RECITATION 9 Learning Theory

10-701: Introduction to Machine Learning 04/05/2024

1 Learning Theory

1.1 PAC Learning

- 1. Basic notation:
 - Probability distribution (unknown): $X \sim p^*$
 - True function (unknown): $c^* : X \to Y$
 - Hypothesis space \mathcal{H} and hypothesis $h \in \mathcal{H} : X \to Y$
 - Training dataset $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$
- 2. True Error (expected risk)

$$R(h) = P_{x \sim p^*(x)}(c^*(x) \neq h(x))$$

3. Train Error (empirical risk)

$$\hat{R}(h) = P_{x \sim \mathcal{D}}(c^*(x) \neq h(x))$$

= $\frac{1}{N} \sum_{i=1}^N \mathbb{1}(c^*(x^{(i)}) \neq h(x^{(i)}))$
= $\frac{1}{N} \sum_{i=1}^N \mathbb{1}(y^{(i)} \neq h(x^{(i)}))$

The **PAC criterion** is that we produce a high accuracy hypothesis with high probability. More formally,

$$P(\forall h \in \mathcal{H}, \underline{\qquad} \leq \underline{\qquad}) \geq \underline{\qquad}$$

Sample Complexity is the minimum number of training examples N such that the PAC criterion is satisfied for a given ϵ and δ

Sample Complexity for 4 Cases: See Figure 1. Note that

- Realizable means $c^* \in \mathcal{H}$
- Agnostic means c^* may or may not be in \mathcal{H}

	Realizable	Agnostic
Finite $ \mathcal{H} $	$\begin{array}{ll} \text{Thm. 1} N \ \geq \ \frac{1}{\epsilon} \left[\log(\mathcal{H}) + \log(\frac{1}{\delta}) \right] \text{ labeled examples are sufficient so that with} \\ \text{probability } (1-\delta) \text{ all } h \in \mathcal{H} \text{ with } \hat{R}(h) = 0 \\ \text{have } R(h) \le \epsilon. \end{array}$	Thm. 2 $N \geq \frac{1}{2\epsilon^2} \left[\log(\mathcal{H}) + \log(\frac{2}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \leq \epsilon$.
Infinite $ \mathcal{H} $	Thm. 3 $N=O(\frac{1}{\epsilon}\left[\operatorname{VC}(\mathcal{H})\log(\frac{1}{\epsilon}) + \log(\frac{1}{\delta})\right])$ labeled examples are sufficient so that with probability $(1 - \delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$.	Thm. 4 $N = O(\frac{1}{\epsilon^2} \left[VC(\mathcal{H}) + \log(\frac{1}{\delta}) \right])$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \le \epsilon$.

Figure 1: Sample Complexity for 4 Cases

The VC dimension of a hypothesis space \mathcal{H} , denoted VC(\mathcal{H}) or $d_{VC}(\mathcal{H})$, is the maximum number of points such that there exists at least one arrangement of these points and a hypothesis $h \in \mathcal{H}$ that is consistent with any labelling of this arrangement of points.

To show that $VC(\mathcal{H}) = n$:

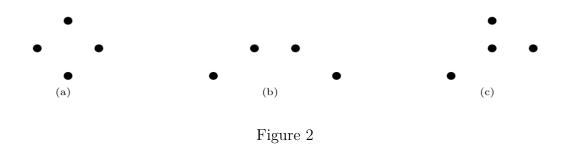
- •
- •

Questions

- 1. For the following examples, write whether or not there exists a dataset with the given properties that can be shattered by a linear classifier.
 - 2 points in 1D
 - 3 points in 1D
 - 3 points in 2D
 - 4 points in 2D

How many points can a linear boundary (with bias) classify exactly for d-Dimensions?

- 2. Consider a rectangle classifier (i.e. the classifier is uniquely defined 3 points $x_1, x_2, x_3 \in \mathbb{R}^2$ that specify 3 out of the four corners), where all points within the rectangle must equal 1 and all points outside must equal -1
 - (a) Which of the configurations of 4 points in figure 2 can a rectangle shatter?



(b) What about the configurations of 5 points in figure 3?

Figure 3

3. Let $x_1, x_2, ..., x_n$ be *n* random variables that represent binary literals $(x \in \{0, 1\}^n)$. Let the hypothesis class \mathcal{H}_n denote the conjunctions of no more than *n* literals in which each variable occurs at most once. Assume that $c^* \in \mathcal{H}_n$.

Example: For n = 4, $(x_1 \land x_2 \land x_4)$, $(x_1 \land \neg x_3) \in \mathcal{H}_4$

Find the minimum number of examples required to learn $h \in \mathcal{H}_{10}$ which guarantees at least 99% accuracy with at least 98% confidence.