
Examining the Trade-Offs Between
Simplified and Realistic Coding

Environments in an Introductory Python
Programming Class

Huy A. Nguyen(B) , Christopher Bogart, Jaromı́r Šavelka, Adam Zhang,
and Majd Sakr

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
{hn1,cbogart,jsavelka,yufanz,msakr}@andrew.cmu.edu

Abstract. Instructors in computer science classes often need to decide
between having students use real programming tools to provide practi-
cal experience and presenting them with simpler educational interfaces to
reduce their cognitive load. Our work investigates the trade-offs between
these approaches, by comparing student learning from two offerings of an
introductory Python class across several community colleges in the U.S.
In the first offering (N = 219), students used a real IDE (Visual Studio
Code) throughout the entire course. In the second offering (N = 166),
students used a simplified in-browser code editor, with no setup, for
the first three modules and transitioned to Visual Studio Code in the
subsequent modules. Our results showed that the second offering led to
better learning than the first offering in the first three modules with the
in-browser code editor. Moreover, students in both offerings performed
similarly in a subsequent module in which they performed local devel-
opment with Visual Studio Code, suggesting that the ability to use a
real IDE was not harmed by the initial use of the in-browser code editor.
In addition, we found that students in both offerings improved in their
levels of self-efficacy with the course’s learning objectives at the end of
the class. Finally, we identified that the revisions made in the second
offering benefited full-time students more than part-time students. We
conclude with a discussion of the trade-offs between employing realistic
programming tools and simplified coding environments, as well as sug-
gestions for making introductory computer science classes more effective
and accessible.

Keywords: online learning · project-based learning · introductory
programming

1 Introduction

The introductory phase of computer science education poses significant chal-
lenges for instructors and course designers. They must impart challenging tech-
nical skills and a resilient mindset, while fostering a learning environment that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ferreira Mello et al. (Eds.): EC-TEL 2024, LNCS 15159, pp. 315–329, 2024.
https://doi.org/10.1007/978-3-031-72315-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72315-5_22&domain=pdf
http://orcid.org/0000-0002-1227-6173
https://doi.org/10.1007/978-3-031-72315-5_22


316 H. A. Nguyen et al.

encourages retention and persistence among students [25]. High attrition rates
in introductory programming courses are a concern particularly in community
colleges [8], some of which do not have the institutional resources to help stu-
dents persist, such as tutors and in-person office hours. Furthermore, the student
population in these classes is highly diverse, with many part-time students who
need to balance school with full-time jobs or child care [18]. Hence, instructors
need strategies that engage and support students through their initial foray into
the discipline [15,22].

To this end, prior research has investigated ways to ease the initial learning
experience while allowing students to focus on developing computational think-
ing skills [27,29]. Possible strategies include using visual block-based program-
ming [33,34] and assigning tasks with higher levels of scaffodings (e.g., code
tracing [36], Parsons problems [11–14], pair programming [23]). Although the
benefits of these strategies are well-established, due to their deviation from the
traditional coding experience, they often require significant resources to design
and implement – resources which community college instructors cannot afford.
Thus, it remains desirable to develop solutions that can reduce cognitive load
while being easily utilized by students and instructors.

A potential area of improvement is the programming environment being
introduced to students. While industry-standard environments (e.g., IntelliJ,
PyCharm) are commonly used to foster an authentic learning experience, the
complexities of these tools can be discouraging to novice programmers [9]. On
the other hand, in-browser IDEs, which allow for code authoring and execution
in the browser without any technical setups, are becoming increasingly common
[31]. If they can promote learning as well as traditional environments, while
not hampering students’ ability to transition to practical workflows later on, in-
browser IDEs may greatly contribute to lowering the entry barriers to computer
science.

Our research investigates this hypothesis by comparing students’ experience
in two versions of an introductory Python course: the pre-revision version in
which students complete programming assignments using practical tools, and
the post-revision version in which the first few assignments utilized an in-browser
code editor, embedded within the assignment description text. Using data col-
lected from an online learning platform which hosted the course content, we
evaluated the effects of the course revision on students’ performance in each
assigned module (RQ1). Next, we compared the learning behaviors, as well as
attitudes associated with frame of mind and persistence in the field – namely
self-efficacy and STEM identity – between the two class versions (RQ2). Finally,
we investigated how students’ background factors and attitudes contributed to
their learning outcomes in each version of the class (RQ3).



Examining the Trade-Offs 317

2 Background

2.1 Educational Programming Environments in Introductory
Python Course

Introductory programming courses tend to be challenging for students, with
attrition rates around 28% [4]. This is often attributed to the expectations that
students digest several topics simultaneously, including logic and mathematical
concepts, programming language syntax and interface, algorithms, flowcharts,
and pseudo code associated with programming theory, which often leads to
higher levels of stress, cognitive overload and frustration [16]. Among these top-
ics, mastering the language syntax is especially critical and time-consuming [1],
given the major differences between programming languages and natural lan-
guages. Therefore, programming instructors and researchers have been exten-
sively exploring how to reduce cognitive load of the students in introductory
classes [30].

The use of a real programming IDE could be an additional source of cognitive
load because these tools have many advanced features that may overwhelm some
students, especially those with no programming background [9]. While some
argue that it is important to familiarize students with the real-world tools [6],
others choose to use IDEs with fewer features that are less overwhelming but
fail to expose the students to real life programming environments [21]. To better
understand the trade-offs between these directions and identify a resolution,
we propose and evaluate an approach where students are first introduced to a
simple environment with limited functionalities, and later switched to a real-
world programming IDE (Visual Studio Code). This experiment was performed
in the context of an introductory Python course, described in details as follows.

2.2 Structure of the Examined Python Course

The Python course in our work was designed for learners with minimal or no
programming experience, starting with introductory topics such as data types,
loops, and data structures. When students need to interact with the command
line interface, exact commands are provided for them to copy-and-paste. When
students need to run a Python program locally, a placeholder program that
is executable but with missing functionalities is provided to them, where they
are tasked with implementing individual functions or modules as part of their
assignments. Students view the assignment description online, and submit their
code either by typing code in an in-browser code editor (in the latest offering)
or by running a submitter Python script on their personal or lab computer (in a
previous offering). Figure 1 illustrates how the students’ working environments
differ in each offering. In the top environment (in-browser code editor) students
can click on the Run button to execute their code and the Evaluate button to
submit. In the bottom environment (Visual Studio Code), students execute their
code through the IDE and use the terminal to submit.



318 H. A. Nguyen et al.

Fig. 1. The working environments for students in the latest offering (top) and previous
offering (bottom)

The Python course is hosted on a proprietary platform where students’ code
is submitted to an auto-grading service, which immediately provides both scores
and contextualized feedback (Fig. 2) to help students debug and help instructors
understand their students’ code more quickly. As detailed in Sect. 3.3, changes
to the course have been made to simplify the coding workflow by moving the



Examining the Trade-Offs 319

Fig. 2. The feedback shown to students for a submission that contains an incorrect
solution.

development and runtime environment to the browser in the latest offering, which
sets the stage for comparing the two paradigms in this paper.

Between its initial release in Fall 2022 and Spring 2024, the Python course
(and all of its variants) has been taken by 955 students, in 42 offerings, at 21
institutions across the U.S.

3 Methods and Materials

3.1 Dataset

While the Python course examined in this work has been offered at several
institutions, each participating instructor could decide on which modules of the
course to use in their own section. For our research, we focused on the sections
where all of the first three modules were mandatory, as the in-browser code
editor and curriculum revision were primarily targeting these modules. Based
on this criterion, we gathered student data from twenty-two sections of the class
across nine community colleges in the U.S. Fourteen of these sections (N = 219)
were offered prior to the course revision, with a mean student age of 29.04
(SD = 11.69); we refer to this sample as the pre-revision group. Eight sections
(N = 166) were offered after the course revision, with a mean student age of
22.73 (SD = 9.02); we refer to this sample as the post-revision group.



320 H. A. Nguyen et al.

3.2 Survey Materials

Students and instructors were presented with an informed consent form when
they first logged into the course; those who did not consent to data collec-
tion could still take the course, but their data was not recorded. Students who
consented then completed an optional starting survey with two primary com-
ponents. The first component queried about their gender identity, age, student
status (full time versus part-time) and other demographic factors. The second
component, called the frame-of-mind survey, was designed to measure students’
sense of self-efficacy and STEM identity. In particular, it covers the following
constructs:

– The STEM career self-efficacy construct (4 items adapted from [19]), mea-
sures one’s confidence in their ability to succeed in a STEM career, e.g., “I
can persist in a STEM major during the next year.”

– The course LO self-efficacy construct (5 items) measures one’s confidence in
their ability to meet the course’s specific learning objectives, e.g., “I could
write a small computer program that reads data from several files and pro-
duces a summary report stored in a new file.”

– The STEM Identity construct (1 item adapted from [20]) measures the extent
to which one identifies as a STEM professional.

All survey items were rated by students on a Likert scale from 1 (“not at
all confident”) to 5 (“extremely confident”), except for the STEM identity item
with a scale from 1 to 7. An identical frame-of-mind survey was also offered at
the end of the class in order to measure how students’ attitudes changed over
the course of their learning.

3.3 Learning Materials

After completing the surveys, students in both the pre-revision and post-revision
groups went through the learning materials in the same manner. In each module,
students would start with the conceptual readings and primer materials, then
attempted the hands-on coding project. Each project contained one to six tasks
which could be submitted separately, for a total of 95 points. The final 5 points
in a module came from students’ reflections on the project (2 points) and their
discussion of others’ reflections (3 points) – these activities would be unlocked
after the project due date, if the instructor opted to assign them.

There were several changes to the post-revision sections of the Python class,
detailed as follows. In terms of the coding environment, the first three graded
modules (Modules 1, 2 and 3) were redesigned to utilize the in-browser code
editor (Fig. 1, top), while all subsequent modules retained the local IDE envi-
ronment, similar to those in the pre-revision sections (Fig. 1, bottom). In terms
of the assignment contents, two tasks in Module 2 and 3 were moved to a later
module in order to balance the initial difficulties. In terms of the curriculum
revision, a new ungraded Module 0 was added to introduce the in-browser code
editor feature. After Module 3, there was another ungraded module which taught



Examining the Trade-Offs 321

Fig. 3. All the modules in the pre-revision and post-revision sections of the Python
class.

students about setting up a local working environment with Visual Studio Code
and the terminal – this module is identical to Module 0 in the pre-revision sec-
tions, which employed local development from the beginning. Finally, we added
a new graded module, Module 6, which contained the two removed tasks from
Modules 2 and 3. A complete overview of the curriculum revision is provided
in Fig. 3. Here we note that, starting from the Classes, Objects, Attributes and
Methods module, there were no differences in the learning content or working
environment between the pre- and post-revision sections.

4 Results

RQ1: How Did the Course Revisions Impact Students’ Learning Out-
comes? We first compared students’ final scores in Modules 1, 2, 3, as the
in-browser code editor was incorporated into these three modules in the post-
revision sections of the class. For Modules 2 and 3, we only considered the tasks
that were common in both the pre-revision and post-revision sections. For con-
sistency, we also normalized all student scores to be in the range of 0 − 100.
Table 1 shows the descriptive statistics for the final scores in each module.

Because the score distributions were not normal but bimodal, with one mode
at 0 (from students who did not attempt or make any successful submission)
and one mode around the mean, we used non-parametric Mann-Whitney test to
compare the pre-revision and post-revision group. Our results showed a signif-
icant difference in final scores in Module 1 (U = 15618.5, p = .01), Module 2



322 H. A. Nguyen et al.

Table 1. The mean and standard deviation, expressed in M(SD) format, of students’
final scores in each module.

Module Pre-revision Post-revision

Module 1: Types, Variables, and Functions 52.03 (46.69) 71.43 (42.99)

Module 2: Iteration, Conditionals, Strings 67.38 (41.72) 76.30 (37.71)

Module 3: Lists, Sets, Tuples, Dictionaries 39.85 (37.74) 57.65 (37.56)

(U = 13780.0, p < .001), as well as Module 3 (U = 13449.0, p < .001). In all
cases, the post-revision group had higher scores than the pre-revision group.

Next, we compared the final scores in later modules which were not affected
by the course revision (i.e., all the modules in Fig. 3 starting from Classes,
Objects, Attributes and Methods). However, because most of these later mod-
ules were made optional by the course instructors, we only had sufficient data to
compare performance in the Classes, Objects, Attributes and Methods module.
For this comparison, we identified a subsample of 17 sections where this module,
in addition to the first three modules, was mandatory, with 10 sections (N = 134)
in the pre-revision group and 7 sections (N = 153) in the post-revision group.
Here the post-revision group (M = 50.16, SD = 42.64) also outperformed the
pre-revision group (M = 42.65, SD = 40.89), but the difference was not signifi-
cant, U = 9221.5, p = .13.

RQ2: How Did the Course Revisions Impact Students’ Frame of Mind
and Learning Behaviors? To measure how students’ frame of mind constructs
changed from the start to the end of the class, as well as whether this change was
influenced by the course revisions, we conducted a series of mixed ANOVAs, with
survey time (start of class versus end of class) as the within-subject factor, and
course revision (pre-revision versus post-revision) as the between-subject factor.
Our results showed a significant main effect of survey time on course LO self-
efficacy (F = 60.68, p < .001), where students reported higher ratings at the end
of the class (M = 3.37, SD = 0.98) than at the start (M = 2.31, SD = 0.96). For
the other two constructs, STEM career self-efficacy and STEM identity, there
were no significant main or interaction effects, indicating that the course revision
did not have a clear impact on students’ frame of mind.

Next, we analyzed how the course revision could lead to differences in learning
behaviors. To this end, we compared the number of submissions that students
made to each module, between the pre-revision and post-revision group. For
Modules 2 and 3, only submissions to the tasks that were common in both the
pre-revision and post-revision sections were considered. Based on a series of t-
tests, we identified significant differences in the number of submissions across
all modules with sufficient student data (Table 2). Compared to the pre-revision
group, students in the post-revision group made many more submissions in Mod-
ule 1 (t = −11.95, p < .001), Module 2 (t = −8.71, p < .001) and Module 3
(t = −5.05, p < .001), but fewer submissions in Module 4/6 (t = 2.32, p = .02).



Examining the Trade-Offs 323

Table 2. The mean and standard deviation, expressed in M(SD) format, of students’
submission counts in each module.

Module Pre-revision Post-revision

Module 1: Types, Variables, and Functions 15.06 (17.75) 59.50 (41.73)

Module 2: Iteration, Conditionals, Strings 27.23 (30.07) 107.69 (104.34)

Module 3: Lists, Sets, Tuples, Dictionaries 9.02 (20.77) 23.89 (26.06)

Module 4/6: Classes, Objects, Attributes and Methods 24.85 (37.78) 16.11 (14.10)

RQ3: Did the Effects of the Course Revision Vary Based on Students’
Frame of Mind and Background? To determine the relationship between
students’ background factors, frame of mind constructs and the course revisions
in their joint effects on learning outcomes, we constructed a series of regression
models with 11 input features, which can be divided into four groups:

(1) The Course revision flag (Pre-revision = 0, Post-revision = 1), which indi-
cates whether a student was in a pre-revision or post-revision section.

(2) Two background features, Age and Full-time status (Part-time = 0, Full-
time = 1). The other background features were heavily skewed and therefore
could not be used in the model.

(3) Frame-of-mind ratings at the start of the class, covering three constructs:
STEM career self-efficacy, Course LO self-efficacy and STEM identity.

(4) Interaction terms between Course revision and each of the features in groups
(2) and (3).

Correlation analysis showed no issues with multi-collinearity for the above set
of features. Each model was then fit on students’ final module scores in a partic-
ular module, and the significant predictor features are listed in Table 3. Overall,
two features – full-time status, and the interaction between full-time status and
course revision, were consistently predictive of students’ learning performance
across four modules. Figure 4 further illustrates the role of the interaction term,
whereby the performance of full-time students improved after the course revision,
but the performance of part-time students did not.

5 Discussion

In this work, we examined the effects of integrating an in-browser code editor and
curriculum revision into the initial modules of an introductory computer science
class. Our research was motivated by the potential trade-offs between having
students use realistic tools from the outset and scaffolding them with simpler
coding workflows. To this end, we compared the learning outcomes, learning
behaviors and frame-of-mind constructs between students who took the class
before the course revision and those who took it after. We discuss our findings
and their implications on computer science instructions as follows.



324 H. A. Nguyen et al.

Table 3. Regression features that significantly predicted students’ final scores in each
module (p < .05).

Module Significant predictors

Module 1: Types, Variables, and Functions Full-time status, β = 22.77

Course revision × Full-time status, β = −33.27

Module 2: Iteration, Conditionals, Strings Course revision × Full-time status, β = −39.14

Module 3: Lists, Sets, Tuples, Dictionaries Full-time status, β = 27.84

Course revision × Full-time status, β = −35.97

STEM career self-efficacy, β = 9.17

Module 4/6: Classes, Objects, Attributes and Methods Full-time status, β = 29.28

Course revision × Full-time status, β = −43.18

Fig. 4. Interaction plots showing the relationship between course revision, full-time
status and final module scores.



Examining the Trade-Offs 325

First, we were able to confirm the learning benefits of the course revision.
Compared to the pre-revision group, the post-revision group had higher scores
in the first three modules, which utilized the in-browser code editor feature for
code experimentations and submissions. In addition, when moving from the in-
browser code editor to standard development tools (i.e., Visual Studio Code
and the terminal) in a subsequent module, the post-revision group had com-
parable performance to the pre-revision group, suggesting that the simplified
workflows in the first three modules did not hinder students’ ability to use real-
istic tools. These results are encouraging and consistent with our motivation for
the course revision, which was to reduce extraneous cognitive loads at the initial
stages of learning. In the context of Python programming, significant cognitive
overload could result from technical topics such as IDE functionalities, virtual
environment setup and file system management, which are typically exposed to
students at the same time they start learning the language syntax and develop
computational thinking skills [30,37]. Towards addressing this issue, our findings
provide support for an alternate strategy, which centered the students’ learning
experience on the core Python programming before introducing the intricacies
of realistic development. We plan to continue evaluating this approach in sub-
sequent iterations of our course, as well as in other introductory programming
classes which may involve different languages and development tools.

When investigating the effects of the course revision on students’ frame of
mind, we noted several interesting patterns. First, there were no differences in
STEM career self-efficacy and STEM identity between the start and end of class,
or between the pre-revision and post-revision sections. This finding is consistent
with the results from a prior work, which show that these constructs are rel-
atively stable [7]. On the other hand, students’ course LO self-efficacy, which
measured their confidence in meeting the course’s learning objectives, signifi-
cantly improved from the start to the end of class, indicating that they per-
ceived the benefits from the learning materials. However, this improvement did
not differ between the pre-revision and post-revision group. In other words, while
the post-revision class sections yielded better learning outcomes, they did not
improve students’ self-efficacy with respect to the course’s learning objectives
more than the pre-revision sections. One possible explanation is that, while the
students’ workflow in the initial modules were greatly simplified with the course
revision, the content difficulties and amount of instructional support remained
unchanged; thus, students’ gain in self-efficacy was consistent in both the pre-
revision and post-revision offerings. At the same time, given the identified con-
nections between self-efficacy, knowledge acquisition and transfer [26], a promis-
ing venue of future research is to enhance the existing learning system to also
promote self-efficacy. As an example, with the in-browser code editor, we are able
to collect finer-grained data about students’ progress through each assignment,
including their coding samples and any errors they encountered. These types
of data could be used to provide immediate affective, cognitive and metacogni-
tive feedback, with the goal of helping students better navigate their learning
trajectories and improve in self-efficacy [5,10,32].



326 H. A. Nguyen et al.

In terms of learning behaviors, we observed significantly more submissions
to the first three modules in the post-revision sections. This pattern is likely due
to the ease of submission provided by the in-browser code editor, which only
involved a button click. In contrast, students in the pre-revision sections needed
to run a submitter script locally and then navigate to the learning platform
to see their feedback (Figs. 1, 2). However, the higher number of submissions
by the post-revision group, which exceeded even 100 on average in Module 2,
could indicate that students were making minimal changes between submissions
and using the auto-grading service to debug their code. This behavior is similar
to “gaming the system,” whereby students abuse the features of an interactive
learning system to avoid thinking through a problem [3,17]. Given its potential
detrimental effects, future iterations of the course should implement features to
discourage students from making rapid submissions, for example by providing a
reminder or enforcing a time gap between submissions in the learning platform.
On the other hand, when students in the post-revision group transitioned into
realistic development tools in a subsequent module, they made fewer submissions
but still achieved comparable scores as the pre-revision group. In other words,
the post-revision group had higher learning efficiency, which further supports
the benefits of the course revision.

Additionally, when examining how the effects of the course revision on learn-
ing outcomes interact with different student factors, we found that it benefited
full-time students more than part-time students, as full-time students did sig-
nificantly better in the post-revision sections, while part-time students did not.
This difference could be due to full-time students being able to spend more time
with the class materials, which affords them more opportunities to benefit from
the in-browser editor and curriculum revision. As identified in prior research,
time management is a crucial strategy for success in community college and is
especially more important for part-time than for full-time students [18]. At the
same time, there may be other underlying factors contributing to the full-time
and part-time gap, such as issues of identity and marginalization [35]. It is pos-
sible that our course revision may not adequately address, or even worsen, such
issues. Thus, we plan to further investigate differences in learning difficulties,
perspectives and attitudes between full-time and part-time students to identify
ways in which the course revisions could benefit both groups equally.

Finally, we should note certain limitations that could impact the interpreta-
tions of our findings and merit additional investigations. First, we have analyzed
student data across several institutions that differ in learning modalities and
resource availability. These are potential confounding factors that should be
explicitly modeled in future research with a larger sample size to fully under-
stand the effects of the course revision. Likewise, we currently have insufficient
data to compare student performance in later modules of the class, due to these
modules being made optional. We plan to continue co-operating with instructors
in the adoption of these modules to provide students with a uniform learning
experience and gather more data for our research. Moving forward, we also plan
to expand the range of analyses, taking into account students’ work habits, code



Examining the Trade-Offs 327

samples, reflections and discussions, to better capture their learning experiences.
These analyses have been conducted in prior research on other computer science
domains, such as data science, software engineering and cloud computing educa-
tion [2,24,28]. Thus, we expect that they will also be insightful in the context of
our course, which utilizes a similar centralized learning platform to engage with
students.

6 Conclusion

In summary, our work has identified the benefits of integrating an in-browser
code editor to simplify the initial workflows for students in an introductory
Python programming class. This feature was shown to improve learning perfor-
mance while not hindering the transition to a realistic IDE later on. We therefore
recommend that, instead of deciding between simplified and realistic coding envi-
ronments, computer science instructors should start with simplified development
tools before introducing students to more realistic and complex workflows, so as
to lower the entry barrier and reduce cognitive load. In the broader sense, this
research showcases how innovative uses of technology-enhanced learning tools
can improve students learning in a complex technical domain such as project-
based programming, where attrition rates remain high. As computer science
education continues to grow in scale and complexity, further refinements of such
tools are essential to maintaining quality and accessible learning experiences.

References

1. Al-Imamy, S., Alizadeh, J., Nour, M.A.: On the development of a programming
teaching tool: the effect of teaching by templates on the learning process. J. Inf.
Technol. Educ. Res. 5(1), 271–283 (2006)

2. An, M., Zhang, H., Savelka, J., Zhu, S., Bogart, C., Sakr, M.: Are working habits
different between well-performing and at-risk students in online project-based
courses? In: Proceedings of the 26th ACM Conference on Innovation and Tech-
nology in Computer Science Education V. 1, pp. 324–330 (2021)

3. Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., Koedinger, K.: Why
students engage in “gaming the system” behavior in interactive learning environ-
ments. J. Interact. Learn. Res. 19(2), 185–224 (2008)

4. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory programming: 12
years later. ACM Inroads 10(2), 30–36 (2019)

5. Berger, N., Hanham, J., Stevens, C.J., Holmes, K.: Immediate feedback improves
career decision self-efficacy and aspirational alignment. Front. Psychol. 10, 429533
(2019)

6. Bettini, L., Crescenzi, P.: Java-meets eclipse: an ide for teaching java following the
object-later approach. In: 2015 10th International Joint Conference on Software
Technologies (ICSOFT), vol. 2, pp. 1–12. IEEE (2015)

7. Bogart, C., An, M., Keylor, E., Singh, P., Savelka, J., Sakr, M.: What factors influ-
ence persistence in project-based programming courses at community colleges? In:
Proceedings of the 55th ACM Technical Symposium on Computer Science Educa-
tion V. 1, pp. 116–122 (2024)



328 H. A. Nguyen et al.

8. Chen, X.: Stem attrition: College students’ paths into and out of stem fields. sta-
tistical analysis report. nces 2014-001. National Center for Education Statistics
(2013)

9. Chen, Z., Marx, D.: Experiences with eclipse ide in programming courses. J. Com-
put. Sci. Coll. 21(2), 104–112 (2005)

10. Halmo, S.M., Yamini, K.A., Stanton, J.D.: Metacognition and self-efficacy in
action: How first-year students monitor and use self-coaching to move past
metacognitive discomfort during problem solving. CBE-Life Sci. Educ. 23(2), ar13
(2024)

11. Hou, X., Ericson, B.J., Wang, X.: Integrating personalized parsons problems with
multi-level textual explanations to scaffold code writing. In: Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 2, pp. 1686–
1687 (2024)

12. Hou, X., Ericson, B.J., Wang, X.: Using adaptive parsons problems to scaffold
write-code problems. In: Proceedings of the 2022 ACM Conference on International
Computing Education Research-Volume 1, pp. 15–26 (2022)

13. Hou, X., Ericson, B.J., Wang, X.: Parsons problems to scaffold code writing: Impact
on performance and problem-solving efficiency. In: Proceedings of the 2023 Con-
ference on Innovation and Technology in Computer Science Education V. 2, pp.
665 (2023)

14. Hou, X., Ericson, B.J., Wang, X.: Understanding the effects of using parsons prob-
lems to scaffold code writing for students with varying cs self-efficacy levels. In:
Proceedings of the 23rd Koli Calling International Conference on Computing Edu-
cation Research, pp. 1–12 (2023)

15. Jenkins, J.T., Terwilliger, M.G.: Examining strategies to improve student success
in cs1. J. Comput. Sci. Coll. 35(4), 124–132 (2019)

16. Kelleher, C., Pausch, R.: Lowering the barriers to programming: a taxonomy of
programming environments and languages for novice programmers. ACM Comput.
Surv. (CSUR) 37(2), 83–137 (2005)

17. Li, Y., Zou, X., Ma, Z., Baker, R.S.: A multi-pronged redesign to reduce gaming
the system. In: International Conference on Artificial Intelligence in Education,
pp. 334–337. Springer (2022)

18. MacCann, C., Fogarty, G.J., Roberts, R.D.: Strategies for success in education:
time management is more important for part-time than full-time community college
students. Learn. Individ. Differ. 22(5), 618–623 (2012)

19. Marra, R., Bogue, B., Rodgers, K., Shen, D.: Self efficacy of women engineering
students? three years of data at us institutions. In: 2007 Annual Conference &
Exposition pp. 12–1262 (2007)

20. McDonald, M.M., Zeigler-Hill, V., Vrabel, J.K., Escobar, M.: A single-item measure
for assessing stem identity. In: Frontiers in Education, vol. 4, p. 78. Frontiers Media
SA (2019)

21. Milne, I., Rowe, G.: Difficulties in learning and teaching programming-views of
students and tutors. Educ. Inf. Technol. 7, 55–66 (2002)

22. Mohamed, A.: Teaching highly mixed-ability cs1 classes: a proposed approach.
Educ. Inf. Technol. 27(1), 961–978 (2022)

23. Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik, S.:
Improving the cs1 experience with pair programming. ACM Sigcse Bull. 35(1),
359–362 (2003)



Examining the Trade-Offs 329

24. Nguyen, H., Lim, M., Moore, S., Nyberg, E., Sakr, M., Stamper, J.: Exploring
metrics for the analysis of code submissions in an introductory data science course.
In: LAK21: 11th International Learning Analytics and Knowledge Conference, pp.
632–638 (2021)

25. Qian, Y., Lehman, J.: Students’ misconceptions and other difficulties in intro-
ductory programming: a literature review. ACM Trans. Comput. Educ. (TOCE)
18(1), 1–24 (2017)

26. A Ramalingam, V., LaBelle, D., Wiedenbeck, S.: Self-efficacy and mental models
in learning to program. In: Proceedings of the 9th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, pp. 171–175 (2004)

27. Sands, P.: Addressing cognitive load in the computer science classroom. Acm
Inroads 10(1), 44–51 (2019)

28. Sankaranarayanan, S., Kandimalla, S.R., Bogart, C.A., Murray, R.C., Hilton, M.,
Sakr, M.F., Rosé, C.P.: Collaborative programming for work-relevant learning:
Comparing programming practice with example-based reflection for student learn-
ing and transfer task performance. IEEE Trans. Learn. Technol. 15(5), 594–604
(2022)

29. Santana, B.L., Bittencourt, R.A.: Increasing motivation of cs1 non-majors through
an approach contextualized by games and media. In: 2018 IEEE Frontiers in Edu-
cation Conference (FIE), pp. 1–9. IEEE (2018)

30. Stachel, J., Marghitu, D., Brahim, T.B., Sims, R., Reynolds, L., Czelusniak, V.:
Managing cognitive load in introductory programming courses: a cognitive aware
scaffolding tool. J. Integr. Des. Process. Sci. 17(1), 37–54 (2013)

31. Tang, L.: A Browser-based Program Execution Visualizer for Learning Interactive
Programming in Python. Ph.D. thesis, Rice University (2015)

32. Valencia-Vallejo, N., López-Vargas, O., Sanabria-Rodŕıguez, L.: Effect of a
metacognitive scaffolding on self-efficacy, metacognition, and achievement in e-
learning environments. Knowl. Manage. E-Learning 11(1), 1–19 (2019)

33. Weintrop, D.: Block-based programming in computer science education. Commun.
ACM 62(8), 22–25 (2019)

34. Weintrop, D., Wilensky, U.: Comparing block-based and text-based programming
in high school computer science classrooms. ACM Trans. Comput. Educ. (TOCE)
18(1), 1–25 (2017)

35. Williams, J., Kane, D.: The part-time student’s experience 1996–2007: An issue of
identity and marginalisation? Tert. Educ. Manag. 16(3), 183–209 (2010)

36. Xhakaj, F., Aleven, V.: Towards improving introductory computer programming
with an its for conceptual learning. In: Artificial Intelligence in Education: 19th
International Conference, AIED 2018, London, UK, June 27–30, 2018, Proceedings,
Part II 19. pp. 535–538. Springer (2018)

37. Yousoof, M., Sapiyan, M., Kamaluddin, K.: Measuring cognitive load-a solution to
ease learning of programming. Int. J. Comput. Syst. Eng. 1(2), 32–35 (2007)


	Examining the Trade-Offs Between Simplified and Realistic Coding Environments in an Introductory Python Programming Class
	1 Introduction
	2 Background
	2.1 Educational Programming Environments in Introductory Python Course
	2.2 Structure of the Examined Python Course

	3 Methods and Materials
	3.1 Dataset
	3.2 Survey Materials
	3.3 Learning Materials

	4 Results
	5 Discussion
	6 Conclusion
	References


