
Speci�cation and Enforcement of Dynamic Consistency ConstraintsIliano Cervesato and Christoph F. EickDepartment of Computer ScienceUniversity of HoustonHouston, TX 77204-3475e-mail: (iliano,ceick)@cs.uh.eduAbstractThis paper centers on the automatic enforcement

Appeared in the Proceedings of the International Conference on Information and Knowledge Management | CIKM'92, (Y. Yeshaeditor), pp. 193{200, Baltimore, MD, 8{11 November 1992.

of dynamic consistency constraints | dynamic con-straints are constraints that cannot be checked by solelyinspecting the most recent state of a data- or knowl-edge base. A logical formalism for the speci�cation ofdynamic constraints is presented that extends �rst or-der predicate logic by a temporal dimension and by thecapability of restricting update operations that poten-tially violate constraints. In general, a large numberof constraints exist in real world databases. It has beenrecognized that it is highly ine�cient to check all theseconstraints for a particular update operation, becausevery few of those constraints are relevant for the up-date. To alleviate this problem, an algorithm is pre-sented which determines if a dynamic constraint needsto be checked for a particular update.1 IntroductionConsistency constraints (frequently called semanticintegrity constraints in the literature) play an impor-tant role in almost any software design process. Vio-lating consistency constraints results in erroneous sys-tem behavior and therefore has to be avoided, espe-cially if knowledge is shared by multiple users. Conse-quently, application programs that update knowledgehave to contain code that enforces the consistency con-straints that underly the particular application area.Usually, the code that enforces consistency constraintsis signi�cantly longer than the code needed to performa particular update operation. For example, when anapplication program inserts a new social security num-ber it has to check at least two constraints: �rst, thatthe inserted social security number consists of 9 digits,and second, that it is unique.Consequently, it seems attractive to relieve appli-cation programmers from the task of having to en-force consistency constraints by moving the responsi-

bility to perform this task from application programsto the system software such as database managementsystems, knowledge base management systems, expertsystem shells, or CASE-tools. In order to enforce con-straints automatically, it is necessary to centralize thespeci�cation of constraints. Consequently, the consis-tency constraints that hold in a particular applicationarea have to be speci�ed in the conceptual schema thatdescribes the semantics of the application area. Sys-tem software will then enforce these constraints auto-matically relieving the application programmer fromthe task of consistency enforcement | application pro-grammers need only to code update operations, but nolonger code consistency checks.Although this idea looks commercially quite at-tractive, it has not become commercial reality yet.The existing commercial systems, e.g. relationaldatabase management systems or AI-programming en-vironments, only partially support the speci�cationand automatic enforcement of consistency constraints.In current practice, the enforcement of consistencyconstraints still rests on the shoulders of applicationprogrammers.In this paper, we will focus on a special subproblemof consistency enforcement: the automatic enforce-ment of dynamic consistency constraints. A dynamicconstraint is a constraint that cannot be checked byinspecting the most recent state of a database (knowl-edge base). For example, a constraint "salaries neverdecrease" cannot be checked by simply inspecting thecontents of a database, because it refers to objects(here salaries) of former states of the database. On theother hand, the uniqueness of social security numberscan be checked by inspecting the most recent state |due to the fact that the constraint has been speci�edin the context of a single state and not of multiplestates. The uniqueness constraint is therefore a staticconstraint. The importance of dynamic constraintshas been recognized by research on temporal and/orhistorical databases (see for example [13] and [9]).

Although the automatic enforcement of consistencyconstraints is rarely supported in commercial softwaresystems, a number of useful techniques have been pro-posed in the literature for this purpose, mainly for theenforcement of static consistency constraints. Most ofthese papers assume that �rst order predicate calculus(or some of its variations) is used to specify integrityconstraints, and provide techniques that decide whichconstraints (out of a set of constraints) have to bechecked for a given update. Moreover, the proposedalgorithms simplify the constraints to be checked, ifpossible. This approach was originally proposed byNicolas in [10], and later extended and modi�ed bymany researchers (most notably by [5]).Recently, rule-based programming paradigmsgained some popularity for databases. These e�ortsfound their expression in two directions: in deductivedatabases which augment the query-processing capa-bilities of database management systems by support-ing deductive, Prolog-style production rules, and inactive databases that support data-driven productionrules in databases. Research in these two areas demon-strated that production rules provide a very suitableframework for specifying and enforcing consistencyconstraints. In deductive databases constraints canbe expressed and enforced by Prolog-style predicatesrelying on classical resolution techniques (see for ex-ample [6], and [11]).On the other hand, active databases, such as POST-GRES [12] and HIPAC [8], support data-driven pro-duction rules that facilitate the coding of exceptionshandlers for constraint violations. The STARBUSTDBMS [14] supports set-oriented production rules thatare integrated with DBMS transaction concepts. Intheir framework, a transaction computes a set ofupdate-operations that it wants to perform for a par-ticular database triggering active rules that react tothese changes, e.g. reject violations of consistencyconstraints by cancelling the transaction. Moreover,[1] introduces activation pattern controlled rules | ageneralization of classical data-driven production rules| for the purpose of consistency enforcement. Activa-tion pattern controlled rules augment rules by an addi-tional left-hand side { the activation pattern { whichmatches calls of particular commands and sensitizesproduction rules for the execution of particular com-mands. In the proposed generalization, rules are nottriggered by data changes but rather by the intent toperform a data change, which is important for consis-tency enforcement: classical data-driven mechanismscan only react to the violation of constraints (e.g. byundoing the change that violated the constraint) but

not prevent the violation itself. Finally, in the ODEobject-oriented database system [3] constraints are as-sociated with objects. The associated constraints arechecked each time a member function (or the construc-tor) is called for the particular object.Unfortunately, we are not aware of any papers thatdirectly center on the automatic enforcement of dy-namic constraints. The main idea of the paper is togeneralize Nicolas' enforcement algorithm for dynamicconstraints. Section 2 introduces temporal databasesand presents our formalism for the speci�cation of dy-namic constraints. Section 3 describes an enforce-ment algorithm for dynamic constraints. Section 4concludes the paper.2 A Language for Dynamic Con-straintsAlthough our techniques can also be applied inother frameworks, we assume that dynamic con-straints are enforced with respect to a relationaldatabase. A relational database can be regarded as aset of relations whose contents changes over time. Thecurrent contents of a relation is called its extension,whereas the contents of all the relations that belong toa database is called the extension of the database. Onthe other hand, certain parts of a relational databasedo not change over long periods of time, because theyexpress the law / rules / constraints of the applica-tion area. These parts, we call the intension of therelational database. It imposes restrictions concern-ing the structure of the relations of the database andconstraints with respect to their content.From a logical point of view, a database can beconsidered to be a set of logical (atomic) formulas de-scribing the tuples of the extension of the databasetogether with logical formulas describing the struc-tural and consistency constraints of the intension ofthe database. In this way, the database is conceptu-ally partitioned into a set of logical formulas that fre-quently change with time (its extension) and sets oflogical formulas that do not or very rarely change overtime (its intension). Each time the database is modi-�ed its extension changes. Each update can be seen asa sequence of commands that have to be carried outas an atomic unit. The extension of the database willbe called a state in the following when its temporaldimension is to be stressed.We will view the history of a database as a sequenceof states linked by updates (simple or complex) thattransformed a database from one state to the other. In

particular, we see the history of a database D, denotedby H(D) as a complete, exhaustive, ordered sequenceof state-time pairs that occurred during the evolutionof the database D.H(D) := (s0; t0); (s1; t1); :::; (scurr; tcurr) witht1 < t2 < ::: < tcur are points of timesi for i = 1; :::; curr are states of the databaseIn the above, s0 denotes the initial state of thedatabase | usually the empty state { and scurr de-notes the current state. The above de�nition asso-ciates every state with a time tag that uniquely iden-ti�es it with respect to other state. Note that twotemporally di�erent states of a database D can be ac-tually the same.In the following discussions we will assume the com-plete history of databases is available. Therefore, thelanguage and algorithms that will be discussed in thenext section are tailored for historical and temporaldatabases; namely, we assume that H(D) is accessiblefor our enforcement algorithm.One way to express dynamic constraints is toaugment �rst order predicate calculus with the ca-pability of specifying assertions whose truth-valueis computed with respect to a particular point oftime. Assuming that salaries are stored in a rela-tion salary(person; amount), the constraint "salariesnever decrease" could be described as follows:(1a) 8t18t28p8s18s2 (salary(p; s1)t1 ^salary(p; s2)t2 ^ t1 < t2) s1 � s2)In the above, the subscripts t1 and t2 refer to the his-tory of the database, inquiring if a particular formulaf is true at time t, denoted by ft. If t is omitted, f isevaluated in the context of the current state. For ex-ample, salary(Fred; 55555) evaluates to true if Fred'ssalary is $55555. In the above, we specify that nostate should be succeeded by another state in whichthe salary of the same person decreases.One way to specify and enforce constraints is torestrict the possible states of a database, as in (1a).However, it has been frequently overlooked that thisis not the only way to specify and enforce constraints.Alternatively instead of restricting states, we couldrestrict the operations that potentially violate con-straints. We could reformulate the above constraintby referring to the changes that might potentially vi-olate this constraint | disallowing salary decreasingmodi�cations. This alternate approach would specifythe above constraint as follows:(1b) 8s18s28p(salary(p; s1) ^ Modify(salary; p; s2)) s1 � s2)We

assume that Modify(salary,<person>,<new-value>) isthe operation to modify the salary of a person; e.g.,Modify(salary,Fred,66666)modi�es the salary of Fredto 66666. The above constraint should be read as fol-lows: if there are modi�cations of salaries of a personp, and p's old salary is s1, then her/his new salaryshould be greater than or equal to the old salary. Notethat the above constraint is much easier to enforce,because it only refers to the current state and updateoperations that potentially violate the constraint, butnot to the history of the database, as (1a) does. On theother hand, the second approach requires to imposingsyntactical restrictions on operations performed withrespect to a database. In the second approach the con-straint refers to calls of particular operations | callsof Modify-operations in the above example | whichwe will call activation patterns [2] in the following.We believe that both temporal references and acti-vation patterns are needed in order to cope with dy-namic constraints. That is, in addition to referencesto tuples in the database (such as salary(Fred,66666))our constraint language refers to calls of operationsthat access or manipulate the database, and uses tem-poral variables and constants to refer to events inthe history of the database. Consequently, in ourconstraint language constraints are described by �rstorder predicate calculus formulas that refer to thedatabase contents and activation patterns, and whichuse temporal variables and constants.Assuming this framework, our enforcement algo-rithm needs three inputs� the history of the database� the update operation for which constraint viola-tions have to be prevented� the set of dynamic consistency constraints thathave to be enforced for the particular databaseOur enforcement algorithm takes the above inputsand derives the set of constraints | that has to bechecked for the particular update operation in orderto guarantee the consistency of the database.However, before we describe our enforcement al-gorithm, it is necessary to introduce our constraintspeci�cation language, which is the subject of the re-mainder of the section. Due to the lack of space wewill only describe a simpli�ed version of our constraintlanguage.In this paper, we assume that only the followingthree operations can be used to manipulate databases:assert/2, retract/2, and query/2, where P/n is the in-formal notation commonly used in the logic program-ming area to express that the predicate P has arity n.

In general, activation patterns are represented as pred-icates in our constraint language. The �rst argumentof these predicates is a generic tuple (i.e. an expres-sion that looks like a tuple except for the fact that itcan contain variables), whereas its second argument isis a time tag. Moreover, pre-interpreted symbols (suchas � or =) are supported in our constraint language.In the following, we will illustrate our constraintspeci�cation language by discussing seven exampleconstraints, six of which are dynamic. In the nextsection, we will use these examples to illustrate andexplain our constraint enforcement algorithm.The predicate assert/2 makes it possible to ex-press constraints concerning the insertion of individ-ual tuples into the database. Its general pattern isassert(<tuple>,<time>). The assert-predicate evalu-ates to true if the tuple <tuple> is/was inserted intothe database state that corresponds to the time tag<time>.Let us illustrate how the assert-predicate works us-ing several examples:1. "The tuple a(b,c,d) can be asserted in the DBonly at time 44580784"8t(assert(a(b; c; d); t)) t = 44580784)2. "A tuple having a pattern such as a(b,X,d),where any value can be replaced for the variable X,can be asserted in a state having an even time tag"8t8X(assert(a(b;X; d); t)) (t mod 2) = 0)3. "A tuple of the form a(b,X,Y), where X and Yare variables, can be only asserted in the database if atuple of the form e(f,Y,Z) has been inserted earlier tothe database."8t8Y 8X(assert(a(b;X; Y); t)) 9t1(t1 � t ^9Zassert(e(f; Y; Z); t1)))The syntax and behavior of retract/2 are similar toassert/2. The only di�erence is that it deals with thedeletion tuples. Its pattern isretract(<tuple>,<time>)and it evaluates to true, when <tuple> was/is deletedfrom the database state that carries the time tag<time>. Consider the following examples:4. "Once asserted, the tuple a(b,c,d) can never beremoved"8t(� retract(a(b; c; d); t))Note that (4) only requests that the tuple a(b,c,d) isnot deleted from the database using a retract com-mand. However, it does not disallow any otherchanges; e.g. it could modi�ed or manipulated byother operations.

5. "A tuple can be removed from the database onlyif it has previously been inserted into it"8X8t(retract(X; t)) 9t1(assert(X; t1) ^ t1 < t))The application of assert/2 and retract/2 results ina new state in the history of the database. Further-more, we assume for the rest of the paper that if anassert/2 or retract/2 operation is applied to a databaseat time t, their changes become visible in the newlygenerated state, which is tagged by t+ 1.The predicate query/2 allows us to formulatequeries with respect to the relational database. It hasthe formquery(<tuple>,<time>)and evaluates to true, if the state of the database attime <time> contains <tuple>; otherwise, it evaluatesto false. Query/2 allows us to refer to the history of adatabase, e.g. our constraint "salaries never decrease"could be written as follows:8t18t28p8s18s2((query(salary(p; s1); t1) ^(query(salary(p; s2); t2) ^ t1 < t2)) s1 � s2)It should be noted that the assert-predicate is onlytrue when the particular tuple was inserted at theparticular point of time. Furthermore, we assumethat if an update is performed at time t, it becomesvisible at time t+1. That is, if we assume that atuple p has not been in the database before, andwas asserted at time t, and was not retracted attime t+1, assert(p,t), query(p,t+1), query(p,t+2)are true, and assert(p,t+1), query(p,t) are false.The following example (6) expresses a static con-straint in this way, and example (7) illustrates howquery/2 and the previous predicates can cooperate tode�ne new dynamic integrity constraints.6. "At any time, there must be a unique tuple ofthe form a(b,c,X) in the database, where any valuecan be substituted for the variable X"8t9V (query(a(b; c; V); t) ^8X8Y (query(a(b; c;X); t) ^ query(a(b; c; Y); t))X = Y))7. "A tuple of the form a(b,X,d) can be asserted inthe database only if it is not already in it and sometuple of the form e(Y,X) is already contained in it"8t8X(assert(a(b;X; d); t)) � query(a(b;X; d); t) ^9Y query(e(Y;X); t))Note that the execution of a query/2 commanddoesnot change the state of a database. Therefore, query/2does not a�ect the history of a database.What has been done in this section is to de�ne infor-mally a language for expressing dynamic constraints.

However, before we represent our enforcement algo-rithm, it is necessary to explain the semantics and theprocessing of constraints in more detail. As mentionedearlier, the language formalism that underlies our con-straint language is �rst order logic. The connectivesand quanti�ers are the usual ones. However, due toreasons given later, we assume that it is possible torecognize and distinguish references to temporal vari-ables and constants syntactically from references to tu-ples, and activation patterns, which are assert, retract,and query. Furthermore, in our language we assumethat all predicate symbols are interpreted. They havetheir meaning hard-wired into the language. Predicatesymbols include activation patterns, such as assert, aswell comparison operators, such as <.Moreover, our constraint language allows for inter-preted as well as for uninterpreted function symbolsin constraints. However, interpreted function symbols(such as +, mod, etc) are not allowed inside activa-tion patterns. This restriction derives from the opera-tional aspects of the theorem proving techniques thatunderly our approach. This restriction is made in or-der to avoid underspeci�ed expressions involving unin-terpreted operators when simplifying the constraints.This is, in general, a di�cult task that only recentlyreceived some attention by scientists, most notably inthe context of logic and constraint programming; forexample, in the CLP language described in [4]. Onthe other hand uninterpreted function symbols can beused freely in our language. For example, the argu-ments of assert/2, retract/2, and query/2 are not in-terpreted, as we have already mentioned above.Finally, the kind of logic to be used for consistencyenforcement deserves some discussion. So far, a single-sorted (i.e., pure) �rst order logic has been implicitlyassumed. However, we feel that a typed (or multi-sorted) logic (see for example [7]) is more adequatefor consistency enforcement | we believe that typedframeworks are more suitable for specifying and en-forcing constraints that apply for a particular set ofobjects. However, for the sake of simplicity, we willcontinue our discussions assuming that a single-sortedlogic is used for implementing our enforcement tool,which is the focus of the next section.3 The Enforcement AlgorithmIn the previous section, �rst order predicate calcu-lus has been extended to permit a direct expression ofdynamic integrity constraints (namely, we allow ref-erences to activation patterns and temporal variablesand constants).

Our constraint enforcement algorithm computes theset of constraints that have to be checked for a givenupdate operation out of a set of dynamic constraints.This computation is done in three steps:1. Select the dynamic integrity constraints that po-tentially are a�ected by the update.2. Simplify them as much as possible.3. Remove those constraints from the set receivedin step (2) that are elementary or which refer toevents in the future. The remaining constraintsare the output of the algorithm| the set of con-straints that need to be checked for the particularupdate operation.It should be mentioned that due to space limitationwe will describe the algorithm informally in this paper.More speci�cally, we will use the example (1) through(7), which have been redisplayed below, to explain thedi�erent phases of the algorithm.1. 8t(assert(a(b; c; d); t)) t = 44580784)2. 8t8X(assert(a(b;X; d); t)) (t mod 2) = 0)3. 8t8Y 8X(assert(a(b;X; Y); t)) 9t1(t1 � t ^9Zassert(e(f; Y; Z); t1)))4. 8t � retract(a(b; c; d); t)5. 8X8t(retract(X; t)) 9t1(assert(X; t1) ^ t1 < t))6. 8t9V (query(a(b; c; V); t) ^8X8Y (query(a(b; c;X); t) ^ query(a(b; c; Y); t))X = Y))7. 8t8X(assert(a(b;X; d); t))� query(a(b;X; d); t) ^ 9Y query(e(Y;X); t))We assume that the database is currently consis-tent, that it only contains two tuples a(b,c,e) ande(c,c), and that its current time tag is 14905. Nowwe assume that this database is updated by assertingthe tuple a(b,c,d) which is represented in our temporalframework as follows:assert(a(b,c,d),14905)We will demonstrate in the following how our en-forcement algorithm copes with this insertion. The�rst step, preselects those dynamic integrity con-straints that are potentially violated by the update.This is done by matching the update operation againstthe constraints | if the two do not unify it is impos-sible to violate a constraint, because it does not applyin the context of the particular update operation. Be-cause of the syntactical restrictions we impose on ourconstraint speci�cation language, the classical uni�-cation algorithm is powerful enough to perform this

task. If the update matches the constraint in at leastone part the match is represented as a substitutionfor the variables that occur in the integrity constraint.This substitution is important, because it speci�es thecontext in which the particular constraint can be vi-olated by the update. Also note that if there are twooccurrences of an atom in the same formula that matchthe update, then that formula is selected twice | twoconstraints potentially have to be checked for the up-date.Consequently, all constraints are matched againstassert(a(b,c,d),14905)with the exeception of (6) that is static and will notbe treated by our algorithms, but rather by Nicolas'algorithm for static constraints.Constraints (1), (2), (3), (5), and (7) match theabove call successfully with the bindings indicated be-low. On the other hand, the match failed for the con-straint (4); therefore, no substitution is given for itbelow.1. 8t(assert(a(b; c; d); t)) t = 44580784) �1 =ft/14905g2. 8t8X(assert(a(b;X; d); t)) (t mod 2) = 0) �2= fX/c,t/14905g3. 8t8Y 8X(assert(a(b;X; Y); t)) 9t1(t1 � t ^9Zassert(e(f; Y; Z); t1))) �3 = fX/c,Y/d,t/14905g4. 8t � retract(a(b; c; d); t)5. 8X8t(retract(X; t)) 9t1(assert(X; t1) ^ t1 <t)) �5 = fX/a(b,c,d),t1/14905g7. 8t8X(assert(a(b;X; d); t))� query(a(b;X; d); t) ^ 9Y query(e(Y;X); t)) �7 =fX/c,t/14905gThe second step of the enforcement procedure con-sists of simplifying the constraints that have been re-ceived in step (1). This is done by instantiating eachselected constraint by applying the substitution foundin the previous step. The obtained formula is thensimpli�ed as much as possible by means of the ele-mentary rules of logic and arithmetic, and by usingrules that underly the semantics of our operators as-sert/2, query/2, etc. For our example, we obtain theresults listed below, in which T and F represent thetruth values true and false, respectively:1. assert(a(b; c; d); 14905)) 14905 = 44580784)T) FF2. assert(a(b; c; d); 14905)) (14905 mod 2) = 0T) FF3. assert(a(b; c; d); 14905)) 9t1(t1 � 14905^

9Zassert(e(f; Y; Z); t1))T) 9t1(t1 � 14905^ 9Zassert(e(f; Y; Z); t1))9t1(t1 � 14905^ 9Zassert(e(f; d; Z); t1))5. 8t(retract(a(b; c; d); t))assert(a(b; c; d); 14905) ^ 14905 < t)8t(retract(a(b; c; d); t)) T ^ 14905 < t)8t(retract(a(b; c; d); t)) 14905 < t)7. assert(a(b; c; d); 14905))� query(a(b; c; d); 14905)^9Y query(e(Y; c); 14905)T) T ^ TTThe query/2 statements have been simpli�ed in theabove by querying the database (remember that thecurrent state of our example database only containsthe tuples a(b,c,e) and e(c,c), but not a(b,c,d) whichwill be included in the next state of the database cor-responding to the time tag 14906).The described simpli�cation algorithm can lead tothree results. If at least one constraint has been falsi-�ed, then an inconsistency has been found. Therefore,no further step is needed, and the update is rejected.If all the constraints are reduced to T, then the up-date cannot violate any consistency constraints, be-cause none of the constraints applies for the particu-lar update. No constraints need to be checked for theparticular update, and step (3) can be skipped.In all the other cases, the procedure must go on withstep (3), which decides which constraints have to bechecked for the particular update. In order to be ableto proceed with step (3) without changing the exam-ple, we assume that constraints (1) and (2) have beendropped by the system administrator. Taking this intoconsideration, constraints derived from the three con-straints (3), (5), and (7), are still in contention.Constraint (3) was simpli�ed to become:3'. 9t1(t1 � 14905^ 9Zassert(e(f; d; Z); t1))The above constraint refers to the past of the database,and has to be checked by querying the history of thedatabase: if a tuple that matches e(f,d,?) has notbeen inserted at some time in the past, the constraintis violated, and the insertion of a(b,c,d) has to berejected.Constraint (5) has been simpli�ed to:5'. 8t(retract(a(b; c; d); t)) 14905 < t)Constraint (5') expresses that the retraction of the tu-ple a(b,c,d) is allowed in any state having a time labelgreater than 14905. This constraint cannot be vio-lated at the current point of time, since it refers tostates in the future. However, this does not excludethe constraint from becoming violated in the future.

Finally, constraint (7) evaluates to T, which meansthat this constraint need not be checked for the par-ticular update. In summary, for the particular updateonly a single constraint ((3')) has to be checked.So far our algorithm looks quite similar to the oneproposed by Nicolas [10] for static constraints. Theremainder of this section will focus on complicationsthat arise in our enforcement algorithm due to thespecial nature of temporal constraints and activationpatterns. Due to the lack of space we will discuss thesecomplications informally.The �rst complication arises from interactionsbetween the query-predicate and the assert- andretract-predicate, which make it necessary to mod-ify our uni�cation algorithm. For example, if Tis a temporal variable (assert(a(b,c,d),12)) uni-�es (query(a(b,c,d),T) by binding T to 13 (re-member that a(b,c,d) is visible in the next statewhich is 13); similarly, retract(a(b,c,d),12) uni�es(�query(a(b,c,d),T) with T being bound to 13. Ingeneral, the uni�cation algorithm used in step (1)that decides if a constraint can potentially be vio-lated has to take some special cases into considerationthat do not occur in the classical uni�cation algorithm| namely, retract and assert operations unify query-operations as outlined above. For example, if we havea constraint8. 8t (query(p; t)) t < 450)and p is asserted at time 550, our generalized uni-�cation algorithm would unify assert(p,550) withquery(p,t) obtaining the simpli�ed constraint 551 <450 which evaluates to F; consequently, the updatewould be rejected. Similarly, for the constraint (8')given below8'. 8t (� query(p; t)) t < 450)the retraction of p at time 450 (or later) would berejected by our enforcement algorithm | as stated in(8') p should not become false after time 449.The second complication arises from the fact thatdynamic constraints can be violated implicitly as timepasses by. Consider again constraint (8'), and let usassume that p is initially false and has never been as-serted or retracted during the history of the database.The algorithm presented so far, will consider (8') irrel-evant for any update operation that was performed onour example database and will not check the constraint| note that p never has been retracted. When time450 is reached, the above constraint becomes violated.To avoid these problems, it becomes necessary toconsider constraints that have form8t:::(:::^ query(p; t) ^ :::) :::)

8t:::(:::^ � query(p; t) ^ :::) :::)to be relevant for any update, and to simplify theabove constraint by substituting the current time forthe all-quanti�ed temporal variable. Note that theconstraint (8') can now be evaluated for time 450.Consequently, query-, assert-, and retract-predicatesthat contain all-quanti�ed temporal variables have tobe evaluated for the current point of time, possiblydetecting violations of constraints that originally re-ferred to the future.For example, if r (which is di�erent from p) is as-serted at time 450, our enforcement algorithms de-rives the following simpli�ed constraint (8") from (8'),which has to be checked in the database:8". � query(p; 450)) 450 < 4508". query(p; 450)In the case that a constraint involves multiple all-quanti�ed temporal variables, all possible substitu-tions of the current time for each of the all quanti�edvariables have to be considered by the enforcement al-gorithm. For example, assume a constraint8t18t28t3 P (t1; t2; t3)in which t1; t2; t3 are temporal variables and P is anarbitrary formula with free variables t1; t2; t3 is given,and it is relevant at the current point of time 450; thenthe following constraints have to be processed in step(2) by the algorithm:8t28t3P (450; t2; t3)8t18t3P (t1; 450; t3)8t18t2P (t1; t2; 450)8t1P (t1; 450; 450)8t2P (450; t2; 450)8t3P (450; 450; t3)P (450; 450; 450)In general, things become quite complicated whenmultiple temporal variables are involved in a con-straint.There are various ways the previously discussed al-gorithm can be applied in practice. One way is touse a system that directly applies the algorithm andenforces constraints at run-time. Another approachwould be to use a precompiler that augments applica-tion programs by code that enforces consistency con-straints. If the application program contains code thatasserts a(b,c,d), then the precompiler would add codethat enforces the simpli�ed constraint (3') to the ap-plication program, but not any code that enforces anyother dynamic constraints. This property is very im-portant for the e�ciency of any automatic constraintenforcement algorithm: only those constraints shouldbe checked that potentially can be violated by a partic-ular update; otherwise, the enforcement system would

be highly ine�cient. For example, it is a waste of timeto check the uniqueness of social security numbers inthe case that a social security number is deleted | itis impossible to violate this constraint by a deletion.4 ConclusionsThe paper focused on the automatic enforcement ofdynamic consistency constraints. A logical formalismfor the speci�cation of dynamic constraints has beenpresented that extends �rst order predicate logic bya temporal dimension and by the availability to referto operations that perform changes. Nicolas' classicalenforcement algorithm for the enforcement of staticconsistency constraints [10] has been extended to copewith dynamic constraints. It should also be mentionedthat we implemented our algorithm in a PROLOG en-vironment.Our current research focuses on the validation ofthe presented algorithm, and on its integration intoa knowledge base management that supports tempo-ral queries. Due to the novelty of this research thereare many other questions that deserve further explo-ration. How does one cope with constraints that referto events in the future and what should be their role ina database management system|we gave an exampleof this problem in the paper (constraint (5')). Whichsubclasses of dynamic constraints can be enforced byconventional database management systems that onlystore the current state? For example, "salaries do notdecrease" is a constraint that can be enforced with-out having to refer to the history of the database, asdiscussed in the paper. Is it possible to recognize thisimportant subclass of dynamic constraints syntacti-cally?References[1] Eick C.F., Werstein P.: "Rule-Based ConsistencyEnforcement for Knowledge-Based Systems", ac-cepted for publication in IEEE Transactions onKnowledge and Data Engineering, to appear endof 1992.[2] Eick C.F.: "Activation Pattern Controlled Rules:Towards the Integration of Data-Driven andCommand-Driven Programming", Journal of Ap-plied Intelligence, vol. 2, 1992, pp. 75-91.[3] Gehani N., Jagadish H. V.: "ODE as an ActiveDatabase: Constraints and Triggers, in Proc. Int.

Conf. on Very Large Databases, Barcelona, 1991,pp. 327-336.[4] Ja�ar J., Lassez J.L.: "Constraint Logic Program-ming" in Proc. 14th POPL-Conference, Munich,1987, pp. 111-119.[5] Kobayashi I.: "Validating Database Updates", In-formation Systems 9 (1), 1984, pp. 1-17.[6] Kowalski R., Sadri F., Soper P.: "Integrity Check-ing in Deductive Databases", in Proc. VLDBConf., Brighton, 1987, pp. 61-69.[7] Lloyd J.W.: "Foundations of Logic Programming",Springer Verlag, Second Edition, 1987.[8] McCarthy D.R., Dayal U.: "The Architecture of anActive Database System", in Proc. ACM SIGMODConf. on Management of Data, Portland, 1989, pp.215-224.[9] Navathe S.B., Ahmed R.: "A Temporal RelationalModel and a Query Language", Information Sci-ences 49, 1989, pp. 147-175.[10] Nicolas J.-M.: "Logic for Improving IntegrityChecking in Relational Databases", Acta Infor-matica 18, 1982, pp. 227-253.[11] Olive A.: Integrity Constraint Checking in De-ductive Databases", in Proc. VLDB-Conference,Barcelona, 1991, pp. 513-524.[12] Stonebraker M., Hansen H., Potomianos S.: "ThePOSTGRES Rule Manager", IEEE Transactionson Software Engineering, vol. 14, no. 7, 1988, pp.897-907.[13] Su S., Chen H.: "A Temporal KnowledgeRepresentation Model OSAM*/T and its QueryLanguage QQL/T", in Proc. VLDB-Conference,Barcelona, 1991, pp. 431-442.[14] Widom J., Ceri S.: "Deriving Production Rulesfor Constraint Maintenance", in Proc. VLDB-Conference, Brisbane, 1990, pp. 566-577.

