Specification and Enforcement of Dynamic Consistency Constraints

[liano Cervesato and Christoph F. Eick
Department of Computer Science
University of Houston
Houston, TX 77204-3475

e-mail: (iliano,ceick)@cs.uh.edu

Abstract
This paper centers on the automatic enforcement
of dynamic consistency constraints — dynamic con-

straints are constraints that cannot be checked by solely
mspecting the most recent state of a data- or knowl-
edge base. A logical formalism for the specification of
dynamic constraints is presented that extends first or-
der predicate logic by a temporal dimension and by the
capability of restricting update operations that poten-
tially violate constraints. In general, a large number
of constraints exist in real world databases. It has been
recognized that it s highly inefficient to check all these
constraints for a particular update operation, because
very few of those constraints are relevant for the up-
date. To alleviate this problem, an algorithm s pre-
sented which determines if a dynamic constraint needs
to be checked for a particular update.

1 Introduction

Consistency constraints (frequently called semantic
integrity constraints in the literature) play an impor-
tant role in almost any software design process. Vio-
lating consistency constraints results in erroneous sys-
tem behavior and therefore has to be avoided, espe-
cially if knowledge is shared by multiple users. Conse-
quently, application programs that update knowledge
have to contain code that enforces the consistency con-
straints that underly the particular application area.
Usually, the code that enforces consistency constraints
1s significantly longer than the code needed to perform
a particular update operation. For example, when an
application program inserts a new social security num-
ber it has to check at least two constraints: first, that
the inserted social security number consists of 9 digits,
and second, that it is unique.

Consequently, it seems attractive to relieve appli-
cation programmers from the task of having to en-
force consistency constraints by moving the responsi-

bility to perform this task from application programs
to the system software such as database management
systems, knowledge base management systems, expert
system shells; or CASE-tools. In order to enforce con-
straints automatically, it is necessary to centralize the
specification of constraints. Consequently, the consis-
tency constraints that hold in a particular application
area have to be specified in the conceptual schema that
describes the semantics of the application area. Sys-
tem software will then enforce these constraints auto-
matically relieving the application programmer from
the task of consistency enforcement — application pro-
grammers need only to code update operations, but no
longer code consistency checks.

Although this idea looks commercially quite at-
tractive, it has not become commercial reality yet.
The existing commercial systems, e.g. relational
database management systems or Al-programming en-
vironments, only partially support the specification
and automatic enforcement of consistency constraints.
In current practice, the enforcement of consistency
constraints still rests on the shoulders of application
programmers.

In this paper, we will focus on a special subproblem
of consistency enforcement: the automatic enforce-
ment of dynamic consistency constraints. A dynamic
constraint is a constraint that cannot be checked by
inspecting the most recent state of a database (knowl-
edge base). For example, a constraint ”salaries never
decrease” cannot be checked by simply inspecting the
contents of a database, because it refers to objects
(here salaries) of former states of the database. On the
other hand, the uniqueness of social security numbers
can be checked by inspecting the most recent state —
due to the fact that the constraint has been specified
in the context of a single state and not of multiple
states. The uniqueness constraint is therefore a static
constraint. The importance of dynamic constraints
has been recognized by research on temporal and/or
historical databases (see for example [13] and [9]).

Appeared in the Proceedings of the International Conference on Information and Knowledge Management — CIKM’92, (Y. Yesha

editor), pp. 193-200, Baltimore, MD, 8-11 November 1992.

Although the automatic enforcement of consistency
constraints is rarely supported in commercial software
systems, a number of useful techniques have been pro-
posed in the literature for this purpose, mainly for the
enforcement of static consistency constraints. Most of
these papers assume that first order predicate calculus
(or some of its variations) is used to specify integrity
constraints, and provide techniques that decide which
constraints (out of a set of constraints) have to be
checked for a given update. Moreover, the proposed
algorithms simplify the constraints to be checked, if
possible. This approach was originally proposed by
Nicolas in [10], and later extended and modified by
many researchers (most notably by [5]).

Recently, rule-based programming paradigms
gained some popularity for databases. These efforts
found their expression in two directions: in deductive
databases which augment the query-processing capa-
bilities of database management systems by support-
ing deductive, Prolog-style production rules, and in
active databases that support data-driven production
rules in databases. Research in these two areas demon-
strated that production rules provide a very suitable
framework for specifying and enforcing consistency
constraints. In deductive databases constraints can
be expressed and enforced by Prolog-style predicates
relying on classical resolution techniques (see for ex-

ample [6], and [11]).

On the other hand, active databases, such as POST-
GRES [12] and HIPAC [8], support data-driven pro-
duction rules that facilitate the coding of exceptions
handlers for constraint violations. The STARBUST
DBMS [14] supports set-oriented production rules that
are integrated with DBMS transaction concepts. In
their framework, a transaction computes a set of
update-operations that it wants to perform for a par-
ticular database triggering active rules that react to
these changes, e.g. reject violations of consistency
constraints by cancelling the transaction. Moreover,
[1] introduces activation pattern controlled rules — a
generalization of classical data-driven production rules
— for the purpose of consistency enforcement. Activa-
tion pattern controlled rules augment rules by an addi-
tional left-hand side — the activation pattern — which
matches calls of particular commands and sensitizes
production rules for the execution of particular com-
mands. In the proposed generalization, rules are not
triggered by data changes but rather by the intent to
perform a data change, which is important for consis-
tency enforcement: classical data-driven mechanisms
can only react to the violation of constraints (e.g. by
undoing the change that violated the constraint) but

not prevent the violation itself. Finally, in the ODE
object-oriented database system [3] constraints are as-
sociated with objects. The associated constraints are
checked each time a member function (or the construc-
tor) is called for the particular object.

Unfortunately, we are not aware of any papers that
directly center on the automatic enforcement of dy-
namic constraints. The main idea of the paper is to
generalize Nicolas’ enforcement algorithm for dynamic
constraints. Section 2 introduces temporal databases
and presents our formalism for the specification of dy-
namic constraints. Section 3 describes an enforce-
ment algorithm for dynamic constraints. Section 4
concludes the paper.

2 A Language for Dynamic Con-
straints

Although our techniques can also be applied in
other frameworks, we assume that dynamic con-
straints are enforced with respect to a relational
database. A relational database can be regarded as a
set of relations whose contents changes over time. The
current contents of a relation is called its extension,
whereas the contents of all the relations that belong to
a database is called the extension of the database. On
the other hand, certain parts of a relational database
do not change over long periods of time, because they
express the law / rules / constraints of the applica-
tion area. These parts, we call the intension of the
relational database. It imposes restrictions concern-
ing the structure of the relations of the database and
constraints with respect to their content.

From a logical point of view, a database can be
considered to be a set of logical (atomic) formulas de-
scribing the tuples of the extension of the database
together with logical formulas describing the struc-
tural and consistency constraints of the intension of
the database. In this way, the database is conceptu-
ally partitioned into a set of logical formulas that fre-
quently change with time (its extension) and sets of
logical formulas that do not or very rarely change over
time (its intension). Fach time the database is modi-
fied its extension changes. Each update can be seen as
a sequence of commands that have to be carried out
as an atomic unit. The extension of the database will
be called a state in the following when its temporal
dimension is to be stressed.

We will view the history of a database as a sequence
of states linked by updates (simple or complex) that
transformed a database from one state to the other. In

particular, we see the history of a database D, denoted
by H(D) as a complete, exhaustive, ordered sequence
of state-time pairs that occurred during the evolution
of the database D.

H(D) = (So,to), (Slatl)a ceey (Scurr;tcurr) with
t1 <15 < ... < teyr are points of time
s; for i = 1, ..., curr are states of the database

In the above, sy denotes the initial state of the
database — usually the empty state — and seqpr de-
notes the current state. The above definition asso-
clates every state with a time tag that uniquely iden-
tifies it with respect to other state. Note that two
temporally different states of a database D can be ac-
tually the same.

In the following discussions we will assume the com-
plete history of databases 1s available. Therefore, the
language and algorithms that will be discussed in the
next section are tailored for historical and temporal
databases; namely, we assume that H(D) is accessible
for our enforcement algorithm.

One way to express dynamic constraints is to
augment first order predicate calculus with the ca-
pability of specifying assertions whose truth-value
1s computed with respect to a particular point of
time. Assuming that salaries are stored in a rela-
tion salary(person,amount), the constraint ”salaries
never decrease” could be described as follows:

(la) VtIVE2Vp¥slV¥s2 (salary(p, sl)u A
salary(p, s2)t2 A 11 <12 = sl < s2)

In the above, the subscripts t1 and t2 refer to the his-
tory of the database, inquiring if a particular formula
f is true at time t, denoted by f;. If t is omitted, f is
evaluated in the context of the current state. For ex-
ample, salary(Fred, 55555) evaluates to true if Fred’s
salary is $55555. In the above, we specify that no
state should be succeeded by another state in which
the salary of the same person decreases.

One way to specify and enforce constraints is to
restrict the possible states of a database, as in (1a).
However, it has been frequently overlooked that this
is not the only way to specify and enforce constraints.
Alternatively instead of restricting states, we could
restrict the operations that potentially violate con-
straints. We could reformulate the above constraint
by referring to the changes that might potentially vi-
olate this constraint — disallowing salary decreasing
modifications. This alternate approach would specify
the above constraint as follows:

(1b) Vs1¥s2¥p(salary(p,s1) A Modify(salary, p, s2)
= sl < s2)

We

assume that Modify(salary,<person>,<new-value>) is
the operation to modify the salary of a person; e.g.,
Modify(salary,Fred,66666) modifies the salary of Fred
to 66666. The above constraint should be read as fol-
lows: if there are modifications of salaries of a person
p, and p’s old salary is sl, then her/his new salary
should be greater than or equal to the old salary. Note
that the above constraint is much easier to enforce,
because it only refers to the current state and update
operations that potentially violate the constraint, but
not to the history of the database, as (1a) does. On the
other hand, the second approach requires to imposing
syntactical restrictions on operations performed with
respect to a database. In the second approach the con-
straint refers to calls of particular operations — calls
of Modify-operations in the above example — which
we will call activation patterns [2] in the following.

We believe that both temporal references and acti-
vation patterns are needed in order to cope with dy-
namic constraints. That is, in addition to references
to tuples in the database (such as salary(Fred,66666))
our constraint language refers to calls of operations
that access or manipulate the database, and uses tem-
poral variables and constants to refer to events in
the history of the database. Consequently, in our
constraint language constraints are described by first
order predicate calculus formulas that refer to the
database contents and activation patterns, and which
use temporal variables and constants.

Assuming this framework, our enforcement algo-
rithm needs three inputs

e the history of the database

e the update operation for which constraint viola-
tions have to be prevented

e the set of dynamic consistency constraints that
have to be enforced for the particular database

Our enforcement algorithm takes the above inputs
and derives the set of constraints — that has to be
checked for the particular update operation in order
to guarantee the consistency of the database.

However, before we describe our enforcement al-
gorithm, it is necessary to introduce our constraint
specification language, which is the subject of the re-
mainder of the section. Due to the lack of space we
will only describe a simplified version of our constraint
language.

In this paper, we assume that only the following
three operations can be used to manipulate databases:
assert/2, retract/2, and query/2, where P/n is the in-
formal notation commonly used in the logic program-
ming area to express that the predicate P has arity n.

In general, activation patterns are represented as pred-
icates in our constraint language. The first argument
of these predicates is a generic tuple (i.e. an expres-
sion that looks like a tuple except for the fact that it
can contain variables), whereas its second argument is
is a time tag. Moreover, pre-interpreted symbols (such
as < or =) are supported in our constraint language.

In the following, we will illustrate our constraint
specification language by discussing seven example
constraints, six of which are dynamic. In the next
section, we will use these examples to illustrate and
explain our constraint enforcement algorithm.

The predicate assert/2 makes it possible to ex-
press constraints concerning the insertion of individ-
ual tuples into the database. Its general pattern is
assert (<tuple>,<time>). The assert-predicate evalu-
ates to true if the tuple <tuple> is/was inserted into
the database state that corresponds to the time tag
<time>.

Let us illustrate how the assert-predicate works us-
ing several examples:

1. ”The tuple a(b,c,d) can be asserted in the DB
only at time 44580784”

Vi(assert(a(b,c,d),t) = t = 44580784)

2. 7A tuple having a pattern such as a(b,X,d),
where any value can be replaced for the variable X,
can be asserted in a state having an even time tag”

VIVX (assert(a(b, X,d),t) = (t mod 2) = 0)

3. 7A tuple of the form a(b,X)Y), where X and Y
are variables, can be only asserted in the database if a
tuple of the form e(f,Y,Z) has been inserted earlier to
the database.”

VIVYVX (assert(a(b, X,Y),t) = Ity <t A
AZassert(e(f,Y, 7),11)))

The syntax and behavior of retract/2 are similar to
assert/2. The only difference is that it deals with the
deletion tuples. Its pattern is

retract (<tuple>,<time>)
and it evaluates to true, when <tuple> was/is deleted
from the database state that carries the time tag
<time>. Consider the following examples:

4. ”Once asserted, the tuple a(b,c,d) can never be
removed”

Vi(~ retract(a(b, c,d),t))

Note that (4) only requests that the tuple a(b,c,d) is
not deleted from the database using a retract com-
mand. However, it does not disallow any other
changes; e.g. it could modified or manipulated by
other operations.

5. 7 A tuple can be removed from the database only
if 1t has previously been inserted into 1t”

VXYt(retract(X,t) = Fti(assert(X,t1) Aty < t))

The application of assert/2 and retract/2 results in
a new state in the history of the database. Further-
more, we assume for the rest of the paper that if an
assert/2 or retract/2 operation is applied to a database
at time t, their changes become visible in the newly
generated state, which is tagged by ¢ + 1.

The predicate query/2 allows us to formulate
queries with respect to the relational database. It has
the form

query (<tuple>,<time>)

and evaluates to true, if the state of the database at
time <time> contains <tuple>; otherwise, it evaluates
to false. Query/2 allows us to refer to the history of a
database, e.g. our constraint ”salaries never decrease”
could be written as follows:

VE1Vt2YpVs1Vs2((query(salary(p, s1),t1) A
(query(salary(p, s2),t2) A 11 <12) = sl < s2)

It should be noted that the assert-predicate is only
true when the particular tuple was inserted at the
particular point of time. Furthermore, we assume
that if an update 1s performed at time t, it becomes
visible at time t+1. That is, if we assume that a
tuple p has not been in the database before, and
was asserted at time t, and was not retracted at
time t+1, assert(p,t), query(p,t+1), query(p,t+2)
are true, and assert (p,t+1), query(p,t) are false.

The following example (6) expresses a static con-
straint in this way, and example (7) illustrates how
query/2 and the previous predicates can cooperate to
define new dynamic integrity constraints.

6. 7 At any time, there must be a unique tuple of
the form a(b,c,X) in the database, where any value
can be substituted for the variable X”

ViV (query(a(b, ¢, V), 1) A
VXYY (query(a(b,e, X),t) A query(a(b,e,Y),t) =
X =v))

7. 7 A tuple of the form a(b,X,d) can be asserted in
the database only if it is not already in it and some
tuple of the form e(Y,X) is already contained in it”

VIVX (assert(a(b, X,d),t) = ~ query(a(b, X,d),t) A
Y query(e(Y, X), 1))

Note that the execution of a query/2 command does
not change the state of a database. Therefore, query/2
does not affect the history of a database.

What has been done in this section is to define infor-
mally a language for expressing dynamic constraints.

However, before we represent our enforcement algo-
rithm, 1t is necessary to explain the semantics and the
processing of constraints in more detail. As mentioned
earlier, the language formalism that underlies our con-
straint language is first order logic. The connectives
and quantifiers are the usual ones. However, due to
reasons given later, we assume that it is possible to
recognize and distinguish references to temporal vari-
ables and constants syntactically from references to tu-
ples, and activation patterns, which are assert, retract,
and query. Furthermore, in our language we assume
that all predicate symbols are interpreted. They have
their meaning hard-wired into the language. Predicate
symbols include activation patterns, such as assert, as
well comparison operators, such as <.

Moreover, our constraint language allows for inter-
preted as well as for uninterpreted function symbols
in constraints. However, interpreted function symbols
(such as +, mod, etc) are not allowed inside activa-
tion patterns. This restriction derives from the opera-
tional aspects of the theorem proving techniques that
underly our approach. This restriction is made in or-
der to avoid underspecified expressions involving unin-
terpreted operators when simplifying the constraints.
This is, in general, a difficult task that only recently
received some attention by scientists, most notably in
the context of logic and constraint programming; for
example, in the CLP language described in [4]. On
the other hand uninterpreted function symbols can be
used freely in our language. For example, the argu-
ments of assert/2, retract/2, and query/2 are not in-
terpreted, as we have already mentioned above.

Finally, the kind of logic to be used for consistency
enforcement deserves some discussion. So far, a single-
sorted (i.e., pure) first order logic has been implicitly
assumed. However, we feel that a typed (or multi-
sorted) logic (see for example [7]) is more adequate
for consistency enforcement — we believe that typed
frameworks are more suitable for specifying and en-
forcing constraints that apply for a particular set of
objects. However, for the sake of simplicity, we will
continue our discussions assuming that a single-sorted
logic is used for implementing our enforcement tool,
which is the focus of the next section.

3 The Enforcement Algorithm

In the previous section, first order predicate calcu-
lus has been extended to permit a direct expression of
dynamic integrity constraints (namely, we allow ref-
erences to activation patterns and temporal variables
and constants).

Our constraint enforcement algorithm computes the
set of constraints that have to be checked for a given
update operation out of a set of dynamic constraints.
This computation is done in three steps:

1. Select the dynamic integrity constraints that po-
tentially are affected by the update.

2. Simplify them as much as possible.

3. Remove those constraints from the set received
in step (2) that are elementary or which refer to
events in the future. The remaining constraints
are the output of the algorithm — the set of con-
straints that need to be checked for the particular
update operation.

It should be mentioned that due to space limitation
we will describe the algorithm informally in this paper.
More specifically, we will use the example (1) through
(7), which have been redisplayed below, to explain the
different phases of the algorithm.

1. Yt(assert(a(b,c,d),t) = t = 44580784)
2. VitV X (assert(a(b, X, d),t) = (t mod 2) = 0)

3. VIYYVX(assert(a(b, X,Y),1) = Ft1(t1 <t A
AZassert(e(f,Y, 7),11)))

4.Vt ~ retract(a(b, c,d),)

5. VXVi(retract(X,t) = Fi(assert(X,t1) Aty < 1))
6. ViV (query(a(b, ¢, V), 1) A
VXYY (query(a(b,e, X),t) A query(a(b,e,Y),t) =
X =Y))

7. ViV X (assert(a(b, X, d),t) =
~ query(a(b, X,d),t) A Y query(e(Y, X),1))

We assume that the database i1s currently consis-
tent, that it only contains two tuples a(b,c,e) and
e(c,c), and that its current time tag is 14905. Now
we assume that this database is updated by asserting

the tuple a(b,c,d) which is represented in our temporal
framework as follows:

assert(a(b,c,d),14905)

We will demonstrate in the following how our en-
forcement algorithm copes with this insertion. The
first step, preselects those dynamic integrity con-
straints that are potentially violated by the update.
This is done by matching the update operation against
the constraints — if the two do not unify it is impos-
sible to violate a constraint, because it does not apply
in the context of the particular update operation. Be-
cause of the syntactical restrictions we 1impose on our
constraint specification language, the classical unifi-
cation algorithm is powerful enough to perform this

task. If the update matches the constraint in at least
one part the match is represented as a substitution
for the variables that occur in the integrity constraint.
This substitution is important, because 1t specifies the
context in which the particular constraint can be vi-
olated by the update. Also note that if there are two
occurrences of an atom in the same formula that match
the update, then that formula is selected twice — two
constraints potentially have to be checked for the up-
date.
Consequently, all constraints are matched against

assert(a(b,c,d),14905)
with the exeception of (6) that is static and will not
be treated by our algorithms, but rather by Nicolas’
algorithm for static constraints.

Constraints (1), (2), (3), (5), and (7) match the
above call successfully with the bindings indicated be-
low. On the other hand, the match failed for the con-
straint (4); therefore, no substitution is given for it
below.

1. Yt(assert(a(b,e,d),t) = t = 44580784) o, =
{t/14905}

2. Vt¥X (assert(a(b, X,d),t) = (t mod 2) = 0) o9
= {X/c,t/14905}

3. VIVYVX (assert(a(b, X,Y),t) = Ft1(t1 < ¢ A
AZassert(e(f,Y, 7),11))) o3 = {X/c,Y/d,t/14905}

4. Vt ~ retract(a(b, c,d),)

5. VXVt(retract(X,t) = Fti(assert(X, 1) Aty <
1)) o5 = {X/a(b,c,d),t1/14905}

7. ViV X (assert(a(b, X, d),t)
~ query(a(b, X, d),t) A FYquery(e(Y,X), 1)) o7
{X/c,t/14905}

The second step of the enforcement procedure con-
sists of simplifying the constraints that have been re-
ceived in step (1). This is done by instantiating each
selected constraint by applying the substitution found
in the previous step. The obtained formula is then
simplified as much as possible by means of the ele-
mentary rules of logic and arithmetic, and by using
rules that underly the semantics of our operators as-
sert/2, query/2, etc. For our example, we obtain the
results listed below, in which T and F represent the
truth values true and false, respectively:

1. assert(a(b, c,d),14905) = 14905 = 44580784)
T=F
F

2. assert(a(b,c,d), 14905) = (14905 mod 2) = 0
T=F
F

3. assert(a(b,c,d), 14905) = Ft1(t1 < 14905A

Ny

AZassert(e(f,Y, 7),11))
T = 3t1(t; < 14905 A IZassert(e(f,Y, 7),11))
Jt1(t; < 14905 A IZassert(e(f,d, 7),11))

5. Yi(retract(a(b,c,d),t) =
assert(a(b, ¢, d),14905) A 14905 < 1)
Vi(retract(a(b, e, d),t) = T A 14905 < t)
Vi(retract(a(b, ¢, d), t) = 14905 < t)

7. assert(a(b,c,d),14905) =

~ query(a(b, ¢, d), 14905) A IY query(e(Y, ¢), 14905)
T=TAT

T

The query/2 statements have been simplified in the
above by querying the database (remember that the
current state of our example database only contains
the tuples a(b,c,e) and e(c,c), but not a(b,c,d) which
will be included in the next state of the database cor-
responding to the time tag 14906).

The described simplification algorithm can lead to
three results. If at least one constraint has been falsi-
fied, then an inconsistency has been found. Therefore,
no further step is needed, and the update is rejected.
If all the constraints are reduced to T, then the up-
date cannot violate any consistency constraints, be-
cause none of the constraints applies for the particu-
lar update. No constraints need to be checked for the
particular update, and step (3) can be skipped.

In all the other cases, the procedure must go on with
step (3), which decides which constraints have to be
checked for the particular update. In order to be able
to proceed with step (3) without changing the exam-
ple, we assume that constraints (1) and (2) have been
dropped by the system administrator. Taking this into
consideration, constraints derived from the three con-
straints (3), (5), and (7), are still in contention.

Constraint (3) was simplified to become:
3. Ay (t < 14905 A FZassert(e(f,d, 7),11))

The above constraint refers to the past of the database,
and has to be checked by querying the history of the
database: if a tuple that matches e(f,d,?) has not
been inserted at some time in the past, the constraint
i1s violated, and the insertion of a(b,c,d) has to be
rejected.

Constraint (5) has been simplified to:

5. Vi(retract(a(b, e, d),t) = 14905 < t)

Constraint (5°) expresses that the retraction of the tu-
ple a(b,c,d) is allowed in any state having a time label
greater than 14905. This constraint cannot be vio-
lated at the current point of time, since it refers to
states in the future. However, this does not exclude
the constraint from becoming violated in the future.

Finally, constraint (7) evaluates to T, which means
that this constraint need not be checked for the par-
ticular update. In summary, for the particular update
only a single constraint ((3’)) has to be checked.

So far our algorithm looks quite similar to the one
proposed by Nicolas [10] for static constraints. The
remainder of this section will focus on complications
that arise in our enforcement algorithm due to the
special nature of temporal constraints and activation
patterns. Due to the lack of space we will discuss these
complications informally.

The first complication arises from interactions
between the query-predicate and the assert- and
retract-predicate, which make 1t necessary to mod-
ify our unification algorithm. For example, if T
1s a temporal variable (assert(a(b,c,d),12)) uni-
fies (query(a(b,c,d),T) by binding T to 13 (re-
member that a(b,c,d) is visible in the next state
which is 13); similarly, retract(a(b,c,d),12) unifies
(~query(a(b,c,d),T) with T being bound to 13. In
general, the unification algorithm used in step (1)
that decides if a constraint can potentially be vio-
lated has to take some special cases into consideration
that do not occur in the classical unification algorithm
— namely, retract and assert operations unify query-
operations as outlined above. For example, if we have
a constraint

8. Vt (query(p,t) = t < 450)

and p is asserted at time 550, our generalized uni-
fication algorithm would unify assert(p,550) with
query(p,t) obtaining the simplified constraint 551 <
450 which evaluates to F; consequently, the update
would be rejected. Similarly, for the constraint (8’)
given below

8. ¥Vt (~ query(p,t) = ¢ < 450)

the retraction of p at time 450 (or later) would be
rejected by our enforcement algorithm — as stated in
(8’) p should not become false after time 449.

The second complication arises from the fact that
dynamic constraints can be violated implicitly as time
passes by. Consider again constraint (8’), and let us
assume that p is initially false and has never been as-
serted or retracted during the history of the database.
The algorithm presented so far, will consider (8’) irrel-
evant for any update operation that was performed on
our example database and will not check the constraint
— note that p never has been retracted. When time
450 is reached, the above constraint becomes violated.

To avoid these problems, it becomes necessary to
consider constraints that have form

Vi (. Aquery(p,t) A o = L)

Vi (A~ query(p,t) A o = L)

to be relevant for any update, and to simplify the
above constraint by substituting the current time for
the all-quantified temporal variable. Note that the
constraint (8’) can now be evaluated for time 450.
Consequently, query-, assert-, and retract-predicates
that contain all-quantified temporal variables have to
be evaluated for the current point of time, possibly
detecting violations of constraints that originally re-
ferred to the future.

For example, if r (which is different from p) is as-
serted at time 450, our enforcement algorithms de-
rives the following simplified constraint (8”) from (8’),
which has to be checked in the database:

8. ~ query(p,450) = 450 < 450
8”. query(p,450)

In the case that a constraint involves multiple all-
quantified temporal variables, all possible substitu-
tions of the current time for each of the all quantified
variables have to be considered by the enforcement al-
gorithm. For example, assume a constraint

Vi1 ViaVis P(tl, ta, t3)
in which #,%s,t3 are temporal variables and P 1s an
arbitrary formula with free variables ¢1, 2,3 is given,
and it is relevant at the current point of time 450; then
the following constraints have to be processed in step
(2) by the algorithm:

ViaVtz P (450, 12,13)

Vi, Vs P(t1,450,t3)

Vi1 Vo P(t1,12,450)

Vi1 P(t1,450,450)

Vi3 P(450,t2,450)

Vi3 P (450,450, t3)

P(450,450,450)

In general, things become quite complicated when
multiple temporal variables are involved in a con-
straint.

There are various ways the previously discussed al-
gorithm can be applied in practice. One way is to
use a system that directly applies the algorithm and
enforces constraints at run-time. Another approach
would be to use a precompiler that augments applica-
tion programs by code that enforces consistency con-
straints. If the application program contains code that
asserts a(b,c,d), then the precompiler would add code
that enforces the simplified constraint (3’) to the ap-
plication program, but not any code that enforces any
other dynamic constraints. This property is very im-
portant for the efficiency of any automatic constraint
enforcement algorithm: only those constraints should
be checked that potentially can be violated by a partic-
ular update; otherwise, the enforcement system would

be highly inefficient. For example, it is a waste of time
to check the uniqueness of social security numbers in
the case that a social security number is deleted — it
1s impossible to violate this constraint by a deletion.

4 Conclusions

The paper focused on the automatic enforcement of
dynamic consistency constraints. A logical formalism
for the specification of dynamic constraints has been
presented that extends first order predicate logic by
a temporal dimension and by the availability to refer
to operations that perform changes. Nicolas’ classical
enforcement algorithm for the enforcement of static
consistency constraints [10] has been extended to cope
with dynamic constraints. It should also be mentioned
that we implemented our algorithm in a PROLOG en-
vironment.

Our current research focuses on the validation of
the presented algorithm, and on its integration into
a knowledge base management that supports tempo-
ral queries. Due to the novelty of this research there
are many other questions that deserve further explo-
ration. How does one cope with constraints that refer
to events in the future and what should be their role in
a database management system — we gave an example
of this problem in the paper (constraint (5°)). Which
subclasses of dynamic constraints can be enforced by
conventional database management systems that only
store the current state? For example, ”salaries do not
decrease” is a constraint that can be enforced with-
out having to refer to the history of the database, as
discussed in the paper. Is it possible to recognize this
important subclass of dynamic constraints syntacti-
cally?

References

[1] Eick C.F., Werstein P.: "Rule-Based Consistency
Enforcement for Knowledge-Based Systems”, ac-
cepted for publication in IEEE Transactions on
Knowledge and Data Engineering, to appear end

of 1992.

[2] Eick C.F.: ”Activation Pattern Controlled Rules:
Towards the Integration of Data-Driven and
Command-Driven Programming”, Journal of Ap-
plied Intelligence, vol. 2, 1992, pp. 75-91.

[3] Gehani N.; Jagadish H. V.: ”ODE as an Active

Database: Constraints and Triggers, in Proc. Int.

Conf. on Very Large Databases, Barcelona, 1991,
pp. 327-336.

[4] Jaffar J., Lassez J.L.: ”Constraint Logic Program-
ming” in Proc. 14th POPL-Conference, Munich,
1987, pp. 111-119.

[6] Kobayashi I.: ”Validating Database Updates”, In-
formation Systems 9 (1), 1984, pp. 1-17.

[6] Kowalski R., Sadri F., Soper P.: ”Integrity Check-
ing in Deductive Databases”, in Proc. VLDB
Conf., Brighton, 1987, pp. 61-69.

[7] Lloyd J.W.: ” Foundations of Logic Programming”,
Springer Verlag, Second Edition, 1987.

[8] McCarthy D.R., Dayal U.: ” The Architecture of an
Active Database System”, in Proc. ACM SIGMOD
Conf. on Management of Data, Portland, 1989, pp.
215-224.

[9] Navathe S.B., Ahmed R.: ”A Temporal Relational
Model and a Query Language”, Information Sci-

ences 49, 1989, pp. 147-175.

[10] Nicolas J.-M.: ”Logic for Improving Integrity
Checking in Relational Databases”, Acta Infor-
matica 18, 1982, pp. 227-253.

[11] Olive A.: Integrity Constraint Checking in De-
ductive Databases”, in Proc. VLDB-Conference,
Barcelona, 1991, pp. 513-524.

[12] Stonebraker M., Hansen H., Potomianos S.: ” The
POSTGRES Rule Manager”, IEEE Transactions
on Software Engineering, vol. 14, no. 7, 1988, pp.
897-907.

[13] Su S., Chen H.: ”A Temporal Knowledge
Representation Model OSAM*/T and its Query
Language QQL/T”, in Proc. VLDB-Conference,
Barcelona, 1991, pp. 431-442.

[14] Widom J., Ceri S.: ”Deriving Production Rules
for Constraint Maintenance”, in Proc. VLDB-

Conference, Brisbane, 1990, pp. 566-577.

