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Abstract. We present a revisited semantics for multiset rewriting founded on
the left sequent rules of linear logic in its LV presentation. The resulting interpre-
tation is extended with a majority of linear connectives into the language ofω-
multisets. It drops the distinction between multiset elements and rewrite rules, and
considerably enriches the expressive power of standard multiset rewriting with
embedded rules, choice, replication and more. The cut rules introduce finite auxil-
iary rewriting chains and are admissible. Derivations are now primarily viewed as
open objects, and are closed only to examine intermediate rewriting states. The re-
sulting language can also be interpreted as a process algebra. A simple translation
maps process constructors of the asynchronousπ-calculus to rewrite operators,
while the structural equivalence corresponds directly to logically-motivated struc-
tural properties ofω-multisets (with one exception). The language ofω-multisets
forms the basis for the security protocol specification language MSR 3. With rela-
tions to both multiset rewriting and process algebra, it supports specifications that
are process-based, state-based, or of a mixed nature. Additionally, its deep logi-
cal underpinning makes it an ideal common ground for systematically comparing
protocol specification languages, a task currently done in an ad-hoc manner.

Keywords: Linear logic, multiset rewriting, process algebra, security protocols.

1 Introduction

The semantics of a logic is generally given as a set of inference rules that can be com-
posed to build derivations. Traditionally, derivations are used to support judgments such
as the entailment of a formula from given assumptions. To this end, a derivation shall

? Partially supported by NRL under contract N00173-00-C-2086. This research was conducted
while the author was visiting Princeton University.
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Fig. 1.Overview

be finite and closed, in the sense that the premises of every rule in it are themselves
justified by (sub-)derivations.

In this paper, we emphasize a radically different view of rules, derivations, and ul-
timately logic. We will be primarily interested in the vertical process of extending open
derivations upwards, with little concern for finiteness. The horizontal process of clos-
ing a derivation (and proving something, in the traditional sense) will be of secondary
importance, mostly as a form of observation.

We develop this idea with respect to a fragment of intuitionistic linear logic [24] in
Pfenning’s LV sequent presentation [42]. We turn LV’s left rules into a form of rewrit-
ing over logical contexts. It transforms a rule’s conclusion into its major premise, with
minor premises corresponding to finite auxiliary rewriting chains (they can be in-lined
using the cut rules). The axiom rule becomes a means of observing the rewriting pro-
cess. A few of LV’s right rules indirectly contribute to a notion of equivalence, while
the rest is discarded. It is shown that LV’s cut rules are admissible.

The resulting system, which we callω, is much weaker than LV (because of the
absence of right rules), but constitute a powerful form of rewriting. We show that a
tiny syntactic fragment ofω corresponds exactly to traditional multiset rewriting (or
place/transition Petri nets). This constitutes an interpretation of multiset rewritingas
(a fragment of) logic, which we like to contrast to the previous interpretationsinto (a
fragment of) logic [4, 10, 11, 18, 25, 30]. The systemω similarly provides a new logical
foundation to more sophisticated forms of multiset rewriting and Petri nets.

Pushing this methodology further, we viewω as an extreme form of multiset rewrit-
ing: it drops the distinction between multiset elements and rewrite rules, and consider-
ably enriches the expressive power of standard multiset rewriting with embedded rules,
parametricity, choice, replication and more. Yet, its semantics is given by the rules of
logic. Under this interpretation, we call formulasω-multisets.

The systemω has also close ties to process algebra, in particular to the join cal-
culus [23] and the asynchronousπ-calculus [38, 44]. A simple execution-preserving
translation maps process constructors of the latter to rewrite operators, while its struc-
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tural equivalence corresponds directly to logically motivated properties ofω (with one
exception).

With relations to the two major paradigms for distributed and concurrent computing,
ω is a promising middle ground where both state-based and process-based specifications
can coexist. We test this proposition in the arena of cryptographic protocol analysis, in
which both approaches are prominently used, and only ad-hoc mappings exist to bridge
them. We developω into the protocol specification language MSR 3 and scrutinize
various ways of expressing a protocol.

This paper is organized as follows. Section 2 distillsω out of LV. Section 3 ex-
posesω as a new form of multiset rewriting. Section 4 relates it to the process algebraic
world. Section 5 brings the two together in the applied domain of security protocols.1

Additional remarks and ideas for future developments are given in Section 6. Figure 1
summarizes the functional relations between the various languages touched in this pa-
per, as found in the literature (along the thin edges) and in the present work (along the
thick edges).

2 A Rewriting View of Linear Logic

In this section, we will give a rewriting interpretation to a fragment of linear logic in its
LV sequent presentation. We then refine it by cut-elimination into a system that we call
ω.

2.1 LV Sequents

We base our investigation on the following fragment of intuitionistic linear logic [24]:

A,B,C ::= a | 1 | A⊗B | A−◦B | !A | > | A N B | ∀x.A | ∃x.A

Here,a andx range over atomic formulas and variables, respectively. We do not dis-
tinguish formulas that differ only by the name of their bound variables, and rely on
implicit α-renaming whenever convenient. We write[t/x]A for the capture avoiding
substitution of termt for x in A, andFV(A) for the set of free variables occurring in
A. We shall not place any restriction on the embedded term language except for pred-
icativity (term substitution cannot alter the outer structure of a formula). However, the
applications in this paper will only require a first-order term language (extended with
sorts in Section 5). While we limit our attention to the listed operators of linear logic,
we will comment on other connectives in Section 2.4.

Our definition of provability is based on an intuitionistic version of Pfenning’s LV
sequent calculus [42]. It relies on sequents of the form

Γ ;∆ −→Σ C.

1 For the chronicle, this research developed almost opposite to this narration: while relating
multiset rewriting and process algebraic languages for security protocols, we considered an
extension to the former with embedded rewrite rules. This led to noticing the relation to the
treatment of contexts in the sequent calculus presentation of linear logic. Formalizing this as-
pect yielded the structural properties, and the observation that they correspond almost exactly
to the structural equivalences of theπ-calculus.
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Structural rules

id

Γ ; A −→Σ A

Γ # A; ∆, A −→Σ C
clone

Γ # A; ∆ −→Σ C

Cut rules

Γ ; ∆1 −→Σ A Γ ; ∆2, A −→Σ C
cut

Γ ; ∆1, ∆2 −→Σ C

Γ ; · −→Σ A Γ # A; ∆ −→Σ C
cut!

Γ ; ∆ −→Σ C

Left rules

Γ ; ∆ −→Σ C
1l

Γ ; ∆,1 −→Σ C

Γ ; ∆, A1, A2 −→Σ C
⊗l

Γ ; ∆, A1 ⊗A2 −→Σ C

Γ ; ∆1 −→Σ A Γ ; ∆2, B −→Σ C
−◦l

Γ ; ∆1, ∆2, A−◦B −→Σ C

Γ # A; ∆ −→Σ C
!l

Γ ; ∆, !A −→Σ C

Σ ` t Γ ; ∆, [t/x]A −→Σ C
∀l

Γ ; ∆,∀x. A −→Σ C

Γ ; ∆, A −→Σ,,x C
∃l

Γ ; ∆,∃x. A −→Σ C

(No>l)
Γ ; ∆, Ai −→Σ C

Nli

Γ ; ∆, A1 N A2 −→Σ C

Selected right rules

1r

Γ ; · −→Σ 1

Γ ; ∆1 −→Σ C1 Γ ; ∆2 −→Σ C2
⊗r

Γ ; ∆1, ∆2 −→Σ C1 ⊗ C2

Σ ` t Γ ; ∆ −→Σ [t/x]C
∃r

Γ ; ∆ −→Σ ∃x. C

Fig. 2.LV Sequent Presentation of Intuitionistic Linear Logic

Similarly to Barber’s DILL [6] and Hodas and Miller’sL [26], LV isolates reusable as-
sumptions in theunrestricted contextΓ (subject to exchange, weakening and contrac-
tion), while assumptions to be used exactly once are contained in thelinear context∆
(subject only to exchange). The combination corresponds to the single context(!Γ, ∆)
of [24]. ThesignatureΣ lists the term-level symbols in use. We callC thegoal formula.

We shall be very precise when discussing the structure of contexts and signatures.
Therefore, we will use different symbols for their constructors, as given by the following
grammar:

∆ ::= · | ∆, A
Γ ::= ◦ | Γ # A
Σ ::= ·· | Σ,, x

For each of these collections, the comma (“,”, “ #”, “ ,,”) stands for the extension opera-
tor while the bullet (“·”, “ ◦ ”, “ ··”) represents the empty collection. The former will be
overloaded into a union operator. From an algebraic perspective, signatures, linear and
unrestricted contexts will be commutative monoids. Additionally, signatures shall not
contain duplicate symbols (we will extend them only with eigenvariables and rely on
α-renaming to ensure this constraint).

Given these conventions, Figure 2 presents an intuitionistic subset of the sequent
rules for LV [42]. The first segment contains the axiom rule (id) and ruleclone that
allows repeatedly using an unrestricted assumption in a derivation. The second segment
lists the two applicable cut rules of LV. The left sequent rules for the fragment consid-

4



∆ ≡
N

∆
Σ; ∆ ≡ ∃Σ. ∆

Assoc. : A⊗ (B ⊗ C) ≡ (A⊗B)⊗ C
Unit : A⊗ 1 ≡ A
Comm.: A⊗B ≡ B ⊗A

assoc. : ∃x. (A⊗B) ≡ A⊗ ∃x. B if x 6∈ FV(A)
unit : ∃x.1 ≡ 1
comm. : ∃x.∃y. A ≡ ∃y.∃x. A

id : Σ; Γ ; ∆ V∗ Σ; ∆

Trans. : Σ; Γ ; ∆ V∗ Σ′′; ∆′′ if Σ; Γ ; ∆ ⇒ Σ′; Γ ′; ∆′

and Σ′; Γ ′; ∆′ V∗ Σ′′; ∆′′

clone : Σ; (Γ # A); ∆ ⇒ Σ; (Γ # A); (∆, A)

cut : Σ; Γ ; (∆1, ∆2) ⇒ Σ; Γ ; (∆2, A) if Σ; Γ ; ∆1 V∗ Σ; A

cut! : Σ; Γ ; ∆ ⇒ Σ; (Γ # A); ∆ if Σ; Γ ; · V∗ Σ; A

1l : Σ; Γ ; (∆,1) ⇒ Σ; Γ ; ∆

⊗l : Σ; Γ ; (∆, A1 ⊗A2) ⇒ Σ; Γ ; (∆, A1, A2)

−◦l : Σ; Γ ; (∆1, ∆2, A−◦B) ⇒ Σ; Γ ; (∆2, B) if Σ; Γ ; ∆1 V∗ Σ; A

∀l : Σ; Γ ; (∆,∀x. A) ⇒ Σ; Γ ; (∆, [t/x]A) if Σ ` t

∃l : Σ; Γ ; (∆,∃x. A) ⇒ (Σ,, x); Γ ; (∆, A)

(>l) : (No rule for>)

Nli : Σ; Γ ; (∆, A1 N A2) ⇒ Σ; Γ ; (∆, Ai)

!l : Σ; Γ ; (∆, !A) ⇒ Σ; (Γ # A); ∆

Fig. 3.A Rewriting Interpretation of LV

ered above are listed next. Observe how!’ed linear assumption are made available in
the unrestricted context in rule!l. In rule∀l, we rely on the auxiliary judgmentΣ ` t
to ascertain that the termt is valid with respect to signatureΣ (but do not define this
notion further).

Whenever one of these rules has premises, one of them mentions the same goal
formula (systematically writtenC) as the rule’s conclusion. We will call it themajor
premiseof the rule. The cut rules and−◦l also have aminor premisein which the goal
formula changes.

The right sequent rules of linear logic have marginal importance in this work. The
bottom part of Figure 2 lists some of them, as they will play an indirect role in the
development. It is conceivable, however, that these and other right rules can be useful
query tools, as demonstrated for example in [18, 25] relative to Petri nets. This however
goes beyond the scope of this work.

Derivations are defined as usual, and denotedD. A partial derivationD[] missing
justification for exactly one sequent isincomplete. D[] calledopenif it is incomplete
along a path from the end-sequent that only follows the major premises of the rules.
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2.2 A Rewriting Interpretation of LV

With the exception ofid, the rules in the three upper segments of Figure 2 can be in-
terpreted as a transformation of the sequent in their conclusion to the sequent in their
major premise, possibly subject to side-conditions given by a minor premise. We for-
malize this observation as a rewrite system whosestatesare triples(Σ;Γ ;∆) consisting
of the signature and the two contexts of an LV sequent. We deliberately omit the goal
formula (C) for two reasons: technically, it never changes going from the conclusion to
the major premise of a rule; strategically, we embrace this as an opportunity to explore
logical derivations as open-ended processes rather than finite justifications of the prov-
ability of a goal given a priori. We denote this form of upward step in a derivation by
means of the rewrite judgment

Σ;Γ ;∆ ⇒ Σ′;Γ ′;∆′

reserving the form ⇒∗ for its reflexive and transitive closure. Our progresses can be
tracked on Figure 3.

Given this interpretation, we can regard the minor premise in rulescut, cut! and
−◦l as prescribing the existence of an auxiliary finite rewriting chain that enables the
step associated to each of these rules (the judgmentΣ ` t in rule∀l is instead a simple
side-condition). Consolidating this intuition requires introducing some extra machinery.
First, note that the subderivation corresponding to this auxiliary chain must be finite,
and therefore is capped by a rule without premises, oftenid. This implements a shift of
focus from the left-hand side of a sequent to its right-hand side. We interpret this as an
observation.

We will be interested in observing the contents of the linear context∆ of an arbitrary
state(Σ;Γ ;∆). In order to maintain a precise accounting of the symbols in use, we
define theobservationof (Σ;Γ ;∆) as the pair(Σ;∆).2 Making an observation can
then be expressed by the judgment

Σ;Γ ;∆ V Σ;∆.

Notice that it differs from the axiom ruleid only because the linear context∆ can
be arbitrary rather than a single formulaA. We produce an exact correspondence by
identifying contexts and formulas, an idea familiar from categorical interpretations of
logic [45]. More precisely, we identify the tensor⊗ and its unit1 with the union “,”
and unit “·” constructors of linear contexts, respectively. Therefore, a linear context∆
is interpreted as the formula

⊗
∆ obtained by tensoring together all its constituent for-

mulas. This is the essence of the symmetric monoidal (closed) structure that underlies
most categorical models of linear logic [45]. From a sequent calculus point of view, this
is acceptable sinceΓ ;∆ −→Σ C has a derivation if and only ifΓ ;

⊗
∆ −→Σ C has

one.3

2 The investigation of a notion of observation that includes the unrestricted contextΓ is left for
future work.

3 A proof of the forward direction only uses⊗l and possibly1l. The reverse direction relies on
cut and the sequentΓ ; ∆ −→Σ

N
∆ whose simple derivation uses rulesid, ⊗r and1r;

cut can later be eliminated.
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From now on, we will use⊗ and “,” interchangeably (and similarly for1 and “·”).
For the ease of the reader, we will tend to prefer⊗ and1 within the scope of other
logical operators and in observation states, while “,” and “·” will appear at the top level
of a regular state. We shall stress, however, that they are now only notational variants
for the same concept.

The algebraic properties of linear contexts as commutative monoids can then be
written as explicitstructural lawsunder the logical interpretation:

Assoc. :A⊗ (B ⊗ C) ≡ (A⊗B)⊗ C
Unit : A⊗ 1 ≡ A
Comm. : A⊗B ≡ B ⊗A

These identities over linear contexts correspond to the notion of logical equivalence
given by inter-derivability,i.e., A1 ≡ A2 iff for all Σ, Γ , there are derivations for both
Γ ;A1 −→Σ A2 andΓ ;A2 −→Σ A1.

Observe that it would be incorrect to similarly fold the unrestricted context con-
structors# and◦ into⊗ and1 since!(A⊗B) is not equivalent to!A⊗ !B in linear logic.
This is our main reason for choosing different notations for their constructors.

Going back to our goal of interpreting the subderivations originating on a minor
premise as auxiliary rewrite chains, we define the multi-step observation judgment

Σ;Γ ;∆ V∗ Σ?;∆?

as the composition of⇒∗ and V , or more directly:

id : Σ;Γ ;∆ V∗ Σ;∆

Trans. : Σ;Γ ;∆ V∗ Σ?;∆? if Σ;Γ ;∆ ⇒ Σ′;Γ ′;∆′

and Σ′;Γ ′;∆′ V∗ Σ?;∆?

Were it not for∃, this would constitute an adequate rewriting interpretation of LV.
To visualize the remaining issue, consider for example a derivationD of the minor
premiseΓ ;∆1 −→Σ A of rulecut:

Γ # Γ ′;A′ −→Σ,,Σ′ A′

0 ... $
Γ ;∆1 −→Σ A

By the time a branch ofD is closed, for example by ruleid in this sketch, uses of
rule ∃l will have extended the original signatureΣ with new symbolsΣ′ (rule !l will
have similarly extendedΓ , but this is of little concern to us). The formulaA′ in this
instance ofid may mention symbolsxi in Σ′, and may also contribute to the overall
goal formulaA. Now, sinceA is defined overΣ, the noted uses ofxi in A′ must occur
bound inA. With Figure 2 as our definition of provability, this binder is∃ and rule∃r

has introduced it.4

4 Of course,∀ is as likely a candidate in a complete proof system for linear logic. Our objective
is not completeness, however, and this discussion should be taken as motivation only.
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With this understanding of derivations as a guideline, we identify observation states
Σ;∆ and existential formulas∃Σ. ∆, seen as an abbreviation for∃x1. . . .∃xn.

⊗
∆

whereΣ = (x1, . . . , xn). This is logically justified by the fact that, ifΓ ;∆ −→Σ C
is derivable, so is◦ ;∃Σ. (!Γ ⊗∆) −→·· ∃Σ.C where!Γ ⊗∆ =

⊗
A in Γ !A⊗

⊗
∆.5

This technique is reminiscent of the notion of “telescope” in the AUTOMATH lan-
guages [48]. It also appears in recent work on concurrent constraint programming [20].

Having further blurred the distinction between the brick and mortar of sequents (or
states) and the logical operators, we will use the notationsΣ;∆ and∃Σ. ∆ interchange-
ably, often mixing them as in following sketch of the rewrite chain corresponding to a
derivation of the minor premiseΓ ;∆1 −→Σ A of the hypothetical use ofcut above:

(Σ,, Σ′); (Γ # Γ ′);∆? V (Σ,, Σ′);∆?

∗⇑ 9

Σ;Γ ;∆1 V∗ Σ;∃Σ′.∆?︸ ︷︷ ︸
A

Here, we fold the added symbolsΣ′ into the observed linear context∆? in order to
construct the formula used in the major premise. Identical considerations apply to any
LV rule with a minor premise (herecut! and−◦l).

With the rewrite steps induced by rulescut, cut! and−◦l ending in states of the form
Σ;Γ ; (∆, A) with A = ∃Σ′.∆′, it is natural to allow individual binders∃x among∃Σ′

to move around, either to hug more closely formulas in∆′ or to extend their scope to
include elements of∆, as long as this does not cause either bound symbols to become
free or variable capture. We formalize this possibility by means of the followingmobil-
ity laws, which extend the monoidal equivalence≡ introduced earlier:

assoc. :∃x. (A⊗B) ≡ A⊗ ∃x.B if x 6∈ FV(A)
unit : ∃x.1 ≡ 1
comm.: ∃x. ∃y. A ≡ ∃y.∃x.A

The first pushes binders inside a formula (or state) by skipping objects where it does not
occur, the second eliminates unused binders, and the third allows binders to commute.
As for the monoidal laws, the formulas on each side of≡ are inter-derivable in linear
logic. Notice the resemblance between the monoidal and mobility laws (highlighted
through related labels), that type theory explains by pointing out that an existential
quantifier can be interpreted as a form of dependent conjunction.

This completes our rewriting interpretation of LV. The resulting rewrite rules are
summarized in Figure 3. With the exception of the added ruleTran, each maintains the
name of the LV inference it was obtained from. Rules1l and⊗l have been grayed out as
redundant since they are subsumed by the identification of linear contexts and tensored
formulas. Rulescut, cut! and−◦l make implicit use of the identification of observation
states and existential formulas, just described.

5 This proof extends the technique seen in the forward direction of Footnote 3 with uses of∃l,
∃r and !l, in addition to⊗l and1l. Notice that∃r invariably uses a variablex in Σ as the
substitution termt, giving ∃ a flavor very close to Miller and Tiu’s∇ [37]. The reverse of
this property does not hold in general. With some surprise, we could not find a categorical
counterpart of this technique.
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id : Σ; Γ ; ∆ V∗ Σ; ∆

Trans. : Σ; Γ ; ∆ V∗ Σ′′; ∆′′ if Σ; Γ ; ∆ ⇒ Σ′; Γ ′; ∆′

and Σ′; Γ ′; ∆′ V∗ Σ′′; ∆′′

clone : Σ; (Γ # A); ∆ ⇒ Σ; (Γ # A); (∆, A)

−◦′l : Σ; Γ ; (∆, A, A−◦B) ⇒ Σ; Γ ; (∆, B)

∀l : Σ; Γ ; (∆,∀x. A) ⇒ Σ; Γ ; (∆, [t/x]A) if Σ ` t

∃l : Σ; Γ ; (∆,∃x. A) ⇒ (Σ,, x); Γ ; (∆, A)

Nli : Σ; Γ ; (∆, A1 N A2) ⇒ Σ; Γ ; (∆, Ai)

!l : Σ; Γ ; (∆, !A) ⇒ Σ; (Γ # A); ∆

Fig. 4.The Rules ofω-Rewriting

The rewriting interpretation displayed in Figure 3 is sound with respect to the rules
of linear logic, even when extended with the right rules not considered in Figure 2. This
is expressed by the following property:

Property 1 (Soundness).

1. If Σ;Γ ;∆ ⇒∗ Σ′;Γ ;′ ∆′, then there exist LV formulasC andC ′ and a derivation
D[] of Γ ;∆ −→Σ C open atΓ ′;∆′ −→Σ′ C ′.

2. If Σ;Γ ;∆ V∗ (Σ, Σ′);∆?, then there is an LV derivationD of Γ ;∆ −→Σ

∃Σ′.
⊗

∆?.

Clearly, no completeness result holds as we have forsaken most right rules of LV:
for example, no rewrite chain can validate··; ◦ ; (a−◦ b, b−◦ c) V∗ ··; (a−◦ c), although
linear implicationis transitive in linear.

2.3 Cut-Elimination and ω-Rewriting

The interpretation of LV as a rewrite system in Figure 3 is unusual in the sense that the
single step relation⇒ depends on the multi-step observation relationV∗ in rules−◦l,
cut andcut!. In this section, we refine it into a presentation that is immune from this
oddity. We will call it systemω, and refer to its use asω-rewriting.

First observe that rule−◦l admits the simplified form

−◦l′ : Σ;Γ ; (∆, A,A−◦B) ⇒ Σ;Γ ; (∆, B).

Indeed, every use of−◦l in a rewrite sequence can be replaced with an instance ofcut

followed by one of−◦l′.
More interestingly, like their logical counterparts [42], both cut rules are admissible

in our rewrite system,i.e., any rewriting sequence can be transformed into an observa-
tionally equivalentcut-freesequence that does not make use of them. Intuitively, this
will amount to in-lining the auxiliary rewriting chain whenever one of the cut rules is
used. A formal account follows the lines of a standard proof of cut-elimination,e.g.[42],
but is not as involved.
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We first prove the following weakening lemma by a simple induction on the given
rewriting sequence.

Lemma 1 (Weakening).
For anyΣ′, Γ ′ and∆′, if Σ;Γ ;∆ V∗ Σ?;∆?, then(Σ,, Σ′); (Γ # Γ ′); (∆, ∆′) V∗

(Σ?,, Σ′); (∆?,∆′).

The most delicate aspect of the work in this section is the proper accounting for signa-
ture symbols. This can be summarized in the following lemma, also proved by induc-
tion.

Lemma 2.
If Σ;Γ ;∃Σ′.∆ V∗ Σ?;∆?, then(Σ, Σ′);Γ ;∆ V∗ Σ?;∆?.

We can now tackle the rewriting equivalent the admissibility of the cut rules that is,
every chain that could be produced from two cut-free chains by means ofcut (or cut!),
can also be obtained without.

Lemma 3 (Admissibility of cut and cut!).

1. For any cut-free rewriting chainsΣ;Γ ;∆1 V∗ Σ;A and Σ;Γ ; (∆2, A) V∗

Σ?;∆?, there is a cut-free sequenceΣ;Γ ; (∆1,∆2) V∗ Σ?;∆?.
2. For any cut-free rewriting chainsΣ;Γ ; · V∗ Σ;A andΣ; (Γ # A);∆ V∗ Σ?;∆?,

there is a cut-free sequenceΣ;Γ ;∆ V∗ Σ?;∆?.

The proof of (1) simply prefixes the first rewriting chain to the second, using the above
lemmas to align signatures and contexts. As for (2), we shall replace every application
of ruleclone on the formulaA with a similar in-lining of the first rewriting chain.

On the basis of this lemma, we can eliminate every occurrence ofcut andcut! in a
rewriting chain.

Theorem 1 (Cut elimination).
For every rewrite sequenceΣ;Γ ;∆ V∗ Σ?;∆?, there exist a cut-free rewrite se-

quenceΣ;Γ ;∆ V∗ Σ?;∆?.

With −◦l replaced with−◦l′ and the cut rules shown to be redundant, the rewriting
interpretation of LV is succinctly described by the rules in Figure 4. Notational conven-
tions and structural properties are as in Figure 3. We will refer to these rules as system
ω, and to their use asω-rewriting.

2.4 Discussion

So far, we have extracted a rewriting system from a large fragment of linear logic.
Before assessing the rewriting merits ofω in sections to come, we shall conclude this
part with reflections on our methodology and comparisons with related ideas from the
literature. We start by remarking on a few natural questions, although proper answers
will be sought in future work.
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First:What about the other connectives of linear logic?The remaining operators of
minimal intuitionistic logic are⊕ and its unit0. An ω-style reading of the left rule of
⊕:

Γ ;∆, A1 −→Σ C Γ ;∆, A2 −→Σ C
⊕l

Γ ;∆, A1 ⊕A2 −→Σ C

seems to require a form of synchronization between two possibly infinite rewrite chains.
We do not understand this rule as a rewriting operation at this stage. Its nullary form,
0l, suggests instead a reading of0 as a “mirage” operator, as anything can be observed
in its presence. Moving to a multiple conclusion sequent form in the style of FILL [9],
the left rule forO:

Γ ;∆1, A1 −→Σ Θ1 Γ ;∆2, A2 −→Σ Θ2
Ol

Γ ;∆1,∆2, A1 O A2 −→Σ Θ1, Θ2

seems to endow multiplicative disjunction with a rewriting semantics that splits the
state and starts two completely independent computations. However, further research
is required to validate this reading and extend the current work to multiple conclusion
sequents. We did not venture in the realm of classical linear logic.

Interestingly, the connectives currently comprisingω coincides with the fragment of
linear logic at the core of the type-theoretic logical framework for concurrency CLF [16,
47]. We do not know at this stage if there is more to this than a mere coincidence.

Second:How sensitive is the definition ofω to the specific presentation of linear
logic? We chose LV because it elegantly capture the structural characteristics of the
logic, especially as far as reusability is concerned. Its rules were amenable to a sen-
sible rewriting interpretation, and it permitted relatively simple proofs of our various
results. It is however our untested conjecture that the methodology used to deriveω
can be applied to other presentations, probably with different degrees of ease. It will be
interesting to compare the resulting rewrite systems.

Third: Can this methodology be applied to other logics?We have not tried yet,
but this is a reasonable supposition. Linear logic is a good starting point because its
interpretation of context formulas as consumable resources is in line with the destructive
nature of rewriting. Other sub-structural logics are clearly promising candidates, but it
is conceivable that interesting results could emerge from specific presentations of, say,
traditional intuitionistic logic.

Fourth: How does this compare to other proof-as-computations paradigms?The
methodology proposed here places a strong emphasis on the left rules of (linear) logic,
with the right rules reduced to justifications of natural equivalences. It is worth con-
trasting this characteristic with the tenets of logic programming as uniform provabil-
ity [36], which instead extracts the operational semantics of a logical operator from
its right sequent rules. This approach has robustly been extended to linear logic pro-
gramming [3, 26, 34]. In a partial departure from this short tradition, Kobayashi and
Yonezawa’s ACL [28] derives its semantics from specialized versions of left rules of
linear logic (when examined through the lense of duality). This, together with its ac-
ceptance of open derivations and support for concurrency, makes ACL a close relative
to ω. Differently from our proposal, however, it considers a limited fragment of logic,
and falls short of endowing it with a rewriting interpretation. Saraswat and Lincoln hint
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at a similar interpretation for their Higher-order Linear Concurrent Constraint language
(HLcc) [29], interestingly stirring it in the direction of constraint programming (see
also [20]). To the extent of our knowledge, ACL and HLcc are the closest proposals to
ω in the literature.

Fifth: Can logic benefit fromω? We will see in just a few lines thatω is intimately
related to various languages for concurrent computation, and can be taken to shine
a logical light onto them. It remains to be investigated whether this relation can be
ridden in the reverse direction as well,i.e., that results and techniques from concurrency
theory can find application in logic. One candidate is the very notion of derivation. We
endowedω with a semantics based on transition-sequences, which is common place in
rewriting theory. It is however a small conceptual step to distill minimal partial orders
(traces) by forcing sequentiality only when steps depend on each other. Systemω may
then carry traces over to logic, with a sound and usable notion of derivation not based
on trees but on DAGs. Andreoli’s “desequentialized proofs” [2] appear closely related
to this idea.

3 Multiset Rewriting

Multiset rewriting captures the essence of a paradigm for concurrent and distributed
computation characterized by a prominent notion of state, separate from the transitions
that act upon it. Other members of this family include Petri nets [41], possibly the earli-
est model of concurrency, and a number of specification approaches including automata
for model checking [31] and inductive definitions [40]. We will now show that various
popular forms of multiset rewriting are syntactic fragments ofω-rewriting. Therefore,
thanks to the logical foundations laid out in Section 2, this constitutes an interpretation
of multiset rewritingas linear logic, which we like to contrast to the interpretations
into linear logic traditionally found in the literature. Indeed, shortly after Girard’s sem-
inal paper on linear logic [24], Asperti noticed that it supported a simple encoding of
place/transition Petri nets [4]. This observation was subsequently refined and extended
by numerous authors,e.g., [10, 11, 18, 25, 30].

3.1 Propositional Multiset Rewriting

We start with the most basic form of multiset rewriting, which can be seen as a no-
tational variant of place/transition Petri nets. The language ofpropositional multiset
rewriting (MSR0 hereafter) is given by the following grammar:

Multisets s̃, ã, b̃, c̃ ::= .̃ | s̃,̃ s

Multiset rewrite rules r ::= ã � b̃
Rule sets R ::= .̂ | R,̂ r

wheres refers to an element of thesupport setS. Multisetss̃ are elements of the monoid
freely generated fromS, the multiset union operator “,̃ ” and the empty multiset “.̃”. A
rule setR is simply a set of rewrite rules.

A rule r = ã � b̃ is applicable in a states̃, if s̃ containsr’s antecedent̃a (i.e.,
s̃ = c̃,̃ ã). In these circumstances, theapplicationof r to s̃ yields the statẽs′ obtained
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by replacingã with r’s consequent̃b in s̃ (i.e., s̃′ = c̃,̃ b̃). This is expressed by the
basic multiset rewriting judgment̃s .R s̃′, which is formally defined by the following
transition pattern:

msr0 : (c̃,̃ ã) .R,̂(ã�b̃) (c̃,̃ b̃)

We write .∗ for its reflexive and transitive closure.
Propositional multiset rewriting is immediately recognized as a form ofω-rewriting

by interpreting multisets as linear contexts (or tensored formulas) and rule sets as un-
restricted contexts. Indeed multisets obey the same monoidal laws as contexts, and the
semantic rulemsr0 can be seen as an application of ruleclone immediately followed
by −◦′l. Formally, we construct an homomorphic mapping by interpreting “.̃”, “ ,̃ ”, �,
“ .̂” and “ ,̂ ” as “,”, “ ·”, −◦, ◦ and# respectively. We naturally extend this mapping to the
relative syntactic categories, and writepXq for the object inω corresponding to entity
X. The soundness of this encoding is formally stated by the following simple property:

Property 2. For every states̃s, s̃′ and every rule setR, if s̃ .∗R s̃′, thenS; pRq; ps̃q V∗

S; ps̃′q.

The family of mappings summarized asp q identifies a syntactic fragment̃ω0 of ω
(and linear logic). Moreover,p q is a bijection over̃ω0 (modulo the monoidal laws of
each formalism). It can then be shown that the inverse of the above property holds:

Property 3. For every states̃s, s̃′ and every rule setR, if S; pRq; ps̃q V∗ S; ps̃′q, then
s̃ .∗R s̃′.

Together, these properties and the trivial mapping underlying them allow us to view
propositional multiset rewriting as a fragment ofω-rewriting, and therefore of linear
logic. In particular, it permits redefining the semantics of MSR0 on a purely logical
basis.

3.2 First-Order Multiset Rewriting

We now extend the above results to a richer form of multiset rewriting. We consider
multiset elements that can carry structured values, and are manipulated by parametric
rewrite rules. Ban̂atre and Le Ḿetayer have developed this basic idea into the program-
ming language GAMMA [5], while Jensen has turned it into the flexible formalism of
colored Petri nets [27]. It has recently been extended with the possibility of creating
fresh data in the security specification language MSR [14]. We take this as the language
of first-order multiset rewriting(MSR1 hereafter).

Abstractly, we take the support setS to consist of first-order atomic formulas over
some initial signatureΣ0. Rules assume the form

Multiset rewrite rules r ::= ∀x.ã � ∃n.b̃

wherey denotes a sequence of variables(y1, . . . , yn) for somen. The scope of the
universal variablesx ranges over the whole rule, while the existential variablesn can
appear only in its consequent. We assume implicitα-renaming for both sorts of bound
variables. We writeΣ ` t to indicated thatt is a valid term over signatureΣ, andΣ `

13



t for the natural extension of this notion to sequences of termst. We write [t/x]ã for
the simultaneous substitution of termst = (t1, . . . , tn) for the variablex = x1, . . . , xn

in multisetã.
The basic judgment of MSR1 has the formΣ; s̃ .R Σ′; s̃′, where both the initial

and final state consist of a signature and a multiset. A ruler = ∀x.ã � ∃n.b̃ in R is
applicable inΣ; s̃ if its universal variables can be instantiated toΣ-valid termst so that
the antecedent matchess̃ (i.e., s̃ = c̃,̃ [t/x]ã). In this case, applyingr results in a state
Σ′; s̃′ whose signature is obtained by extendingΣ with n (moduloα-renaming), and
s̃′ is given by replacing the discovered instance ofã with the corresponding instance of
b̃ (i.e., s̃′ = c̃,̃ [t/x]b̃). This is summarized by the following schematic transition:

msr1: Σ; (c̃,̃ [t/x]ã) .R,̂(∀x.ã�∃n.b̃) (Σ, n); (c̃,̃ [t/x]b̃) if Σ ` t.

Again, we write .∗ for the finite iteration of . .
The propositional embedding in Section 3.1 is easily extended to account for the

first-order infrastructure just discussed: we shall simply map the rule binders∀ and∃ to
the homonymous quantifiers∀ and∃ of ω. Then the semantic rulemsr1 compounds an
ω-rewrite sequence consisting of ruleclone, zero or more uses of∀l, one application of
−◦′l, and zero or more of∃l.

The resulting mapping, which we still callp q, identifies another fragment̃ω1 of ω,
and is again bijective over this fragment. The formal correspondence between MSR1

and systemω is captured by the following property [13]:

Property 4. For every signaturesΣ Σ′, states̃s, s̃′, and rule setR, we have thatΣ; s̃ .∗R
Σ′; s̃′ if and only if Σ; pRq; ps̃q V∗ Σ′; ps̃′q.

Again, this result not only logically justifies the semantics of MSR1, but allows viewing
this language as a fragment ofω, and ultimately of linear logic.

As noted in [33], a similar relation between MSR1 and linear logic does not hold in
the reverse direction. It holds here because of the restricted use of rule∃r embedded in
ω (and the incompleteness of this system w.r.t. linear logic).

3.3 Discussion

From the above discussion, it is clear that MSR1 accounts only for a very small fragment
(ω̃1) of ω. We will now explore what elseω has to offer as a rewriting framework, and
relate it to proposals in the Petri net and multiset rewriting communities.

In a major departure from traditional state-based formalisms,ω dissolves the bound-
ary between states (usually flat collections of strictly atomic elements, even when carry-
ing structured data) and the actuators of state change (rules). Indeed, objects of the form
A −◦ B can appear in the linear context, where they are responsible for the rewriting
behavior inω̃1. In this way,ω not only internalizes the rewriting operation within the
state, but also makes it available for manipulation as a first-class object.

Furthermore,ω replaces the monolithic transition rules of traditional state-based
languages with a toolkit of elementary state transformers drawn from the ranks of linear
logic:⊗ and1 (or “,” and “·”) are the basic glue,−◦ expresses rewrite,! is a reusability
mark,∀ introduces parameters,∃ allows generating fresh data,N offers choice, and>
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is the unusable object. Complex transformations can easily be assembled by composing
basic operator: an MSR1 rule is an example,(a−◦ b) N !(c−◦ 1) is another.6

Embedded rewrites, such as(a−◦ b, (c, d−◦ e)),7 are a particularly important case
of composition as they allow dynamically modifying the rule set available for rewriting.
This will be our bridge to process algebra in the next section.

Similar ideas have been incorporated in enhanced forms of Petri nets, and to a lesser
extent into multiset rewriting. Indeed, Valk argued for self-modifying nets as far back
as 1978. A number of recent proposals, such as Hierarchical or Object Petri Nets [21,
46], fully realize this program by permitting nets to manipulate other nets, often us-
ing reflection to move between levels. Among them, Farwer and Misra’s Linear Logic
Petri Nets [22] are rather interesting as they operate on embedded linear logic formu-
las. On the multiset rewriting side, Le Ḿetayer outlined a higher-order extension to
GAMMA [32], which blurs the distinction between state and rules.

Most of these proposals are motivated by software engineering considerations, of-
ten modularity and control, sometimes inspired by process algebra. The resulting for-
malisms tend to be powerful but also complex, as they build on the already heavy def-
initions of Petri nets. It is however conceivable that they enjoy embeddings inω akin
to those sketched in Sections 3.1 and 3.2. This would endow these extensions with a
formal justification in (linear) logic, and possibly enable simpler presentations.

4 A Logical Bridge to Process Algebra

Formalisms such as theπ-calculus [38] support an alternative,process-based, represen-
tation of distributed and concurrent systems. It shuns the global state and static collec-
tion of transitions of multiset rewriting and other state-based models in favor of evolving
communicating processes that tie together the data and the program of an agent, at the
same time blurring the distinction between them.

We will show in this section thatω is closely related to two such process algebras:
the asynchronousπ-calculus [38] and the join calculus [23]. As we do so, we will
focus on them as computation rather than analysis mechanisms. In particular, we will
concentrate a trace-based semantics, leaving the investigation of finer notions, such as
bisimulation, for future work.

4.1 The Asynchronousπ-Calculus

In its minimal form, the asynchronousπ-calculus (hereafteraπ) considers processes
defined by the following grammar [44]:

P,Q,R ::= 0 | P ‖ Q | !P | νx.P | x (y)P | x 〈y〉

wherex and y are names(or channels). Hiding (νx.P ) and input over a channelx
(x (y)P ) bind the namesx andy respectively, up toα-renaming. We writeFN(P ) for

6 “Either turn ana in a b once, or delete arbitrarily manyc’s.”
7 “Upon encountering ana, transform it into ab and introduce a single-use rule that will trans-

form ac and ad into ane when these object appear in the state.”
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the set of names free in processP and[x/y]P for the substitution (renaming) ofx for
y in P . Input and output (x 〈y〉) are monadic, and the latter can only be the last action
of a process (together with0), which makes communication asynchronous. This core
calculus can easily be generalized to support polyadic channels, complex terms, and
pattern matching.

Processes are endowed with a notion of structural equivalence, writtenP
π≡ Q,

given in the following table:

P ‖Q
π≡ Q ‖ P νx.νy.P

π≡ νy.νx.P

P ‖ 0
π≡ P νx.0

π≡ 0
P ‖ (Q ‖R)

π≡ (P ‖Q) ‖R νx.(P ‖Q)
π≡ P ‖ νx.Q

!P
π≡ P ‖ !P (!) if x 6∈ FN(P )

It makes parallel composition (‖) a monoidal operator with the null process0 its unit
(top left). It also partially allows hiding to commute with parallel composition and other
hiding operators (right). Finally,(!) interprets process replication (!P) as the parallel
composition of arbitrarily many copies ofP (bottom left). With the exception of this
last relation, we can already see a strong relation with the structural equality (≡) of ω.

Processes evolve through communication. In its basic form, it is modeled by the
judgmentP _ Q, and defined by the following inference patterns:

i/o

x 〈y〉 ‖ x (z)P _ [y/z]P

P _ P ′
cgr‖

P ‖ Q _ P ′ ‖ Q

P _ P ′
cgrν

νx.P _ νx.P ′

The first rule formalizes the transmission of a namey over a channelx (reaction). The
remaining two entail that parallel composition and hiding are permeable to communica-
tion, but that replication and input block it. The structural equivalence

π≡ can implicitly
massage processes before and after communication. Let_∗ be the reflexive and
transitive closure of_ .

We define an encodingp q of the asynchronousπ-calculus intoω as follows: first
we map homomorphically0, ‖, ν and! to 1 (or “·”), ⊗ (or “,”), ∃ and!, respectively.
Then, we reserve a binary predicate symbolc and use it as a universal channel when
representing input and output:px 〈y〉q = c(x, y) andpx (y)Pq = ∀y. c(x, y) −◦ pPq,
wherepPq is the encoding of the embedded processP . Once more,p q identifies
a fragmentωaπ of ω so that any formulaA in this fragment can unambiguously be
interpreted as the representation of some processP , i.e., A = pPq.

The expected soundness ofp q over execution does not hold in general as there are
reaction chainsP _∗ Q that have no counterpart inω. A close examination of that
proof attempt reveals that it is not the case thatpPq ≡ pQq wheneverP

π≡ Q. The
structural equivalence we labeled(!) is the reason of this failure:Γ ;A⊗ !A −→Σ !A is
not derivable in linear logic (although the reverse entailment does hold). If(!) did have
a counterpart,p q would preserve the semantics ofaπ, as expressed by the following
hypothetical result:

Property 5. Let P be a process andΣP = c,,FN(P ).

– If P _∗ Q, then there areΣ, Γ and∆ such thatΣP ; ◦ ; pPq ⇒∗ (ΣP ,, Σ);Γ ;∆
where∃Σ. !Γ ⊗∆ ≡ pQq modulo!A ≡ A⊗ !A.
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– If ΣP ; ◦ ; pPq ⇒∗ (ΣP ,, Σ);Γ ;∆ and∃Σ. !Γ ⊗∆ ≡ pQq, thenP _∗ Q.

Since!A ≡ A⊗ !A interpreted as mutual derivability does not hold in linear logic,
it is clear that our encoding, or maybe linear logic itself (as the same issue is cited
in [16, 33, 43]), does not accurately capture execution in theπ-calculus, as traditionally
defined. It has however been observed that the right-to-left reading of this equivalence
is of difficult implementability, which suggest an alternative execution model in which
only half of (!) is kept, in the form of an added case in the definition of_ :

!P _ !P ‖ P

This, which corresponds exactly to rule!l in ω, turns the above property into an exact
correspondence. Therefore, this amended language, that we shall callaπ′, can be seen
as fragment of linear logic in the same sense as MSR1 was identified withω̃1 in the
previous section, butaπ itself cannot.

In the sequel, we will consider a languageaπ+ that extendsaπ′ with terms over
some signatureΣ, polyadic channels, and pattern matching, but does never hide names
used as channels. Because of this last aspect, the easy extension ofp q to aπ+ does not
need to rely on the auxiliary symbolc. A strong version of Property 5 is valid for this
language, so that it can be seen as a fragmentωaπ+ of linear logic.

4.2 The Join Calculus

The asynchronous core of the join calculus is defined by the following grammar [23]:

P,Q,R ::= 0 | P ‖ Q | def D in P | x〈y〉
D,E ::= J . P | D ∧ E | >
J, I ::= J ‖ I | x〈y〉

ProcessesP consist of the parallel composition of messages over polyadic channelsx
(x〈y〉) and definitions (def D in P ). A definitionD is a collection ofrules(J.P ) where
eachjoin patternJ is given by one or more messages patterns (alsox〈y〉). The name
tuplesyD in the pattern of a definitionD = J . P are bound inP , while the channel
namesxD are defined. A definitiondef J1 . P1 ∧ . . . ∧ Jn . Pn in Q binds all channel
namesxJi in eachPj andQ. Bound names are subject to implicitα-conversion. We
write FN(P ) for the free names of a processP (and similarly definitions), and[z/y]P
for the simultaneous capture-avoiding substitution of namesz for y in processP .

The join calculus defines a structural congruence, written≡j, which specifies that
processes (resp. rules) form a monoid with operation‖ (resp.∧) and unit0 (resp.>). It
moreover comprises the following equivalences for definitions:

def > in P ≡j P

(def D in P ) ‖Q ≡j def D in (P ‖Q)
if xD ∩ FN(Q) = ∅

def D in (def E in P ) ≡j def (D ∧ E) in P

if xE ∩ FN(D) = ∅

17



A process can always be≡j-converted to the canonical formdef D in P , whereP does
not contain definitions.

The operational semantics of the join calculus is expressed by the judgmentP I Q
given by the following rule, up to≡j:

def (J . P ) ∧ D in ([z/yJ ]J ‖ Q)
I def (J . P ) ∧ D in ([z/yJ ]P ‖ Q)

That is, whenever an instance[z/yJ ]J of the join patternJ of a ruleJ . P appears
the body of a canonical process, it can be replaced with the corresponding instance
[z/yJ ]P of the rule’s right-hand sideP . As usual, we write I∗ for the reflexive and
transitive closure ofI .

We define a mapping of the various syntactic classes of the join calculus intoω. As
usual, we write itp q, overloading this notation for processes, rules and patterns. This
mapping, which is spelled out below, homomorphically maps the monoids of the join
calculus to the tensorial core ofω. Similarly to theπ-calculus, messages and patterns
are rendered with the help of a family of auxiliary symbolsc of increasing arity (to
accommodate the namesy in x〈y〉). We rely onω’s universal quantifier to govern the
bound variablesyJ of a ruleJ .P , while∃ is needed to bind the variablesxD defined in
a definition. The transition potential of rules is captured by means of linear implication,
while their reusability is naturally expressed using!. Altogether, we have the following
definition forp q:

P : p0q = ·
pP ‖ Qq = pPq, pQq

pdef D in Pq = ∃xD. (pDq, pPq)
px〈y〉q = c(x,y)

D : pJ . Pq = !∀yJ . (pJq −◦ pPq)
pD ∧ Eq = pDq, pEq

p>q = ·
J : pJ ‖ Iq = pJq, pIq

px〈y〉q = c(x,y)

As in previous cases, this encoding is invertible, so that every formulaA in its image
identifies an objectX of the appropriate syntactic category in the join calculus. We
write ωJ for the fragment ofω in the image ofp q.

The encoding we just defined is next shown to preserve the operational semantics of
the join calculus, without any of the glitches ofaπ. This is formalized in the following
property.

Property 6. Let P be a process andΣP = c,,FN(P ). Then,P I∗ Q if and only if there
areΣ, Γ , ∆ andQ′ such thatΣP ; ◦ ; pPq ⇒∗ (ΣP ,, Σ);Γ ;∆ such that∃Σ. !Γ ⊗∆ ≡
pQ′q andQ′ ≡j Q.

Once more, this result allows interpreting the language under examination as a frag-
mentωJ of ω, and therefore of linear logic.
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4.3 Discussion

Once more, our encoding ofaπ makes use of a fraction of the syntax ofω. In par-
ticular,> andN are not used at all and at most one object appears in the antecedent
of −◦. It is natural to interpretN as a form of non-deterministic choice. Its semantics
in ω is different, however, from the choice operator,+, found in the synchronousπ-
calculus [38], as the reaction rule of the latter realizes both choice and communication
in the same step. As noted in [16], its emulation withN would be sound, but in general
incomplete as intermediate stages are visible inω. Multi-antecedent implications would
allow concurrent communications to occur atomically, in a fashion not dissimilar from
the operational behavior of the join calculus [23].

Several authors have taken to the task of giving logical interpretations to process
algebras, with particular focus on theπ-calculus. Operationally sound and complete
CLF encodings of both the synchronous and asynchronous versions of this language are
given in [16]. A propositional fragment of theπ-calculus is instead analyzed in [33].
That paper attempts a logical account of a form of testing equivalence. The adaptation to
ω of classical notions of inter-process equivalence goes beyond the scope of the present
work, but would be particularly interesting to undertake as future work.

5 Specifying Security Protocol

With the recent surge of interest in security protocols, numerous languages have been
adapted or invented for the purpose of specifying and reasoning about these subtle dis-
tributed algorithms. With a few exceptions, these languages tend to be either process-
oriented or state-based. The former include the spi-calculus [1], a security-enhanced
version of theπ-calculus, strand spaces [19], and others such as [17]. The latter com-
prises formalisms directly based on multiset rewriting [12, 14], tool-specific langua-
ges [31], inductive definitions [40], and more.

This profusion of formalisms has triggered an intense research activity intent to
comparing and bridging them [8, 13, 15, 17]. In spite of clear commonalities, these map-
pings are very specific to the languages they consider, and therefore somewhat ad-hoc
and hardly reusable. With a foot in both the state- and process-based camp and easy
embeddings, we propose a security-conscious version ofω as a reusable and logically
motivated intermediate language for carrying on these investigations. This language,
that we call MSR 3, is itself a promising formalism for the specification of crypto-
graphic protocols, precisely because it supports both representation paradigms, and can
combine them when convenient.

5.1 A Preview of MSR 3

In order to represent security protocols, we consider an initial signatureΣs that makes
available function symbols{ } and[ , ] to symbolically express encryption and con-
catenation (for succinctness, we will often omit the brackets in the latter). Other crypto-
graphic operations can be included as needed. We also requireΣs to provide predicate
symbolsN( ) andI( ) to represent network messages in transit and intruder knowledge.
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Other predicates, for example to hold values local to a principal, can also appear inΣs.
Different forms of data can be distinguished through typing, although we will refrain
from doing so here for the sake of brevity.

The language MSR 1 [14] adopts such a signature in a first-order multiset rewriting
framework of the sort analyzed in Section 3.2. It is therefore a fragment ofω. In this
section, we will useω itself as a language for specifying protocols.

As often done, we will use the Needham-Schroeder public-key protocol [39] as an
example. This protocol, informally described below, has the purpose of establishing
communication between an initiatorA and a responderB, and authenticatingA to B.

A → B : {A,nA}kB

B → A : {nA, nB}kA

A → B : {nB}kB

Here,A creates a fresh value (nonce)nA and sends it together with her name toB,
encrypted withB’s public key. Upon successfully decrypting this message,B creates
his own noncenB and sends it toA together withnA. Upon recognizingnA as her
original nonce,A sendsnB back toB as an acknowledgment.

We will now express the initiator’s part of this protocol inω. We are immediately
faced with the choice of which representation paradigm to use. We give both a state-
based and a process-based specification. For the sake of brevity, we do not explicitly
represent administrative tasks such as a principal accessing his or his interlocutor’s keys
(see [14]): this will allow us to concentrate on the overall structure of the specification
rather than these details.

The state-based representation of the initiator role of this protocol is expressed by
the following two rules:

∀A.∀kB .
1−◦ ∃nA.N({A,nA}kB

), L(A,nA, kB)
∀A.∀kB .∀kA.∀nA.∀nB .

N({nA, nB}kA
), L(A,nA, kB)−◦ N({nB}kB

)

The first captures the initial step of the protocol, while the second expresses the rest.
In order to ensure that these rules are executed in the proper order, they rely on the
auxiliary predicateL, which has also the task of communicating the parameters of the
execution to the second rule (in particular the value ofnA). This encoding resembles
very closely the specification of this protocol in MSR 1 [14] and other state-based for-
malisms.

The process-based representation of this role does away with the auxiliary predicate
L altogether in favor of a nested implication:

∀A.∀kB .
1−◦ ∃nA.N({A,nA}kB

),
∀nB .∀kA.

N({nA, nB}kA
)−◦ N({nB}kB

)

This closely resembles the description of this role in a process-based language such as
strand spaces [19] or the spi-calculus [1]. Observe the nested vs. cascaded nature of the
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specification. Miller has shown that, given some constraints onL, these two specifica-
tions are logically equivalent [35] (although not in the sense of≡).

Differently from all other protocol specification languages we are aware of,ω makes
both styles available when expressing a protocol. Not only can the specifier chose which
one is most appropriate to the task at hand, but she can mix and match them at her
leisure. Indeed, the initiator and receiver roles are not even required to use the same
paradigm, so that if our first specification is used, the receiver could seamlessly be
process-based. This may be useful, for example, when analyzing client-server proto-
cols for denial-of-service vulnerabilities where one may want to use the more succinct
process-oriented form for the client, but a state-based representation for the server in
order to clearly account for how much data is stored (in the auxiliary predicateL) be-
tween exchanges. A mixed representation may also be beneficial when representing the
intruder capabilites, as a process-based encoding tends to over-sequentialize the specifi-
cation [8]. We expect these benefits to grow with the size and complexity of the protocol
at hand.

MSR 1 has been extended with a powerful type system into MSR 2 [12]. We sim-
ilarly define the language MSR 3 as the corresponding strongly typed version ofω. A
precise description of MSR 3 goes beyond the scope of this paper.

5.2 Discussion

The coexistence of both the state- and process-based paradigm inω makes it a useful
melting pot, not just as a specification tool, but also as an intermediate language when
comparing different formalisms. Indeed, it is well known that the terrain between the
two paradigms is bumpy and treacherous [7, 8, 15], and any new road shall reckon with
these difficulties. Systemω suggests a different approach: engineer a robust translation
between the state- and the process-based fragments of this language, and use it as a fast
expressway to relate them. Other languages can then be mapped to the closest fragment
of ω by what would be neighborhood roads in our analogy.

To be more precise, we define an execution preserving embedding of all ofω in ω̃1,
which we identified as the counterpart of first-order multiset rewriting, a quintessential
state-based language. This encoding is rather simple and well-behaved. Space limitation
prevent us from presenting it, and we shall refer the interested reader to [8], which gives
a similar translation.

What fragment ofω (or what process algebra) best captures the process-based
paradigm is open to discussion. Were we to takeωaπ+ , we would similarly mapω
to this sublanguage. See again [8] for details. This direction is not as easy, and it is not
clear whether a fully satisfactory solution exists.

Now, in order to relate, say, strand spaces [19] and Paulson inductive encoding [40],
it suffices to produce a shallow encoding of the former intoωaπ+ , a similarly simple
translation of the latter tõω1, and then use the two internal translations we just sketched
bridge them.
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6 Conclusions and Future Work

We have endowed a large fragment of linear logic with a rewriting semantics by inter-
preting the left sequent rules of linear logic as rewrite transitions, folding selected right
rules into a structural equivalence, and extending our focus beyond finite derivations.
The resulting language, which we called systemω, has been shown to embed popu-
lar forms of multiset rewriting and Petri nets, giving a clean logical reading to their
semantics. We have also demonstratedω’s strong ties to process algebra, with sim-
ple execution-preserving embeddings of the join calculus and a computational variant
of asynchronousπ-calculus. We suggested relying onω’s position as a logical meeting
point of multiset rewriting and process algebra for the purpose of expressing and reason-
ing about cryptographic protocols, a application area where both types of formalisms
have been used, often in complementary ways.

As implied in the “Discussion” paragraphs concluding each of the above sections,
this work can be extended in numerous directions. In particular, we expect the definition
of ω to evolve as questions about is logical foundations are answered (see Section 2.4).
Pursuing the relation with process algebraic languages is particularly interesting in light
of the results in Section 4 and the application potential ofω in the sphere of security
protocol specification (Section 5).
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