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1 Ensemble Methods

The idea of ensemble methods is to build a model for prediction by combining the strengths
of a group of simpler models. We’ll cover two examples of ensemble methods: random forests
and AdaBoost.

1.1 Adaboost

1.1.1 Practical Example

(Adapted from Eric Xing’s 10701 slides) The graphs below show three iterations running
Adaboost with a depth 1 decision tree. Each dashed line represents the decision boundary
of ht, and the shaded regions represent the predictons, positive (blue) or negative (red). For
each iteration find the weighted training error ϵt and importance αt of ht. For t = 0 and
t = 1 also find the weight normalization Zt and record the updated weight for each point.
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1. t = 0
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2. t = 1

3. t = 2
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1.2 Random Forests

1. What are some downsides of decision trees, and how can we explain this in the context
of the bias-variance tradeoff?

Random Forests = Sample Bagging + Split-Feature Randomization

2. What is sample bagging?

3. What is split-feature randomization?

4. How do these techniques affect the bias and variance of an individual tree?

5. How do these techniques affect the bias and variance of an ensemble of trees?
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6. For each data point x(i), define t(−i) to be the set of decision trees that x(i) was not used
to train. Use each tree in t(−i) to make a prediction for x(i), and use these predictions
to make an aggregated prediction t(−i)(x(i)) (i.e. for classification take the majority
vote). Then, we can define the out-of-bag error as follows:

EOOB =
1

N

N∑
i=1

1

(
t(−i)(x(i)) ̸= y(i)

)

Why can we use EOOB for hyperparameter optimization even though it was calculated
using training points we used to learn the decision trees with?

7. Random Forest Example: Suppose we train a random forest with two decision trees
on the following dataset, using the provided bootstrap samples. Assume that for ties,
we predict Y = 1.

All X0 X1 X2 X3 Y
1 1 0 0 0 1
2 0 0 1 0 1
3 0 0 0 1 1
4 0 0 0 0 0
5 0 1 0 1 1

Sample 1 X0 X1 X2 X3 Y
1 1 0 0 0 1
4 0 0 0 0 0
5 0 1 0 1 1

Sample 2 X0 X1 X2 X3 Y
3 0 0 0 1 1
4 0 0 0 0 0
5 0 1 0 1 1

(a) Suppose we train our first tree on Sample 1 and the split feature randomization
chooses {X1, X2} for the feature candidates at the root. What feature will we
split on at the root?
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(b) Suppose we then recurse on the left child (with feature value 0) of the root and
split feature randomization chooses {X0, X2} for the feature indices. What feature
will we split on?

(c) Suppose we train our second tree on Sample 2 and the split feature randomization
chooses {X2, X3} for the feature candidates at the root. What feature will we split
on at the root?

(d) What is the training error of the ensemble?

(e) What is the out of bag error of the ensemble?
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2 SVM and Kernels

2.1 Questions on SVM with hard-margin

1. What is the decision boundary and the margin if we run a Hard-Margin SVM on the
following set of points?

2. A few additional data points are added to the data set in Figures 3 (a) and 3 (b). Draw
the new decision boundaries and give the margins corresponding to this boundaries.
In which case does the decision boundary undergo a change and why?
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Figure 3(a) Figure 3(b)
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2.2 Soft-margin linear SVM

Given the following dataset in 1-d space (Figure 5), which consists of 4 positive data points
and 3 negative data points. Suppose that we want to learn a soft-margin linear SVM for
this data set. Remember that the soft-margin linear SVM can be formalized as the following
constrained quadratic optimization problem. In this formulation, C is the regularization
parameter, which balances the size of margin (i.e., smaller wTw) vs. the violation of the
margin (i.e. smaller

∑m
i=1 ϵi).

Figure 5

1. If C = ∞, which means that we only care the violation of the margin, how many support
vectors do we have?

2. If C = 0, which means that we only care about the size of the margin, how many support
vectors do we have?
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2.3 Margin trivia

SVMs try to find the linear separator that maximises the margin between datapoints.

Figure 1: SVM decision boundary for some sample data

1. How can we show that w is perpendicular to the decision boundary of SVMs?
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2.4 Composite kernels

We can construct kernels by combining existing kernels in valid ways. We will verify three
kernels of these properties by computing the implied feature transformations.

For any valid kernels K1 and K2 with implied feature transformations Φ1 and Phi2 and for
nonnegative coefficients c1, c2, show that the following expressions are valid kernels:

1. K(x, x′) = c1K1(x, x
′) + c2K2(x, x

′)

2. K(x, x′) = c1K1(x, x
′)K2(x, x

′)

3. K(x, x′) = eK1(x,x′)
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