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1 Ensemble Methods

The idea of ensemble methods is to build a model for prediction by combining the strengths
of a group of simpler models. We’ll cover two examples of ensemble methods: random forests
and AdaBoost.

1.1 Adaboost

1.1.1 Practical Example

(Adapted from Eric Xing’s 10701 slides) The graphs below show three iterations running
Adaboost with a depth 1 decision tree. Each dashed line represents the decision boundary
of ht, and the shaded regions represent the predictons, positive (blue) or negative (red). For
each iteration find the weighted training error ϵt and importance αt of ht. For t = 0 and
t = 1 also find the weight normalization Zt and record the updated weight for each point.
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1. t = 0

ϵ0 = .1× 3 = .3, since we have 3 incorrectly classified points and initialize weights to
1

n
= .1

α0 =
1

2
ln(

1− .3

.3
) = .42

New non-normalized weights for correct points:

wcorrect = .1× e−.42 = .0657

New non-normalized weights for incorrect points:

wincorrect = .1× e.42 = .1522

Z0 = 3 ∗ .1522 + 7 ∗ .0657 = 0.9165

New normalized weights for correct points:

wcorrect =
.0657

0.9165
= 0.071

New normalized weights for incorrect points:

wincorrect =
.1522

0.9165
= 0.17
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2. t = 1

ϵ1 = 0.071× 3 = 0.21, since we have 3 incorrect points and they were all previously correct

α1 =
1

2
ln(

1− .21

.21
) = .66

New non-normalized weights for correct points:

wcorrect|correct = .071× e−.66 = 0.0367

wcorrect|incorrect = .17× e−.66 = 0.0879

New non-normalized weights for incorrect points:

wincorrect|correct = .071× e.66 = 0.1374

Z1 = 3 ∗ 0.1374 + 3 ∗ 0.0879 + 4 ∗ 0.0367 = 0.8227

New non-normalized weights for correct points:

wcorrect|correct = 0.0367/0.8227 = 0.0446

wcorrect|incorrect = 0.0879/0.8227 = 0.1068

New non-normalized weights for incorrect points:

wincorrect|correct = 0.1374/0.8227 = 0.1670

3. t = 2

ϵ2 = 0.045 ∗ 3 = 0.14

Since we have 3 incorrect points and they were all previously correct both times

α2 =
1

2
ln(

1− .14

.14
) = .0.9076
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1.2 Random Forests

1. What are some downsides of decision trees, and how can we explain this in the context
of the bias-variance tradeoff?

learned greedily, can overfit if depth isn’t controlled, low bias but high variance

Random Forests = Sample Bagging + Split-Feature Randomization

2. What is sample bagging?

Bagging stands for bootstrap aggregating. A bootstrapped dataset has the same num-
ber of rows as the original dataset, but its rows are drawn from the original dataset
with replacement. Models are trained on each individual dataset, but since the training
datasets are not as similar to each other, the learned models tend to be different and
more variable as well. Aggregating refers to the model predictions being combined to
form the final prediction.

3. What is split-feature randomization?

In the splits for each decision tree, instead of choosing the split feature from the set of
all features, we limit the feature set to a randomly chosen subset of all the features.
This further reduces correlation between the learned decision trees as the “best” feature
may not always be available to split on.

4. How do these techniques affect the bias and variance of an individual tree? Both

increase bias and decrease variance by limiting the information available to train on,
compared to a decision tree trained on the full original dataset.

5. How do these techniques affect the bias and variance of an ensemble of trees?

The increase in bias carries over from the individual trees. The ensemble has lower
variance because we are aggregating predictions over a set of trees that are not fully
correlated. Both techniques are designed to make the trees less correlated with one
another, as reducing covariance between trees reduces variance of the average over
trees.

Consider random variablesX1, X2, each with variance σ2. The variance of their average
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is given by

Var(
1

2
X1 +

1

2
X2) = Var(

1

2
X1) + Var(

1

2
X2) + 2Cov(

1

2
X1,

1

2
X2)

=
1

4
Var(X1) +

1

4
Var(X2) +

1

2
Cov(X1, X2)

=
1

4
σ2 +

1

4
σ2 +

1

2
σ2Cov(X1, X2)

σ · σ
=

1

4
σ2 +

1

4
σ2 +

1

2
ρσ2

= σ21

2
(1 + ρ)

where ρ is the correlation between X1, X2.

If ρ = 1 (fully correlated trees), then we achieve no variance reduction: the average
has variance σ2. In general, reducing ρ makes the trees less correlated and reduces
variance.

Note that our techniques are generally not extreme enough to generate anticorrelated
trees, where tree predictions would oppose each other. The more anticorrelated our
predictions are, the closer our model gets to always predicting 0, which does reduce
variance, but at the cost of performance on our task.
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6. For each data point x(i), define t(−i) to be the set of decision trees that x(i) was not used
to train. Use each tree in t(−i) to make a prediction for x(i), and use these predictions
to make an aggregated prediction t(−i)(x(i)) (i.e. for classification take the majority
vote). Then, we can define the out-of-bag error as follows:

EOOB =
1

N

N∑
i=1

1

(
t(−i)(x(i)) ̸= y(i)

)

Why can we use EOOB for hyperparameter optimization even though it was calculated
using training points we used to learn the decision trees with?

While every point was used to train a certain set of decision trees, the calculation of
EOOB takes advantage of the fact that the nature of bootstrapped datasets means that
there will generally be a reasonably large proportion of them that do not contain any
particular point.

Therefore, for the decision trees that were trained on these datasets, the training point
is equivalent to a test point as the tree has never seen it before. Since each tree is
trained independently, there will never be a scenario in which a tree is both trained on
a data point and also evaluated on it.

7. Random Forest Example: Suppose we train a random forest with two decision trees
on the following dataset, using the provided bootstrap samples. Assume that for ties,
we predict Y = 1.

All X0 X1 X2 X3 Y
1 1 0 0 0 1
2 0 0 1 0 1
3 0 0 0 1 1
4 0 0 0 0 0
5 0 1 0 1 1

Sample 1 X0 X1 X2 X3 Y
1 1 0 0 0 1
4 0 0 0 0 0
5 0 1 0 1 1

Sample 2 X0 X1 X2 X3 Y
3 0 0 0 1 1
4 0 0 0 0 0
5 0 1 0 1 1

(a) Suppose we train our first tree on Sample 1 and the split feature randomization
chooses {X1, X2} for the feature candidates at the root. What feature will we
split on at the root? X1
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(b) Suppose we then recurse on the left child (with feature value 0) of the root and
split feature randomization chooses {X0, X2} for the feature indices. What feature
will we split on? X0

(c) Suppose we train our second tree on Sample 2 and the split feature randomization
chooses {X2, X3} for the feature candidates at the root. What feature will we split
on at the root? X3

(d) What is the training error of the ensemble? 1/5, as only point 2 is incorrect.

Point 1: tree 1 predicts 1, tree 2 predicts 0, so prediction is 1

Point 2: tree 1 predicts 0, tree 2 predicts 0, so prediction is 0

Point 3: tree 1 predicts 0, tree 2 predicts 1, so prediction is 1

Point 4: tree 1 predicts 0, tree 2 predicts 0, so prediction is 0

Point 5: tree 1 predicts 1, tree 2 predicts 1, so prediction is 1

(e) What is the out of bag error of the ensemble? 4/5, as only point 5 is correct

Point 1: only tree 2 is involved, prediction is 0

Point 2: both trees are involved, prediction is 0

Point 3: only tree 1 is involved, prediction is 0

Points 4 and 5: majority vote over 0 trees predicts 1
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2 SVM and Kernels

2.1 Questions on SVM with hard-margin

1. What is the decision boundary and the margin if we run a Hard-Margin SVM on the
following set of points?

Decision Boundary: x = 1.5, Margin = 1

2. A few additional data points are added to the data set in Figures 3 (a) and 3 (b). Draw
the new decision boundaries and give the margins corresponding to this boundaries.
In which case does the decision boundary undergo a change and why?
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Figure 3(a) Figure 3(b)

For figure 3(a) the decision boundary remains unchanged because the support vector is
the same. 3(b) there is a non-vertical decision boundary.
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2.2 Soft-margin linear SVM

Given the following dataset in 1-d space (Figure 5), which consists of 4 positive data points
and 3 negative data points. Suppose that we want to learn a soft-margin linear SVM for
this data set. Remember that the soft-margin linear SVM can be formalized as the following
constrained quadratic optimization problem. In this formulation, C is the regularization
parameter, which balances the size of margin (i.e., smaller wTw) vs. the violation of the
margin (i.e. smaller

∑m
i=1 ϵi).

Figure 5

1. If C = ∞, which means that we only care the violation of the margin, how many support
vectors do we have?

2

2. If C = 0, which means that we only care about the size of the margin, how many support
vectors do we have?

7
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2.3 Margin trivia

SVMs try to find the linear separator that maximises the margin between datapoints.

Figure 1: SVM decision boundary for some sample data

1. How can we show that w is perpendicular to the decision boundary of SVMs?

Let us take two points x1 and x2 on the decision boundary of the SVM. So we know that
both these points will satisfy the equation wTx1 + b = 0 and wTx2 + b = 0.

Subtracting the two equations we get:

wTx1 + b− (wTx2 + b) = 0 (1)

wT (x1 − x2) = 0 (2)

Now we know that x1−x2 is a vector along the decision boundary and as its dot product
with w is 0, we can conclude they are perpendicular.
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2.4 Composite kernels

We can construct kernels by combining existing kernels in valid ways. We will verify three
kernels of these properties by computing the implied feature transformations.

For any valid kernels K1 and K2 with implied feature transformations Φ1 and Phi2 and for
nonnegative coefficients c1, c2, show that the following expressions are valid kernels:

1. K(x, x′) = c1K1(x, x
′) + c2K2(x, x

′)

We can show that K is a valid kernel by finding a transformation Φ that recovers the
linear combination of kernels K1 and K2 on the right hand side.

Recall that by definition, a kernel is some functionKΦ such thatKΦ(x, x
′) = Φ(x)⊤Φ(x′)

for all x, x′ ∈ X .

We can decompose the linear combination into the inner products and then show that
we can rewrite that expression as a new kernel-defining function Φ:

c1K1(x, x
′) + c2K2(x, x

′) = c1Φ1(x)Φ1(x
′) + c2Φ2(x)Φ2(x

′)

= [
√
c1Φ1(x),

√
c2Φ2(x)] · [

√
c1Φ1(x

′),
√
c2Φ2(x

′)]⊤

= Φ(x)Φ(x′)

where we have Φ(x) = [
√
c1Φ1(x),

√
c2Φ2(x)]. By finding a valid Φ that can replicate

the kernel transformation, we have shown that K is a valid kernel.

2. K(x, x′) = c1K1(x, x
′)K2(x, x

′)

As before, we will write out the inner products of the right hand side:

c1K1(x, x
′)K2(x, x

′) = c1Φ1(x)Φ1(x
′)Φ2(x)Φ2(x

′)

= (
√
c1Φ1(x)Φ2(x))(

√
c2Φ1(x

′)Φ2(x
′))

= Φ(x)Φ(x′)

where we have Φ(x) =
√
c1Φ1(x)Φ2(x)

3. K(x, x′) = eK1(x,x′)

We begin by writing the Taylor expansion of the right hand side and then using the
identities we proved above. Recall the Taylor expansion of the exponential function:

ex =
∞∑
n=1

xn

n!

eK1(x,x′) = 1 +K1(x, x
′) +

K1(x, x
′)2

2
+

K1(x, x
′)2

2
+ ...+

K1(x, x
′)n

n!
+ ...
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Each term in the above summation is a kernel because it is a product of valid kernels
(and constants), which we showed in example 2 above. Therefore, the entire summation
is a kernel because a sum of valid kernels is a valid kernel, which we showed in example
1.
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