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1 Learning Theory

1.1 PAC Learning

1. Basic notation:

• Probability distribution (unknown): X ∼ p∗

• True function (unknown): c∗ : X → Y

• Hypothesis space H and hypothesis h ∈ H : X → Y

• Training dataset D = {x(1), . . . , x(N)}

2. True Error (expected risk)

R(h) = Px∼p∗(x)(c
∗(x) ̸= h(x))

3. Train Error (empirical risk)

R̂(h) = Px∼D(c
∗(x) ̸= h(x))

=
1

N

N∑
i=1

1(c∗(x(i)) ̸= h(x(i)))

=
1

N

N∑
i=1

1(y(i) ̸= h(x(i)))

The PAC criterion is that we produce a high accuracy hypothesis with high probability.
More formally,

P (∀h ∈ H, ≤ ) ≥

Sample Complexity is the minimum number of training examples N such that the PAC
criterion is satisfied for a given ϵ and δ

Sample Complexity for 4 Cases: See Figure 1. Note that

• Realizable means c∗ ∈ H

• Agnostic means c∗ may or may not be in H
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Figure 1: Sample Complexity for 4 Cases

The VC dimension of a hypothesis space H, denoted VC(H) or dV C(H), is the maximum
number of points such that there exists at least one arrangement of these points and a
hypothesis h ∈ H that is consistent with any labelling of this arrangement of points.

To show that VC(H) = n:

•

•

Questions

1. For the following examples, write whether or not there exists a dataset with the given
properties that can be shattered by a linear classifier.

• 2 points in 1D

• 3 points in 1D

• 3 points in 2D

• 4 points in 2D

How many points can a linear boundary (with bias) classify exactly for d-Dimensions?



10-701: Recitation 9 Page 3 of 3 09/18/20

2. Consider a rectangle classifier (i.e. the classifier is uniquely defined 3 points x1, x2, x3 ∈
R2 that specify 3 out of the four corners), where all points within the rectangle must
equal 1 and all points outside must equal -1

(a) Which of the configurations of 4 points in figure 2 can a rectangle shatter?

Figure 2

(b) What about the configurations of 5 points in figure 3?

Figure 3

3. Let x1, x2, ..., xn be n random variables that represent binary literals (x ∈ {0, 1}n). Let
the hypothesis class Hn denote the conjunctions of no more than n literals in which each
variable occurs at most once. Assume that c∗ ∈ Hn.

Example: For n = 4, (x1 ∧ x2 ∧ x4), (x1 ∧ ¬x3) ∈ H4

Find the minimum number of examples required to learn h ∈ H10 which guarantees at
least 99% accuracy with at least 98% confidence.
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