagating values backward through this graph.
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Given the same function as before:

y = f(x, z) = exz +
xz

ln(x)
+

sin(ln(x))

xz

we first define some intermediate quantities, draw the computation graph, and run the
forward computation:

𝑎 = 𝑥𝑧
𝑏 = ln 𝑥
𝑐 = sin 𝑏
𝑑 = 𝑒!
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With the above computation graph, find ∂y
∂x

and ∂y
∂z

at x = 2, z = 3.

(Hint: Use the chain rule to find the derivative of y with respect to each intermediate variable
in a reverse manner starting from y. Remember to reuse previously computed quantities.)
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Pros:

1. Computational cost of computing ∂f(x)
∂x

is proportional to the cost of computing f(x).

2. Reduces computational overhead through reuse of intermediate results.

Cons:

1. Requires systematic knowledge of derivatives and an algorithm for computing f(x).

2. Implementation complexity due to the need for maintaining a computation graph.

2.4 Summary

The finite difference method is straightforward but computationally demanding. Likewise,
symbolic differentiation offers precision but can become heavy if poorly optimized. Auto-
matic differentiation, on the other hand, provides a balance between efficiency and complexity
with its reuse of computation, making it the backbone of modern computational frameworks
like PyTorch.
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