

The Complexity of Model Checking in Modal Event Calculi

Iliano Cervesato

Department of Computer Science, Carnegie Mellon University
5000 Forbes Avenue – Pittsburgh, PA 15213, USA
E-mail: iliano@cs.cmu.edu

Massimo Franceschet and Angelo Montanari

Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze, 206 – 33100 Udine, Italy
E-mail: tfranceschet@uniud.it; montana@dimi.uniud.it

Kowalski and Sergot's *Event Calculus (EC)* is a simple temporal formalism designed to model situations characterized by a set of *events* whose occurrences have the effect of starting or terminating the validity of determined *properties*. *EC* is able to determine the *maximal validity intervals (MVIIs)* over which a property holds uninterruptedly. The algorithm *EC* relies on for the verification of MVIIs (a model checking problem) is polynomial. It can advantageously be implemented as a logic program.

In situations consisting of a fixed set of event occurrences but incomplete information about their relative order, the *Modal Event Calculus (MEC)* extends *EC* with the possibility of inquiring in polynomial time about intervals which will remain MVIIs no matter what new ordering information is acquired (\square -MVIIs) and intervals that are MVIIs in some completion of the current event ordering (\diamond -MVIIs). The *Generalized Modal Event Calculus (GMEC)* enhances the expressive power of *MEC* by supporting a free mixing of boolean connectives and modalities, but at the cost of intractability.

ECMEC and *ICMEC* are intermediate calculi between *MEC* and *GMEC*. The former allows only combining computations of MVIIs, \square -MVIIs and \diamond -MVIIs by means of boolean connectives. Dually, the latter only permits boolean combinations of MVI computations to be prefixed by either \square or \diamond . These calculi are strictly more expressive than *MEC*, but, while model checking in *ECMEC* is still polynomial, it is NP-hard in *ICMEC*.

The following table summarizes the cost of model checking in these calculi as a function of the number of events and the number of atomic formulas:

Calculus	<i>EC</i>	<i>MEC</i>	<i>ECMEC</i>	<i>ICMEC</i>	<i>GMEC</i>
Parameters	n events	n events	n events k atomic formulas	n events k atomic formulas	n events k atomic formulas
Model checking	$O(n^3)$	$O(n^3)$	$O(kn^3)$	NP-hard	NP-hard