
J. LOGIC PROGRAMMING 1994:19, 20:1–679 1

A GENERAL MODAL FRAMEWORK FOR

THE EVENT CALCULUS AND ITS

SKEPTICAL AND CREDULOUS VARIANTS

ILIANO CERVESATO AND ANGELO MONTANARI

⊲ We propose a general and uniform modal framework for the Event Cal-
culus (EC) and its skeptical and credulous variants. The resulting tem-
poral formalism, called the Generalized Modal Event Calculus (GMEC),
extends considerably the expressive power of EC when information about
the ordering of events is incomplete. It provides means of inquiring about
the evolution of the maximal validity intervals of properties relative to all
possible refinements of the ordering data by allowing a free mix of proposi-
tional connectives and modal operators. We first give a semantic definition
of GMEC and relate it to known systems of modal logic; then, we pro-
pose a declarative encoding of GMEC in the language of hereditary Harrop
formulas and prove the soundness and completeness of the resulting logic
programs. ⊳

This web of times — the strands of which approach to one another, bi-
furcate, intersect or ignore each other through the centuries — embraces
every possibility. We do not exist in most of them. In some you exist
and not I, while in others I do, and you do not, and in yet others both of
us exist. In this one, in which chance has favored me, you have come to
my gate. In another, you, crossing the garden, have found me dead. In
yet another, I say these very same words, but am an error, a phantom.

— The Garden of the Forking Paths, Jorge Luis Borges
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1. INTRODUCTION

This paper proposes a general and uniform modal framework for Kowalski and
Sergot’s Event Calculus (EC) [20] and its skeptical and credulous variants [2, 5, 10].
Given a set of event occurrences, EC allows one to derive maximal validity intervals
(MVIs hereafter) over which properties initiated or terminated by those events hold.
As new events or additional ordering information about known events are recorded,
EC updates accordingly the set of MVIs. Most approaches based on EC assume the
occurrence time of each event to be known; here, we explore the case of partially
ordered events devoid of an explicit occurrence time. In such a situation, EC is
neither able to determine the set of MVIs that can be derived in at least one
refinement of the given partial ordering (possible MVIs) nor to establish which
of the currently derivable MVIs are also derivable in all refinements of the given
ordering (necessary MVIs) and which of them are derivable in some, but not all,
refinements (defeasible MVIs).

The problem of computing which facts must be or may possibly be true over
certain time intervals in presence of partially ordered events has been already ad-
dressed in the literature, e.g. [2, 5, 10, 11, 12, 25, 30]. In particular, complexity
issues have been addressed in [11], while case studies in the domains of diagnosis
and planning have been analyzed in [10] and [25], respectively.

With regard to the problem of reasoning about partially ordered events in EC,
two variants of the basic calculus, called Skeptical EC (SKEC) and Credulous EC
(CREC), have been proposed in [5] and [10]. These variants respectively compute
the necessarily true MVIs and the possibly true MVIs in the restricted setting where
the occurrence of events is not subject to preconditions. SKEC and CREC can be
given a polynomial implementation, that can be further enhanced by exploiting
transitive reduction graph processing techniques, as shown in [8]. In [2], Cervesato
et al. defined a uniform modal interpretation for EC, SKEC and CREC, called the
Modal Event Calculus (MEC). MEC deals with atomic formulas (MVIs computed
by EC) as well as simply moded atomic formulas, i.e. atomic formulas prefixed by
only one modality (MVIs computed by SKEC and CREC). It is provided with a
sound and complete axiomatic formulation in a logic programming framework.

In this paper, we define a Generalized Modal Event Calculus (GMEC) that ex-
tends MEC by allowing a free mix of propositional connectives and modal operators.
Such a capability is useful in order to deal with real-world applications, as pointed
out in [10]. Perhaps more important than the resulting calculus itself is the method
we adopt to achieve it. We initially capture the intuitions underlying GMEC by
giving a semantic formulation of EC and extending it to a modal interpretation
that takes into account all possible refinements of the ordering data. Then, we pro-
vide a sound and complete axiomatization of GMEC in the language of hereditary
Harrop formulas and rely on a proof-theoretic approach for proving the faithfulness
of our implementations with respect to the behavior of GMEC, as expressed by the
semantics.

We believe that our approach contributes to the conceptual understanding of EC,
an important but not yet fully understood formalism for reasoning about events
and their effects. Moreover, the proposed method can be exploited to increase the
confidence in alternative axiomatizations of EC by proving them sound and com-
plete with respect to the corresponding semantics via syntactic (proof-theoretic)
methods. Finally, it seems suited to act as a general framework for studying sig-
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nificant extensions of EC (e.g., GMEC). We expect this approach to be applicable
to related formalisms as well (e.g., McCarthy and Hayes’ Situation Calculus [22]).

The paper is organized as follows. In Section 2, we first introduce the basic con-
cepts underlying the Event Calculus; then we recall some basic definitions about
orderings and tailor them to the needs of the subsequent discussion; finally, we
formally define GMEC and present its fundamental properties. In Section 3, we
summarize the definition and operational semantics of hereditary Harrop formu-
las and use this language to give two sound and complete encodings of GMEC.
The conclusions provide an assessment of the work done and discuss future devel-
opments. For the sake of readability, we have collected the proofs of the results
presented in Section 3 in Appendix A.

2. THE GENERALIZED MODAL EVENT CALCULUS

In this section, we formally define the Generalized Modal Event Calculus (GMEC).
We consider the case in which the set of event occurrences has been fixed once and
for all, and only partial information about their relative ordering is given. In such a
situation, the update process may only consist in the addition of further information
about the relative ordering of event pairs. Furthermore, we assume that events do
not happen simultaneously and that the available ordering information is always
consistent.

The section is organized as follows. We first give an intuitive account of the basic
concepts underlying EC and recall some notions about ordering relations. Then, we
provide EC with a semantic interpretation that, given the current partial ordering
of events, validates precisely the MVIs computed by EC. By considering all possible
refinements of the current ordering, with the associated reachability relation, this
model is naturally lifted to a modal interpretation. The corresponding extension
of EC with propositional connectives and modalities substantially augments the
expressive power of the calculus. Next, we formally state a number of properties of
the proposed formalization that will be later exploited to increase the efficiency of
a first naive implementation of GMEC.

2.1. An Informal Account of the Event Calculus

This section is devoted to providing a description of the basic features of the Event
Calculus at an introductory level. In order to make the presentation more intuitive,
we rely on an example describing the operations of a simple beverage dispenser.
We will use this example again in Section 2.4 to illustrate the benefits of adding
modal operators to the basic EC.

The structure of the beverage dispenser is depicted in Figure 2.1. It can output
either apple juice or orange juice (but not both simultaneously). The choice is
made by means of a selector with three positions (apple, orange and stop): by
setting the selector to the apple or to the orange position, apple juice or orange
juice is obtained, respectively; choosing the stop position terminates the production
of juice.

EC proposes a general approach to representing and reasoning about events and
their effects in a logic programming framework. It defines a model of change in
which event occurrences initiate and/or terminate time-intervals over which some
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Apple    STOP   Orange

FIGURE 2.1. A Beverage Dispenser

property holds. In our example, we distinguish three types of events corresponding
to the various settings of the selector and two relevant properties, supplyApple and
supplyOrange, indicating that apple juice or orange juice is being dispensed, re-
spectively. The event of setting the selector to the apple (orange) position initiates
the property supplyApple (supplyOrange), while setting it to the stop position
terminates both properties. The properties supplyApple and supplyOrange are
exclusive since apple juice and orange juice cannot be output simultaneously. This
intuitive description will be formalized in Section 2.4.

Given a domain description in terms of events, properties and initiate, terminate,
or exclusive relations, EC computes the maximal validity intervals (MVIs) over
which properties hold uninterruptedly. To this end, it relies on a notion of default
persistence according to which properties are assumed to persist until an event
that interrupts them occurs. For the sake of simplicity, we will restrict ourselves
to finite MVIs. The generalization to MVIs whose validity extends infinitely in
either direction is, however, straightforward. Mechanisms for dealing with both
persistence in the future (properties that hold forever from the occurrence time
of a given initiating event) and persistence in the past (properties that hold from
the beginning of time up to the occurrence time of a given terminating event) are
described in [7].

We illustrate the basic computational mechanism of EC by means of four situa-
tions relative to the beverage dispenser example.

• Consider a scenario consisting of a pair of events ea and e′′s that respectively
set the selector to the apple position and reset it to the stop position. As-
suming that ea precedes e′′s , EC computes the interval (ea, e

′′
s ) as an MVI

for the property supplyApple.

• Enrich the previous situation by adding a stop event e′s occurring between
ea and e′′s . The interval (ea, e

′′
s ) is not an MVI for supplyApple anymore,

since it is interrupted by the occurrence of e′s. The two stop events, indeed,
must necessarily be interleaved by (at least) one event that sets the selector
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either to the apple or to the orange position. Nevertheless, it may happen
that incomplete knowledge about the set of event occurrences or about their
temporal ordering makes it impossible to detect such an event. In this
scenario, EC derives (ea, e

′
s) as an MVI for supplyApple, while the dangling

event e′′s does not terminate any MVI.

• Alternatively, modify the first scenario by inserting an event eo between ea
and e′′s that sets the selector on the orange position. This invalidates the
MVI (ea, e

′′
s ) since supplyApple and supplyOrange cannot consistently hold

over the same subinterval. Indeed to move from a state in which the selector
is on the apple position to a state in which it is on orange, we must go
through the stop position (that has not been recorded as an event — EC
naturally supports incomplete specifications). In this situation, EC derives
(eo, e

′′
s ) as an MVI for supplyOrange, while the dangling event ea does not

initiate any MVI.

• Finally, suppose to add both e′s and eo between ea and e′′s , with e
′
s preceding

eo. As above, we cannot keep (ea, e
′′
s ) as an MVI for supplyApple since it is

interrupted by both e′s and eo. EC instead computes two MVIs: (ea, e
′
s) for

the property supplyApple and (eo, e
′′
s ) for supplyOrange.

As a general rule, an event e interrupts the validity of a property p if it initiates
or terminates p itself or a property q which is incompatible with p. This rule
adopts the so-called strong interpretation of the initiate and terminate relations,
which has been discussed in detail in [29, 7, 9]: given a pair of events ei and et,
with ei occurring before et, that respectively initiate and terminate a property p, we
conclude that p does not hold over (ei, et) if an event e which initiates or terminates
p, or a property incompatible with p, occurs during this interval, that is, (ei, et) is a
candidate MVI for p, but e forces us to reject it. The strong interpretation is needed
when dealing with incomplete sequences of events or, as in our case, incomplete
information about their ordering. For example, consider a switch that can take two
different positions (on and off ). Its behavior can be described by means of two types
of event: one that changes the position from off to on (turn-on), the other from on

to off (turn-off ). While two turn-on events cannot occur consecutively in the real
world, it may happen that an incomplete sequence consisting of two consecutive
turn-on events, followed by a turn-off event, is recorded in the database. The strong
interpretation of the initiate relation allows EC to recognize that a missing turn-off

event must have occurred between the two turn-on events. However, since it is not
possible to temporally locate such an event, EC only concludes that the switch is
on between the second turn-on event and the turn-off event, and it considers the
first turn-on event as a pending initiating event.

An alternative interpretation of the initiate and terminate relations, called weak
interpretation [7, 9], is also possible. According to such an interpretation, a property
p is initiated by an initiating event unless it has been already initiated and not
yet terminated (and dually for terminating events). The weak interpretation is
needed to aggregate homogeneous states1. Consider, for instance, the problem of

1The operation of aggregation of homogeneous states is very similar to the operation of coalesce
exploited in temporal databases to replace two or more value-equivalent tuples with consecutive
or overlapping time-stamps by a single, value-equivalent tuple with an interval-valued time-stamp
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monitoring patients who receive a partial mechanical respiratory assistance. It
often happens that data acquired with two consecutive examinations do not cause
any transition in the classification of the patient ventilatory state. Adopting the
weak interpretation, the second data acquisition does not clip the MVI of patient
state initiated by the first one. A detailed report on the application of EC to
the management of mechanical ventilation, that describes in detail the effects of
adopting such a weak interpretation of relations, can be found in [6].

The distinction between strong and weak interpretation of the initiate and ter-
minate relations can be precisely stated as follows: we derive an MVI for a property
p whenever there exist a sequence of one or more events ei,1, . . . , ei,h that initiate
p, followed by a sequence of one or more events et,1, . . . , et,k that terminate p, and
there exists no event that initiate or terminate a property q, incompatible with p,
in between (that is, that occurs between ei,1 and et,k). If we adopt a strong inter-
pretation of both initiate and terminate relations, the MVI for p is (ei,h, et,1); if
we adopt a weak interpretation of initiate and a strong interpretation of terminate
(this is the case in most medical applications), the MVI for p is (ei,1, et,1); finally, if
we adopt a weak interpretation of both initiate and terminate relations (rare, but
not impossible), the MVI for p is (ei,1, et,k).

In the remainder of the paper, we will adopt the strong interpretation of the
initiate and terminate relations, since it is more suited to modeling incompletely
specified situations. However, we expect our results to apply also relative to the
weak interpretation.

2.2. Ordering Relations

In the following, we will rely upon different notions of ordering and ordered set. For
reason of efficiency, ordering information is usually represented as a binary acyclic
relation on the set of events, that is, as an ordering relation possibly missing some
transitive links. However, this information is used in EC as a (strict) partial order
which can be recovered as the transitive closure of the given binary acyclic relation.
Furthermore, the structure representing the effects of various possible updates to
the information about event ordering constitutes a reflexive partial order.

Definition 2.1. (DAGs, strictly ordered sets, non-strictly ordered sets)

Let E be a set and R a binary relation on E. R is called a (strict) partial
order if it is irreflexive and transitive (and, thus, asymmetric) and a reflexive
partial order if it is reflexive, antisymmetric, and transitive. The pair (E,R) is
called a directed acyclic graph (DAG) if R is a binary acyclic relation; a strictly
ordered set if R is a partial order; a non-strictly ordered set if R is a reflexive
partial order.

We denote the sets of all binary acyclic relations and of all partial orders on E
as OE and WE , respectively. It is easy to show that, for any set E, WE ⊆ OE

(actually, WE ⊂ OE if E has at least three elements). We will use the letters o
and w possibly subscripted to denote binary acyclic relations and partial orders,
respectively.

[19].
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We indicate the transitive closure of a relation R as R+. Clearly, if (E, o) is a
directed acyclic graph, then (E, o+), is a strictly ordered set. Two binary acyclic
relations o1, o2 ∈ OE are equally informative if o+1 = o+2 . This induces an equiva-
lence relation ∼ on OE . It is easy to prove that, for any set E, OE/∼ and WE are
isomorphic. In the following, we will often identify a binary acyclic relation o with
the corresponding element o+ of WE .

The set 2E×E of all binary relations on E naturally becomes a non-strictly
ordered set when considered together with the usual subset relation ⊆. Moreover,
(2E×E ,∪,∩, , E × E,Ø) is a boolean lattice. Since WE is a subset of 2E×E , the
restriction of ⊆ to this set still forms a reflexive partial order. Indeed, we have that,
for any set E, (WE ,⊆) is a non-strictly ordered set. It can be easily proved that
(WE ,∩,Ø) forms a lower semi-lattice. Moreover, for any w1, w2 ∈WE , the relation
w1 ↑ w2 = (w1 ∪ w2)

+ is the least upper bound (lub) of w1 and w2 whenever this
element belongs to WE . Note that w1 ↑ w2 6∈ WE if w1 and w2 contain symmetric
pairs.

Given w in WE , any w
′ ∈WE such that w ⊆ w′ is called an extension of w. We

denote the set of all extensions of w as Ext(w). We have that for any w ∈ WE ,
if (e1, e2) ∈ w, then for all w′ ∈ Ext(w), (e1, e2) ∈ w′. For any w ∈ WE , Ext(w)
enjoys the same properties of WE . More precisely, (Ext(w),⊆) is a non-strictly
ordered set, (Ext(w),∩, w) is a lower semi-lattice, and ↑ characterizes the partial
operation of lub over this semi-lattice. Notice in particular that Ext(Ø) =WE .

Whenever E is a finite set, also WE is finite since it is a subset of 2E×E . More-
over, Ext(w) for w ∈ WE is finite as well. This property allows us to prove state-
ments by induction on the cardinality of Ext(w) for w ∈WE and E finite. We will
need this fact in the proofs of the results of Section 3.

We conclude the treatment of orderings by giving some definitions related to the
notion of interval. Let E be a set and w ∈ WE . A pair (e1, e2) ∈ w is called an
interval of w. Given two distinct intervals (e1, e2) and (e′1, e

′
2) over w, we say that

(e1, e2) is a subinterval of (e′1, e
′
2) (or (e′1, e

′
2) is a superinterval of (e1, e2)) with

respect to w if either e1 = e′1 or (e′1, e1) ∈ w and dually e2 = e′2 or (e2, e
′
2) ∈ w.

We write in this case (e1, e2) <w (e′1, e
′
2). We have that, for any ordering w ∈WE ,

(w,<w) is a strictly ordered set.

2.3. Formalization of GMEC

In order to formalize the Event Calculus and its modal variants, we first define the
notion of EC-structure that records the time-independent (factual) parameters of
an EC problem, i.e. the sets of relevant events and properties, the relations that
associate events to the properties they initiate and to the properties they terminate,
and the pairs of mutually incompatible properties.

Definition 2.2. (EC-structure)

A structure for the Event Calculus (or EC-structure) is a quintuple H =
(E, P, [·〉, 〈·], ]·,·[) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of events and proper-
ties, respectively.

• [·〉 : P → 2E and 〈·] : P → 2E are respectively the initiating and terminating
map of H. For every property p ∈ P , [p〉 and 〈p] represent the set of events
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that initiate and terminate p, respectively.

• ]·,·[⊆ P × P is an irreflexive and symmetric relation, called the exclusivity
relation, that models exclusivity among properties.

Any EC-structure is also a structure for the Generalized Modal Event Calculus
(hereafter GMEC-structure).

Notice that the above definition does not prevent that [p〉 ∩ 〈p] 6= ∅, for some
property p. We never needed to exploit this rather odd feature in any practical
application. Nonetheless, we keep the definition of EC in its most general form
since it does not hinder the development of this work.

Since we consider situations where events are ordered relative to one another, we
will represent an MVI for a property p as p(ei, et), where ei and et are the events that
initiate and terminate p, respectively. MVIs are thus intervals labeled by properties.
We will adopt the set of all property-labeled intervals as the language of EC. The
task performed by EC thus reduces to deciding which formulas are MVIs and which
are not. GMEC extends this language by allowing combinations of property-labeled
intervals by means of propositional connectives and modal operators. The language
for GMEC is defined as follows.

Definition 2.3. (GMEC-language)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure. The base language
of H (EC-language) is the set of propositional letters AH = {p(e1, e2) : p ∈
P and e1, e2 ∈ E}. The GMEC-language of H, denoted by LH, is the modal
language with propositional letters inAH and logical operators in {¬,∧,∨,2,3}.
We refer to the elements of AH and LH as atomic formulas and GMEC-formulas,
respectively.

Notice that, in spite of the structured notation we use for atomic formulas, LH is
a propositional language.

We call knowledge state a partial (consistent) specification of the events order-
ing. Standard implementations of EC represent knowledge states as binary acyclic
relations, and take their transitive closure in order to make inferences concerning
MVIs. Therefore, given a GMEC-structure H = (E, P, [·〉, 〈·], ]·,·[), we interpret
atomic formulas relative to the set WE (denoted WH in this context) of partial
orders among events in E. Given a current state of knowledge w, the semantics of
EC is defined by the (propositional) valuation υwH, which discriminates MVIs from
other intervals in w.

In order for p(e1, e2) to be an MVI relative to the knowledge state w, (e1, e2)
must be an interval in w, i.e. (e1, e2) ∈ w. Moreover, e1 and e2 must witness the
validity of the property p at the ends of this interval by initiating and terminating
p, respectively. These requirements are enforced by conditions (iii), (i) and (ii),
respectively, in the definition of valuation given below. The maximality requirement
is caught by the meta-predicate nb(p, e1, e2, w) in condition (iv), which expresses
the fact that the validity of an MVI must not be broken by any interrupting event.
Any event e which is known to have happened between e1 and e2 in w and that
initiates or terminates a property that is either p itself or a property exclusive with
p interrupts the validity of p(e1, e2).
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EC has been traditionally defined by means of a set of axioms [20]. In its logic
programming implementation, the valuation υwH is represented by the predicate
holds, which relies on the predicate broken for testing for interrupting events (i.e.
the negation of the meta-predicate nb). The original definition of these predicates
will be recovered in our implementation in Section 3.

GMEC expands the scope of EC by shifting the focus from the current knowledge
state — say w — to all knowledge states that are reachable from w, i.e. Ext(w),
and more generally to WH. By definition, w′ is an extension of w if w ⊆ w′. Since
⊆ is a reflexive partial order, (WH,⊆) can be naturally viewed as a finite, reflexive,
transitive and antisymmetric modal frame. If we consider this frame together with
the straightforward modal extension of the valuation υwH to an arbitrary knowledge
state, we obtain a modal model for GMEC.

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure. We denote as OH and
WH the set OE of binary acyclic relations and the set WE of partial orders over
E, respectively. We call the elements of OH (and consequently of WH) knowledge
states. The GMEC-frame FH of H is the frame (WH,⊆). The intended GMEC-
model is defined as follows.

Definition 2.4. (GMEC-model)

The intended GMEC-model of a GMEC-structure H is the modal model IH =
(WH,⊆, υH), where the valuation υH : WH → 2AH is defined in such a way
that p(e1, e2) ∈ υH(w) if and only if conditions (i–iv) below hold.

i. e1 ∈ [p〉;

ii. e2 ∈ 〈p];

iii. (e1, e2) ∈ w;

iv. nb(p, e1, e2, w), where

nb(p, e1, e2, w) iff ¬∃e ∈ E. (e1, e) ∈ w
∧ (e, e2) ∈ w
∧ ∃q ∈ P. ((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q)).

Given w ∈ WH and ϕ ∈ LH, the satisfiability relation IH;w |= ϕ is defined as
follows:

IH;w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH;w |= ¬ϕ iff IH;w 6|= ϕ;
IH;w |= ϕ1 ∧ ϕ2 iff IH;w |= ϕ1 and IH;w |= ϕ2;
IH;w |= ϕ1 ∨ ϕ2 iff IH;w |= ϕ1 or IH;w |= ϕ2;
IH;w |= 2ϕ iff ∀w′ ∈WH such that w ⊆ w′, IH;w′ |= ϕ;
IH;w |= 3ϕ iff ∃w′ ∈WH such that w ⊆ w′ and IH;w′ |= ϕ.

A GMEC-formula ϕ is valid in IH, written IH |= ϕ, if IH;w |= ϕ for all
w ∈WH.

We will drop the subscripts H whenever this does not lead to ambiguities. More-
over, given a knowledge state w in WH and a GMEC-formula ϕ over H, we write
w |= ϕ for IH;w |= ϕ. Similarly, we abbreviate IH |= ϕ as |= ϕ.

This definition formalizes the strong interpretation of the initiate and terminate
relations, as discussed in Section 2.1.
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Notice that the definition of satisfiability given in the previous inductive defi-
nition is always consistent, i.e. for every knowledge state w ∈ WH and formula ϕ
it is not possible to have both w |= ϕ and w |= ¬ϕ. In the sequel, we will take
advantage of a slightly different formulation of consistency. We have the following
property, easily proved by induction on the structure of the formula ϕ.

Property 2.1. (Completeness of the satisfiability relation)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure. For all w ∈ W and
GMEC-formula ϕ, if w 6|= ¬ϕ, then w |= ϕ. 2

The attempt to characterize GMEC within the rich taxonomy of modal logics [18]
reveals Sobocinski logic, also known as system K1.1 [28], as its closest relative. Syn-
tactically, this logic extends S4 with the formula 2(2(ϕ → 2ϕ) → ϕ) → ϕ, added
as a further axiom to the traditional formulation of that system. Semantically, it
is characterized by the class of the finite, reflexive, transitive and antisymmetric
frames, i.e. by the class of all finite reflexive partial orderings. The relationship
between GMEC and K1.1 is captured by the following theorem, where derivability
in K.1.1 has been indicated as ⊢K1.1.

Theorem 2.2. (GMEC and K1.1)

If a GMEC-formula ϕ is a thesis of K1.1, then it is a valid formula of GMEC,
i.e., for each GMEC-formula ϕ, if ⊢K1.1 ϕ, then |= ϕ. 2

Since the intended GMEC-model IH is based on a finite, reflexive, transitive and
antisymmetric frame, Theorem 2.2 immediately follows from the soundness of K1.1
with respect to the class of all finite reflexive partial orderings [28].

From the above syntactic characterization of Sobocinski logic, every formula
valid in S4 is valid in K1.1. Therefore, Theorem 2.2 permits lifting to GMEC the
following well-known equivalences of S4 [18].

Corollary 2.1. (Some equivalent GMEC-formulas)

Let ϕ, ϕ1 and ϕ2 be GMEC-formulas. Then, for every knowledge state w ∈W ,

• w |= 2¬ϕ iff w |= ¬3ϕ

• w |= 3¬ϕ iff w |= ¬2ϕ

• w |= 2(ϕ1 ∧ ϕ2) iff w |= 2ϕ1 ∧ 2ϕ2

• w |= 3(ϕ1 ∨ ϕ2) iff w |= 3ϕ1 ∨ 3ϕ2

• w |= 22ϕ iff w |= 2ϕ

• w |= 33ϕ iff w |= 3ϕ

• w |= 2323ϕ iff w |= 23ϕ

• w |= 3232ϕ iff w |= 32ϕ 2

These equivalences are often presented in the literature using the equivalence con-
nective ↔ (e.g., the first case would be expressed as w |= 2¬ϕ ↔ ¬3ϕ for every
state of knowledge w). Since we did not include this connective in the language of
GMEC, we cannot exploit this somewhat simpler option.

Also specific properties of K1.1 will turn out useful in order to implement GMEC.
The following equivalences can be obtained by exploiting the McKinsey formula,
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23ϕ→ 32ϕ, valid in K1.1 (but not in S4).

Corollary 2.2. (Further equivalent GMEC-formulas)

Let ϕ be a GMEC-formula. Then, for every knowledge state w ∈W ,

• w |= 232ϕ iff w |= 23ϕ

• w |= 323ϕ iff w |= 32ϕ 2

An interesting consequence of Corollaries 2.1 and 2.2 is that each GMEC-formula
ϕ is logically equivalent to a formula of one of the following forms: ψ, 2ψ, 3ψ,
23ψ, 32ψ, where the main connective of ψ is non-modal. Such reductions will
result particularly useful in Section 3. Observe also that, unfortunately, there is no
way of reducing formulas of the form 2(ϕ1 ∨ ϕ2) and 3(ϕ1 ∧ ϕ2).

2.4. Properties of the Formalization

We will now give a number of results concerning the adequacy of the definition of
GMEC-structure with respect to the informal concept of MVI introduced in [20],
and the modal extensions defined in [2, 5, 10]. We have already shown that a
satisfiable atomic formula p(e1, e2) identifies an interval during which the property
p holds. These intervals are maximal and uninterrupted, i.e. p does not hold on
any superinterval or subinterval of (e1, e2):

Lemma 2.1. (Satisfiable atomic formulas are MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and w ∈ W such that
w |= p(e1, e2). Then ∀e′1, e

′
2 ∈ E,

a. if (e′1, e
′
2) <w (e1, e2), then w 6|= p(e′1, e

′
2);

b. if (e1, e2) <w (e′1, e
′
2), then w 6|= p(e′1, e

′
2).

Proof.

a. Assume ab absurdum that (e′1, e
′
2) <w (e1, e2) and w |= p(e′1, e

′
2). If (e1, e

′
1) ∈

w, then, e′1 would violate nb(p, e1, e2, w), and therefore w 6|= p(e1, e2). The
situation is similar if (e′2, e2) ∈ w.

b. By assuming (e1, e2) <w (e′1, e
′
2) and w |= p(e′1, e

′
2), we obtain a situation

that is dual to the previous case. 2

In this paper, we use GMEC to investigate how the MVIs derivable within the
current set of ordered pairs of events is updated due to the arrival of new ordering
information. We have shown in [5] that the set of MVIs computed by EC can change
non-monotonically in response to the acquisition of ordering data. We wish to find
the laws that rule this behavior. GMEC entitles us to identify on the one hand the
set of MVIs that cannot be invalidated no matter how the ordering information is
updated (as far as it remains consistent), and on the other hand those intervals that
will possibly become MVIs depending on which ordering data are acquired. Notice
that this statement must be relativized to the current set of events: we do not (and
in general cannot) predict the behavior of the system as new event happenings are
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recorded, but we are able to draw conclusions about how the current system can
evolve as the ordering information is refined.

The sets of MVIs that are necessarily and possibly valid in the current state
of knowledge w correspond respectively to the 2- and 3-moded atomic formulas
which are valid in w. We define the sets MV I(w), 2MV I(w) and 3MV I(w) of
respectively MVIs, necessary MVIs and possible MVIs with respect to w as follows:

MV I(w) = {p(e1, e2) : w |= p(e1, e2)};
2MV I(w) = {p(e1, e2) : w |= 2p(e1, e2)};
3MV I(w) = {p(e1, e2) : w |= 3p(e1, e2)}.

In the following, it will be useful to view these sets as functions MV I(·), 2MV I(·)
and 3MV I(·) of the knowledge state w.

We show now that the set of necessary MVIs with respect to w persists whatever
the evolution of the ordering information will be. Similarly, each element in the set
of possible MVIs of w is valid in at least one extension of w.

Lemma 2.2. (Behavior of 2MV I(·) and 3MV I(·) with respect to MV I(·))

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and w ∈W , then

a. if p(e1, e2) ∈ 2MV I(w), then ∀w′ ∈ Ext(w), p(e1, e2) ∈MV I(w′);

b. if p(e1, e2) ∈ 3MV I(w), then ∃w′ ∈ Ext(w), p(e1, e2) ∈MV I(w′).

Proof.

a. p(e1, e2) ∈ 2MV I(w) iff w |= 2p(e1, e2),
iff ∀w′ such that w ⊆ w′, w′ |= p(e1, e2)
iff ∀w′ ∈ Ext(w), w′ |= p(e1, e2)
iff ∀w′ ∈ Ext(w), p(e1, e2) ∈MV I(w′).

b. Similar. 2

The sets of necessary MVIs, MVIs and possible MVIs in the current state of
knowledge form an inclusion chain as formally stated by Lemma 2.3.

Lemma 2.3. (Necessary MVIs and possible MVIs enclose MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and w ∈W , then

2MV I(w) ⊆MV I(w) ⊆ 3MV I(w).

Proof. By the definition of the involved sets, these relations can be rewritten as
follows:

a. if w |= 2p(e1, e2), then w |= p(e1, e2);

b. if w |= p(e1, e2), then w |= 3p(e1, e2).

The validity of these expressions is a direct consequence of the reflexivity of the
accessibility relation of GMEC-frames. Indeed, w |= 2p(e1, e2) iff p(e1, e2) is valid
in every extension of w, in particular in w itself. Analogously, if w |= p(e1, e2),
then w |= 3p(e1, e2). 2

When the arrival of a new piece of ordering information causes a transition into
a more refined state of knowledge, the current set of MVIs can be subject to two
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transformations. On the one hand, the update may create a new MVI by connecting
an event e1, initiating a property p, and an event e2 terminating p. On the other
hand, a new link can transform a previously innocuous event e into an interrupting
event for some MVI p(e1, e2). Therefore, the function MV I(·) is non-monotonic
with respect to the evolution of the ordering information.

On the other hand, 2MV I(·) and 3MV I(·) possess a monotonic behavior: the
set of necessary MVIs can only grow as the current ordering information is refined,
while the set of possible MVIs shrinks monotonically as we acquire new ordering
information and a smaller number of future states is viable.

Lemma 2.4. (Monotonicity of 2- and 3-moded atomic formulas)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and w and w′ two states
of knowledge, then

a. if w ⊆ w′ then 2MV I(w) ⊆ 2MV I(w′);

b. if w ⊆ w′ then 3MV I(w′) ⊆ 3MV I(w).

Proof. By the definition of MV I(·), 2MV I(·) and 3MV I(·), these relations
can be rewritten as follows:

a. if w |= 2p(e1, e2), then w
′ |= 2p(e1, e2);

b. if w′ |= 3p(e1, e2), then w |= 3p(e1, e2).

By the definition of GMEC-frame, where ⊆ plays the role of accessibility relation,
these relations hold trivially: if w |= 2p(e1, e2), then p(e1, e2) is valid in every
extension of w, but these comprise all extensions of w′, thus w′ |= 2p(e1, e2);
similarly, if w′ |= 3p(e1, e2) then p(e1, e2) holds in an extension w∗ of w′, but
since w ⊆ w′ and ⊆ is transitive, w∗ is an extension of w as well, and thus
w |= 3p(e1, e2). 2

By combining the interpretations of Lemmas 2.3 and 2.4, we have that 2MV I(·)
and 3MV I(·) constrain the variability of the set of MVIs derivable using EC.
The state of minimum information corresponds to the absence of any ordering
data: 2MV I(·) and MV I(·) derive no formula, while 3MV I(·) derives all con-
sistent property-labeled intervals. As new ordering information arrives, 2MV I(·)
increases, 3MV I(·) decreases, but MV I(·) always sits somewhere between them.
When enough ordering information has been entered (at worst when the set of
events has been completely ordered) 2MV I(·) and 3MV I(·) meet at a common
value constraining MV I(·) to assume that same value.

The following example shows that the GMEC fragment including only atomic
formulas and simply moded atomic formulas is expressive enough to model the
operations of the beverage dispenser.

Example 2.1. (Beverage dispenser)

We consider again the operations of the simple beverage dispenser introduced in
Section 2.1 and depicted in Figure 2.2 (left). We recall that by setting the selector
to the apple or to the orange position, apple juice or orange juice is obtained, re-
spectively. On the other hand, choosing the stop position terminates the production
of juice.
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supplyApple supplyOrange supplyApple

FIGURE 2.2. The Beverage Dispenser Revisited

We consider a scenario consisting of two events (e1 and e5) that initiate the
property supplyApple, an event (e3) that initiates the property supplyOrange, and
three stop events (e2, e4 and e6) that terminate both properties. In GMEC, this
knowledge is modeled as follows:

E = {e1, e2, e3, e4, e5, e6};
P = {supplyApple, supplyOrange};
[supplyApple〉 = {e1, e5};
[supplyOrange〉 = {e3};
〈supplyApple] = 〈supplyOrange] = {e2, e4, e6};
]supplyApple, supplyOrange[.

Suppose that, in the intended final ordering, events are ordered according to their
indices (such a situation is described in Figure 2.2, right). Let us consider the
following sequence of ordered pairs, which are assumed to be entered in the database
one at a time: (e1, e4); (e1, e6); (e2, e4); (e1, e2); (e3, e4); (e4, e5); (e2, e3); (e2, e6);
(e5, e6). This sequence has been devised so that the complete situation shown in
Figure 2.2 can be fully derived only after the last update. These 9 ordered pairs are
entered into the database in sequence by means of the predicate UpdOrd. Figure 2.3
shows the evolution of the computation: each row corresponds to the addition of one
of these ordered pairs to the database.

The first column shows which update is being performed. The second column
contains the list of the MVIs derived by EC. Here, we write a(ei, et) for the MVI
concerning the property supplyApple, initiated by event ei and terminated by et,
and o(ei, et) for the similar situation involving supplyOrange. The third and fourth
columns contain the list of necessary and possible MVIs, respectively.

This trace clearly shows the non-monotonic behavior ofMV I(·): as new ordering
information is entered, the set of MVIs grows bigger and bigger till the pair (e2, e3)
is asserted; then the MVI a(e1, e6) is dropped. Instead, 2MV I(·) and 3MV I(·)
evolve monotonically and anti-monotonically, respectively. Notice that non-trivial
necessary MVIs are generated only when almost all the ordering information has
been entered; therefore, it provides useful data only when the state of knowledge is
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MVIs derived by EC Necessary MVIs Possible MVIs

Ø Ø

a(e1, e2), a(e1, e4)
a(e1, e6), o(e3, e2)
o(e3, e4), o(e3, e6)
a(e5, e2), a(e5, e4)
a(e5, e6)

?- updOrd(e1, e4). a(e1, e4) Ø

a(e1, e2), a(e1, e4)
a(e1, e6), o(e3, e2)
o(e3, e4), o(e3, e6)
a(e5, e2), a(e5, e4)
a(e5, e6)

?- updOrd(e1, e6). a(e1, e4), a(e1, e6) Ø

a(e1, e2), a(e1, e4)
a(e1, e6), o(e3, e2)
o(e3, e4), o(e3, e6)
a(e5, e2), a(e5, e4)
a(e5, e6)

. . . . . . . . . . . .

?- updOrd(e2, e3).
a(e1, e2), a(e1, e6)
o(e3, e4)

Ø
a(e1, e2), a(e1, e6)
o(e3, e4), o(e3, e6)
a(e5, e6)

?- updOrd(e2, e6). a(e1, e2), o(e3, e4) a(e1, e2)
a(e1, e2), o(e3, e4)
o(e3, e6), a(e5, e6)

?- updOrd(e5, e6).
a(e1, e2), o(e3, e4)
a(e5, e6)

a(e1, e2), o(e3, e4)
a(e5, e6)

a(e1, e2), o(e3, e4)
a(e5, e6)

FIGURE 2.3. Computation in the The Beverage Dispenser Example

nearly complete. On the other hand, possible MVIs are significatively pruned at
much earlier stages of the insertion process. 2

We now move to the general case of arbitrary GMEC-formulas. The following
lemma stands as the basis for the treatment of the modal operators in Section
3. It shows how the satisfiability test for an arbitrary GMEC-formula having a
modality as its main connective can be reduced to first testing the satisfiability of
its immediate subformula in the current world and then checking the satisfiability
of the original formula in the ‘one-step’ extensions of the current knowledge state.

Lemma 2.5. (Unfolding modalities)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, ϕ ∈ LH a GMEC-formula
over H, and w ∈W . Then

a. w |= 2ϕ iff w |= ϕ and ∀(e1, e2) such that (e1, e2), (e2, e1) 6∈ w, w ↑
{(e1, e2)} |= 2ϕ;

b. w |= 3ϕ iff w |= ϕ or ∃(e1, e2) such that (e1, e2), (e2, e1) 6∈ w, w ↑
{(e1, e2)} |= 3ϕ.

Proof. First notice that if (e1, e2) 6∈ w and (e2, e1) 6∈ w, then w ↑ {(e1, e2)} ∈W
since, in this case, upgrading w with (e1, e2) cannot violate asymmetry in any way.
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Moreover, for every w ∈W ,

Ext(w) = {w} ∪
⋃

(e1,e2) 6∈w
(e2,e1) 6∈w

Ext(w ↑ {(e1, e2)}).

Indeed, let w′ ∈ Ext(w). Then, by definition, w ⊆ w′. Therefore, either w′ = w or
there exists a pair (e1, e2) ∈ w′ \ w. In the latter case, w′ ∈ Ext(w ↑ {(e1, e2)}).
The opposite inclusion is straightforward.

We have now the needed tools to prove the statement of the lemma.

a. w |= 2ϕ iff ∀w′ ∈ Ext(w), w′ |= ϕ
iff ∀w′ ∈ {w} ∪

⋃
(e1,e2) 6∈w
(e2,e1) 6∈w

Ext(w ↑ {(e1, e2)}), w
′ |= ϕ

iff w |= ϕ and for each e1, e2 ∈ E such that (e1, e2) 6∈ w and
(e2, e1) 6∈ w, it holds that for each w′ ∈ Ext(w ↑ {(e1, e2)}),
w′ |= ϕ

iff w |= ϕ and for each e1, e2 ∈ E such that
(e1, e2), (e2, e1) 6∈ w,w ↑ {(e1, e2)} |= 2ϕ.

b. The proof is similar to a. 2

In the sequel, we will use a different but clearly equivalent form of (a):

w |= 2ϕ iff w |= ϕ and
it is not the case that
∃(e1, e2) such that (e1, e2), (e2, e1) 6∈ w. w ↑ {(e1, e2)} 6|= 2ϕ.

Next, we seek for a manner of computing necessary and possible MVIs (simply
moded atomic formulas) that does not require to explore future states of knowledge.
In both cases, we will be able to devise necessary and sufficient local conditions.
These properties stand as the basis for the implementation of SKEC and CREC
[2, 10], and will allow us to improve the naive implementation of GMEC in Section
3 on the basis of the results of Lemma 2.5.

An MVI p(e1, e2) is undefeasible whatever ordering information is acquired if no
event can interrupt it. An event e can possibly interrupt the validity of p(e1, e2)
if it initiates or terminates p or a property that is exclusive with p, and it could
be consistently located between e1 and e2 with respect to w. This intuition is
formalized in the following lemma: the first three conditions express the validity
of p(e1, e2) as a p-labeled interval of w; the meta-predicate nsb(p, e1, e2, w) in the
fourth condition states that no event e can possibly interrupt the validity of p(e1, e2)
in the sense just explained.

Lemma 2.6. (Local condition for atomic necessity)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure. Then for any e1, e2 ∈ E,
p ∈ P and w ∈ W , p(e1, e2) ∈ 2MV I(w) iff the following conditions are
satisfied:

• e1 ∈ [p〉,

• e2 ∈ 〈p],
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• (e1, e2) ∈ w,

• nsb(p, e1, e2, w)

where nsb(p, e1, e2, w) stands for the expression

∀e ∈ E. ∀q ∈ P. e = e1
∨ e = e2
∨ (e, e1) ∈ w
∨ (e2, e) ∈ w
∨ (e ∈ [q〉 ∨ e ∈ 〈q] → ¬]p, q[∧ p 6= q).

Proof. By definition, the first member of the equivalence, p(e1, e2) ∈ 2MV I(w),
reduces to w |= 2p(e1, e2). We will take advantage of this formulation in the proof.

(⇐) Let us proceed by contradiction. So, assume that e1 ∈ [p〉, e2 ∈ 〈p], (e1, e2) ∈
w and nsb(p, e1, e2, w), but there exist an extension w′ of w such that w′ |= p(e1, e2)
does not hold, i.e. such that nb(e1, e2, w

′) is false. After some logical manipulations,
the latter statement rewrites to

∃e ∈ E. ∃q ∈ P. ((e1, e) ∈ w′ ∧ (e, e2) ∈ w′ ∧ (e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q).

Let e′ and q′ witness the validity of this formula. By instantiation, we obtain:

(e1, e
′) ∈ w′ ∧ (e′, e2) ∈ w′ ∧ (e′ ∈ [q′〉 ∨ e′ ∈ 〈q′]) ∧ (]p, q′[∨ p = q′) (2.1)

We can instantiate the expression for nsb(p, e1, e2, w) with these values too. The
resulting formula is:

e′ = e1 ∨ e′ = e2 ∨ (e′, e1) ∈ w ∨
(e2, e

′) ∈ w ∨ (e′ ∈ [q′〉 ∧ e′ ∈ 〈q′] → ¬]p, q′[∧ p 6= q′)
(2.2)

We must show that none of the alternatives in formula (2.2) applies. Since w′ is a
(strict) partial order, the validity of (2.1) implies that e′ can be neither e1 nor e2.
Analogously, by Lemma 2.4, either (e′, e1) ∈ w or (e2, e

′) ∈ w would violate the
asymmetry of w′. Finally, the choice of q′ contradicts the last alternative, i.e. that
(e′ ∈ [q′〉 ∨ e′ ∈ 〈q′] → ¬]p, q′[∧ p 6= q′). This concludes this direction of the proof.

(⇒) We will again proceed by contradiction. Clearly, if e1 6∈ [p〉 or e2 6∈ 〈p],
then we cannot obtain w′ |= p(e1, e2) in any state of knowledge w′. If (e1, e2) 6∈ w,
then there exist extensions of w containing (e2, e1). Because of asymmetry, these
extensions cannot contain (e1, e2), thus p(e1, e2) cannot be valid in them.

Assume now that e1 ∈ [p〉, e2 ∈ 〈p] and (e1, e2) ∈ w, but that nsb(p, e1, e2, w)
does not hold. Therefore, there are an event e′ and a property q′ such that:

e′ 6= e1 ∧ e
′ 6= e2 ∧ (e′, e1) 6∈ w∧ (e2, e

′) 6∈ w∧ (e′ ∈ [q′〉 ∨ e′ ∈ 〈q′])∧ (]p, q′[∨ p = q′).

Since the pair (e1, e2) ∈ w, there exists at least one extension w′ of w such that
(e1, e

′) ∈ w′ and (e′, e2) ∈ w′. Therefore,

(e1, e
′) ∈ w′ ∧ (e′, e2) ∈ w′ ∧ (e′ ∈ [q′〉 ∨ e′ ∈ 〈q′]) ∧ (]p, q′[∨ p = q′)

hence nb(p, e1, e2, w
′) does not hold. This contradicts the hypothesis that w |=

2p(e1, e2). 2

It is worth noting that the definition of nsb(p, e1, e2, w) is more restrictive than
that of nb(p, e1, e2, w). We call critical for a given property p an event e initiating or
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terminating a property q such that either p = q or ]p, q[. Condition nb(p, e1, e2, w)
states that there are no critical events e ∈ E such that both (e1, e) ∈ w and
(e, e2) ∈ w, while condition nsb(p, e1, e2, w) states that there are no critical events
e ∈ E, with e 6= e1 and e 6= e2, such that both (e, e1) 6∈ w and (e2, e) 6∈ w.

A labeled interval p(e1, e2) might become an MVI for p in an extension of the
current knowledge state w if e1 initiates p, e2 terminates p, the interval (e1, e2) is
consistent with w (i.e. (e2, e1) 6∈ w), and there are no already known interrupting
events between e1 and e2. More formally, we have that:

Lemma 2.7. (Local condition for atomic possibility)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure. Then for any e1, e2 ∈ E,
p ∈ P and w ∈ W , p(e1, e2) ∈ 3MV I(w) iff the following conditions are
satisfied:

• e1 ∈ [p〉,

• e2 ∈ 〈p],

• (e2, e1) 6∈ w,

• nb(p, e1, e2, w).

Proof. As in the previous proof, we reduce the relation p(e1, e2) ∈ 3MV I(w) to
w |= 3p(e1, e2). We operate on this equivalent formulation.

(⇐) Let us construct an extension w′ of w such that w′ |= p(e1, e2). The state of
knowledge w′ is defined as w′ = (w∪{(e1, e2)})

+. First notice that w′ is consistent
(i.e. it does not violate asymmetry) since w is consistent and (e2, e1) 6∈ w. Then
observe that nb(p, e1, e2, w

′) holds by the definition of w′. Otherwise, we should be
able to conclude that there is an event e ∈ E such that (e1, e) ∈ w′, (e, e2) ∈ w′ and
either e ∈ [q〉 or e ∈ 〈q] for some property q ∈ P , with ]p, q[ or p = q, but in that
case, (e1, e) ∈ w and (e, e2) ∈ w contradicting the assumption that nb(p, e1, e2, w)
holds. Therefore, conditions (i–iv) of Definition 4 are satisfied w.r.t. w′; hence
w′ |= p(e1, e2), and thus w |= 3p(e1, e2).

(⇒) We proceed by contradiction. Clearly, if e1 6∈ [p〉 or e2 6∈ 〈p], then we cannot
obtain w′ |= p(e1, e2) in any state of knowledge w′. Analogously, if (e2, e1) ∈ w,
then (e2, e1) belongs to every extension of w, forbidding in this way condition (iii)
of Definition 4 to be satisfied. Finally, if nb(p, e1, e2, w) does not hold, (i.e. there
is an event e ∈ E such that (e1, e) ∈ w, (e, e2) ∈ w and e ∈ [q〉 or e ∈ 〈q] for
some property q ∈ P with ]p, q[∨ p = q), then, by Lemma 2.4, the same condition
would apply to every extension w′ as well, thus nb(p, e1, e2, w

′) would not hold in
any extension w′ of w and p(e1, e2) 6∈ 3MV I(w). 2

Notice that the four conditions in the statement of this lemma differ from conditions
(i–iv) in Definition 4 only by the replacement of (e1, e2) ∈ w with (e2, e1) 6∈ w. In
EC, we need to know that (e1, e2) is indeed an interval of w, while, in the present
case, we only need to know that this interval is compatible with w (i.e. that this
ordering does not contain the dual interval).

3. A LOGIC PROGRAMMING IMPLEMENTATION OF GMEC

In this section, we present an abstract implementation of GMEC in the language of
hereditary Harrop formulas and prove its soundness and completeness with respect
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to the GMEC semantics presented in Section 2. In Section 3.1, we recall the defi-
nition of hereditary Harrop formulas (HH-formulas for short) and their operational
semantics as a logic programming language. In Section 3.2, we define an encoding
of GMEC-structures, orderings and GMEC-formulas as HH-formulas. We also give
a first naive program modeling the validity relation for GMEC-formulas. Section
3.3 proves the soundness and completeness of this program with respect to the no-
tion of GMEC-model. Finally, in Section 3.4, we present an improved (semi-naive)
implementation of GMEC and prove its soundness and completeness.

3.1. Hereditary Harrop Formulas

So far, the implementation language for EC has almost always been the language
of Horn clauses augmented with negation-as-failure [21], which constitutes the core
of the logic programming language Prolog. This traditional Prolog implementation
can be easily extended to cover the propositional connectives. Moreover, we showed
in [2] that a restriction of the purely modal extension of EC can be conveniently
encoded in this language by taking advantage of Lemmas 2.6 and 2.7. However,
when mixing arbitrarily propositional connectives and modalities, as in GMEC,
a direct encoding in Prolog appears unsatisfactory. The resulting program is in
fact either highly non-declarative (for the necessary presence of a large number of
assert and retract statements), or extremely complex (as we experienced in [10]).
In conclusion, Prolog is not adequate for a declarative description of GMEC. In
particular, it makes quite difficult to prove the fundamental soundness and com-
pleteness properties.

For the implementation of GMEC, we chose the language of first-order heredi-
tary Harrop formulas [24] augmented with negation-as-failure. Extensions of this
language, with or without negation-as-failure, have been used as the underlying
logic of many logic programming languages successfully proposed in the last ten
years, including Miller’s λProlog [23], Gabbay’s N-Prolog [13], Bonner’s language
for hypothetical reasoning in deductive databases [1], Pfenning’s Elf [27] and Hodas
and Miller’s Lolli [17]. In this section, we extend the usual proof-theoretic semantics
of HH-formulas [24] in order to encompass negation-as-failure. This presentation is
new, although there are some similarities with the work of Harland [14, 15, 16].

Hereditary Harrop formulas extend Horn clauses by allowing the presence of im-
plication and universal quantification in goal formulas. The former feature will give
us declarative means of temporarily augmenting the program with new facts and
performing in this manner a form of hypothetical reasoning. Universal quantifica-
tion in goals provides a powerful tool for data and program abstraction: it allows,
for instance, a purely declarative definition of abstract data types and modules. We
will not take advantage of this last feature.

The language of hereditary Harrop formulas, defined in [24], is a subset of first-
order intuitionistic logic. Formulas in this language are functionally subdivided
in program formulas and goal formulas depending on whether they can appear as
program clauses or they can only be used in queries. We use the syntactic variables
D and G respectively to refer to these formulas. Program and goal formulas are
mutually defined according to the following formal grammar, where A ranges over
atomic formulas:
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D ::= A | ⊤ | D1 ∧ D2 | G → A | ∀x.D (Program formulas)
G ::= A | ⊤ | G1 ∧ G2 | D → G | ∀x.G

| ⊥ | G1 ∨ G2 | ∃x.G (Goal formulas)

Syntactically, hereditary Harrop formulas differ from Horn clauses only for the
admissibility of implication and universal quantification in goal formulas (items 4
and 5 in the definition of G): as soon as we get rid of these productions, we obtain
a language that is equivalent to Horn clauses. In order to represent negation-
as-failure, we augment the definition of goal formulas with expressions of the form
not G. A hereditary Harrop clause is a closed program formula of the form ∀~x.(G →
A), where ∀~x represents a possibly empty sequence of universal quantifications; A
and G are called the head and the body of the clause, respectively. A closed formula
of the form ∀~x.A is called a fact and is considered as a clause with an empty body
(i.e. ∀~x.(⊤ → A)). Any program formula can be transformed into a set of clauses.
In the following, we will use the terms D-formula and G-formula as synonyms of
program formula and goal formula, respectively.

We will describe the semantics of hereditary Harrop formulas with negation-as-
failure by means of two judgments called positive and negative sequents and denoted
P =⇒ G and P 6=⇒ G, respectively, where P is a set of D-formulas and G a G-
formula. Negative sequents are needed for defining negation-as-failure. In both
cases, P and G are called the program and the goal of the sequent respectively.
If c is a clause and P is a program, we abbreviate P ∪ {c} as (P, c). As we said,
any program is equivalent, modulo elementary logical manipulations, to a program
consisting uniquely of clauses. We write Pc for the clausal form of the program P.

Hereditary Harrop formulas constitute the biggest sublanguage of first-order logic
that is complete with respect to uniform proofs [24]. Uniform provability views
logical connectives in goal formulas as search directives for the construction of
derivations and clauses as partial definitions of atomic formulas. The goal part
of a sequent is decomposed up to the level of atomic formulas, and only then the
program part is accessed in order to retrieve a clause defining this atom. The
computation fails when trying to solve undefined instances of atomic formulas.

The non-deterministic search for a proof of the goal G from the program P
corresponds to the construction of a derivation for the positive sequent P =⇒ G
according to the rules to be defined below. Every derivation tree for P =⇒ G built
in this manner constitutes a proof of G from P. Therefore, G is provable from P if
there exists a proof-tree for the positive sequent P =⇒ G.

Conversely, G is not provable from P if there is no proof-tree for P =⇒ G. In
terms of (uniform) proof search, non-provability can come in two flavors: either
every attempt at building a derivation for P =⇒ G generates a sequent P ′ =⇒ G′

to which no rule is applicable, or an infinite tree is obtained by the application of
the derivation rules, and in this case the search does not terminate. In the first
case, we say that this sequent is finitely non-provable. In the second case, we say
that the sequent is divergent. We define a (finitely) failed derivation as a derivation
containing at least one leaf which sequent cannot be reduced by any of the rules
discussed below. We call such a sequent initially failed.

When trying to find a proof for a negated goal not G from the program P, we
want to show that there is no proof of G from P, i.e. that P =⇒ G is not provable.
It will become evident from the examples below that, in general, diverging sequents
cannot be finitely recognized. Therefore, we are reduced to showing that P =⇒ G
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is finitely non-provable. The (failed) proof-trees constructed during a search for
a proof of P =⇒ G are not accessible for this purpose. Therefore, we internalize
them and model finite non-provability by means of negative sequents, P 6=⇒ G in
this case. Again, a derivation tree for P 6=⇒ G constitutes a proof of this sequent.
Notice that a positive sequent P =⇒ G is initially failed if and only if G = ⊥
or G = A and there is no clause ∀~x.(G → A′) and no substitution σ such that
A′σ = A. Instead P 6=⇒ G can be initially failed only if G = ⊤.

With an abuse of notation, we will sometimes informally use P =⇒ G as an
abbreviation for the sentence “the sequent P =⇒ G is derivable”, and similarly for
negative sequents.

The derivability rules for positive and negative sequents have dual definitions.
Moreover, the proof-search semantics of negated goals makes them mutually recur-
sive. The complete definition is given in Figure 3.1. The rules that do not apply to
Horn clauses are outlined. Notice that the rules exist– and atom– are non stan-
dard since some of the involved parameters (the term t and the clause ∀~x.(G → A′)
respectively) are subject to extensional universal quantification. Therefore, exist–
can be viewed as a rule with an infinite number of premisses (Harland has shown
in [14, 16] that it is sufficient to consider a finite set of representations). Similarly
atom– is better seen as a rule with a variable number of premisses depending on
the number of matching clauses. We will discuss in depth the rule for universal
quantification at the end of this section.

Let us now give some examples that better illustrate the distinction among
provable, finitely non-provable and diverging sequents. These notions apply also to
negative sequents and are defined similarly to the positive case.

• Let P1 = {a, a → b}. The clausal form of P1 is Pc
1 = {⊤ → a, a → b}.

The sequent P1 =⇒ b is provable by applying in sequence the rules atom+,
atom+ and true+. However, P1 6=⇒ b fails after two applications of atom–

(therefore it is finitely non-provable). On the other hand, P1 =⇒ c fails
immediately while P1 6=⇒ c succeeds by rule atom–.

• Let P2 = {a → a}. Then both P2 =⇒ a and P2 6=⇒ a diverge by infinite
applications of the rules atom+ and atom–, respectively. It is easy to notice
that these sequents do not have any derivations since each step reproduces
the original sequent. However, a simple loop-detection mechanism is not
sufficient in most cases. Consider for instance a first-order variant of this
example: P ′

2 = {∀x.(a(f(x)) → a(x)}. Then, the sequents P ′
2 =⇒ a(v) and

P ′
2 6=⇒ a(v) diverge in the same manner, but at each stage the sequent to

be proved is different. As a less trivial example, consider a non-terminating
program that computes the decimal expansion of π.

• Finally, let P3 = {a, a → a}. Clearly P3 =⇒ a is derivable. Notice that this
sequent has infinitely many proofs, as well as a diverging derivation. On the
other hand, P3 6=⇒ a is not derivable since, after applying rule atom–, there
is no way to proceed with the branch corresponding to a. Notice however
that the resulting (failed) proof-tree is infinite.

We will now state the duality between positive and negative sequents. First, since
we defined negative sequents with the aim of formalizing finite non-provability, it
should not be possible that both the positive and the negative sequents involving
the same program and goal are provable.
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P =⇒ ⊤
true+ (No rule false+)

P =⇒ G1 P =⇒ G2

P =⇒ G1 ∧ G2

and+
P, D =⇒ G

P =⇒ D → G
impl+

P =⇒ G1

P =⇒ G1 ∨ G2

or+1

P =⇒ G2

P =⇒ G1 ∨ G2

or+2

P =⇒ [t/x]G

P =⇒ ∃x.G
exist+

P =⇒ [c/x]G

P =⇒ ∀x.G
forall+∗

∀~x.(G → A′) ∈ Pc A′σ = A P =⇒ Gσ

P =⇒ A
atom+

P 6=⇒ G

P =⇒ not G
naf+

(No rule true−)
P 6=⇒ ⊥

false−

P 6=⇒ G1 P 6=⇒ G2

P 6=⇒ G1 ∨ G2

or−
P, D 6=⇒ G

P 6=⇒ D → G
impl−

P 6=⇒ G1

P 6=⇒ G1 ∧ G2

and−1

P 6=⇒ G2

P 6=⇒ G1 ∧ G2

and−2

{For each term t}
P 6=⇒ [t/x]G

P 6=⇒ ∃x.G
exist−

P 6=⇒ [c/x]G

P 6=⇒ ∀x.G
forall−∗

{For each clause ∀~x.(G → A′) ∈ Pc with A′σ = A}
P 6=⇒ Gσ

P 6=⇒ A
atom−

P =⇒ G

P 6=⇒ not G
naf−

∗
c does not occur in P or in G.

FIGURE 3.1. Sequent Rules for Hereditary Harrop Formulas with Negation-as-Failure

Property 3.1. (Consistency of positive and negative sequents)

For given program P and goal G, either P =⇒ G or P 6=⇒ G is not derivable.

Proof. The proof proceeds by mutual induction on the structure of derivations
for a positive and a negative sequent. More precisely, we show that if we assume
given a derivation D+ of P =⇒ G, then there cannot be any derivation D− of
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P 6=⇒ G, and vice versa. We will analyze three representative situation. The
remaining cases are similar or simpler.

and+: Assume that the given derivation D+ ends in the application of rule and+.
The endsequent is therefore P =⇒ G1 ∧ G2. Let D+

1 and D+
2 be the im-

mediate subderivations of D+, with endsequents P =⇒ G1 and P =⇒ G2,
respectively. By induction hypothesis, there is no derivation of the negative
sequents P 6=⇒ G1 and P 6=⇒ G2.

By inspection of the rules in Figure 3.1, the only ways to construct a deriva-
tion for the sequent P 6=⇒ G1 ∧ G2 are either to apply rule and−1 to a
derivation of P 6=⇒ G1 or to apply rule and−2 to a derivation of P 6=⇒ G2.
However we know that neither derivation can exist.

atom−: Assume that D− ends with an application of rule atom−. Therefore G is
some atomic goal A, and for each clause ci = ∀~x.(Gi → A′

i) ∈ Pc such that
A′

i
σi = A for substitutions σi, there is a derivation D−

i of P 6=⇒ Gσi

i . By
induction hypothesis, there is no derivation of any of the positive sequents
P =⇒ Gσi

i . However, a derivation of P =⇒ A can be produced only if one
such derivation is achievable.

naf+: Assume that D+ ends with an application of rule naf+ to a derivation of
the sequent P 6=⇒ G. Then, by induction hypothesis, there is no derivation
of P =⇒ G and therefore of P 6=⇒ notG since this goal can only be achieved
if a derivation of that sequent is given. 2

Harland has proved a similar result for a closely related rule system [14, 15, 16].
This property can be sharpened by considering finite non-provability. Indeed a

positive sequent is finitely non-provable if and only if the corresponding negative
sequent is derivable and has only finite derivations. The dual property obtained
by flipping the adjectives positive and negative holds as well. For convenience, we
prove the two direction of this property separately.

Property 3.2. (Duality of positive/negative sequents for finite derivations—Part I)

Let P and G be a program and a goal respectively. Then:

• If P =⇒ G is finitely non-provable, then P 6=⇒ G is provable;

• If P 6=⇒ G is finitely non-provable, then P =⇒ G is provable.

Proof. Let F+ (F−) the set of all finitely failed derivations of P =⇒ G (P 6=⇒ G,
respectively). We proceed by induction on the height of the longest (finitely) failed
derivation in F+ and F−, and by cases on the structure of G. We analyze two
representative cases.

G = G1 ∧ G2 : The sequent P =⇒ G1 ∧ G2 is not initially failed since it can be
reduced by means of rule and+. Moreover, every finitely failed derivation of
this sequent (i.e. every element of F+) must end in this rule. Therefore either
P =⇒ G1 or P =⇒ G2 (or both) must be finitely non-provable. Assume the
first of the two is finitely non-provable, then by induction hypothesis there
is a derivation of the negative sequent P 6=⇒ G1. Therefore, we can apply
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rule and−1 in order to obtain a derivation of P 6=⇒ G1 ∧ G2. We proceed
similarly in the other possible case.

In the negative case, the sequent P 6=⇒ G1 ∧ G2 is not initial since both
rules and−1 and and−2 could have been applied. A finitely failed derivation
in F− then belongs to one of two groups: those ending in rule and−1 and
those ending in and−2. Therefore, both P 6=⇒ G1 and P 6=⇒ G2 are finitely
non-provable. By induction hypothesis, there are derivations of the positive
sequents P =⇒ G1 and P =⇒ G2, to which it suffices to apply rule and+

G = A : If P =⇒ A is initially failed, then there is no clause c = ∀~x.(G →
A′) ∈ Pc and substitution σ such that A′σ = A. Therefore rule atom−
is applicable without premisses in order to obtain a derivation of P 6=⇒ A.

If P =⇒ A is not initially failed, then there are clauses ci = ∀~x.(Gi → A′
i) ∈

Pc and substitutions σi such that A′
i
σi = A. We can then partition F+ in

classes F+
i on the basis of the clauses ci (and substitutions σi) that have

been used. Thus, each of the sequents P =⇒ Gσi

i is finitely non-provable,
and therefore by induction hypothesis, P 6=⇒ Gσi

i is derivable. Then, simply
apply rule atom− to obtain the desired derivation of P 6=⇒ A.

Finally, the sequent P 6=⇒ A is finitely non-provable if there is at least one
clause c = ∀~x.(G → A′) ∈ Pc such that A = A′σ for some substitution
σ and P 6=⇒ Gσ is finitely non-provable. Then, by induction hypothesis,
P =⇒ Gσ is derivable, and therefore, by rule atom+, so is P =⇒ A. 2

We now prove the second part of the above property.

Property 3.3. (Duality of positive/negative sequents for finite derivations—Part II)

Let P and G be a program and a goal respectively. Then:

• If P =⇒ G is provable and has only finite derivations, then P 6=⇒ G is
finitely non-provable;

• if P 6=⇒ G is provable and has only finite derivations, then P =⇒ G is
finitely non-provable.

Proof. Let S+ (S−) the set of all proofs of P =⇒ G (P 6=⇒ G, respectively).
We proceed by induction on the height of the longest derivation in S+ and S−, and
by cases on the structure of G. The details of the proof are handled similarly to
the previous property. 2

We will take advantage of these results as follows. Let p(P, G) be a property of
a given program P and a goal G. Assume that we are able to prove that p(P, G) iff
P =⇒ G is derivable. Then, if we know that P =⇒ G has finite derivations only,
we obtain as an immediate consequence that ¬p(P, G) iff P =⇒ notG is derivable.

Negation-as-failure is distinct from classical negation: for example, the mono-
tonicity property (if P =⇒ G is derivable, then so is P, c =⇒ G for every c) does
not hold in general in languages embedding negation-as-failure (e.g. not a is deriv-
able in the empty program, but not in the program {a}). However, as noted in
[14] in a slightly different setting, negation-as-failure is a close approximation of
the usual concept of negation in mathematical logic for programs characterized by
finite derivations: indeed, in this specific setting, not G is derivable in P precisely
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when G does not hold with respect to some notion of completion of P [14]. The
representations of GMEC we will propose possess this property.

The fact that not can emulate to some extent classical negation does not turn the
logic of hereditary Harrop formulas into a classical formalism, not even when dealing
only with finite derivations. In particular, → is truly intuitionistic implication and
it cannot be defined in terms of not and ∧ (or ∨ ): the goal formula D → G
is provable if and only if G is provable assuming D as a further program clause.
This gives us the means of changing the program at hand by temporarily asserting
new clauses. On the other hand, the operational semantics of not permits a non-
monotonic behavior, as exemplified above.

According to the traditional semantics of hereditary Harrop formulas [24], when
a universal goal of the form ∀x.G(x) is encountered, it is reduced to G(c), where
c is a new constant (rule forall+). Solving this goal requires to work abstractly
with the generic individual c only. Therefore, if this goal succeeds, G(t) holds for
every term t. This form of universal quantification is called intensional.

Below, we will need a different interpretation of this operator: ∀x.G(x) is valid if
G(t) holds for every concrete term t in a given collection, rather than for a generic
individual. We may model this situation by means of the formula ∀x ∈ S.G(x),
where S is some (recursive) set. This form of universal quantification is called
extensional. Harland has investigated it in detail in conjunction with embedded
implication [14, 16]. This quantifier cannot be represented within plain hereditary
Harrop formulas. However, the presence of classical negation (modeled to some
extent by negation-as-failure) allows to recover it as soon as we manage to represent
the relation x ∈ S by a predicate. Then, we rewrite the previous formula as
¬∃x. (x ∈ S ∧ ¬G(x)). This formula is in turn equivalent to the goal

(∀x. ((x ∈ S ∧ ¬G(x)) → p′)) → ¬p′,

where p′ is a new atomic formula. Notice that the quantifier is now in a program po-
sition; therefore, it will not be solved intensionally. As soon as we substitute logical
negation (¬) with negation-as-failure (not), we obtain a formula that is acceptable
in our framework. We will take advantage of this implementation technique in order
to model the semantics of the modalities of GMEC in Section 3.2.

We conclude this section by defining a concrete syntax for the language of hered-
itary Harrop formulas. We use identifiers beginning with lower case letters (e.g.,
must, before, . . .) for constants and symbols beginning with uppercase letters for
implicitly quantified variables (e.g., Ei, P, . . .). We write terms and atoms in cur-
ried form (e.g., (before Ei Et) for the binary predicate before applied to the
variables Ei and Et). The unary operator not is reserved to represent negation-as-
failure when used in a goal formula (it will be convenient to overload it in Section
3.2 to model object level negation in a term position). The constants true and
fail are reserved for the logical symbols ⊤ and ⊥ respectively. We represent the
logical operators ∧ , ∨ and → as the infix symbols , (comma), ; (semicolon)
and => respectively, and the quantifiers ∀x. and ∃x. as forall[X] and exist[X]

respectively. In a program position, we represent → as :- with the antecedent and
the consequent reversed. We follow the usually accepted convention to drop the
leading universal quantifiers when representing a clause in the concrete syntax.
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3.2. Encoding of GMEC as Hereditary Harrop Formulas

The aim of this section is twofold. We will first give a precise encoding of GMEC
into the language of hereditary Harrop formulas. Then we will show a naive imple-
mentation of GMEC and give an informal overview of its features. The soundness
and completeness of this encoding will be proved in the next section. Section 3.4
analyzes a more refined version of this implementation.

We define a family of representation functions · · that relate the mathematical
entities we have been using in Section 2 to the terms of the logic programming lan-
guage we have chosen for the implementation. Specifically, we will need to encode
GMEC-structures, the associated orderings, and the GMEC-language. In the re-
mainder of this section, we will refer to the GMEC-structureH = (E, P, [·〉, 〈·], ]·,·[).

In order to representH, we need to give an encoding of the entities that constitute
it. For this purpose, we first specify the functions · E and · P that give the concrete
syntax of individual events and properties, respectively. We explicitly assume that
these functions are injective, i.e. that every event e in E (property p in P ) has
a representation that is different from that of all other events (resp. properties).
Moreover, we want · E and · P to give distinct representations to events and
properties. The exact definition of these functions is problem-specific.

The injectivity of the representation functions on events and properties enables
us to utilize the respective inverse functions, · E and · P , whenever they are
defined. Notice indeed that t E and t P cannot be defined for all terms t. As
a matter of convenience, we take the liberty of writing ill-formed expressions of
the form t E ∈ E for a generic t, assigning these expressions the truth value false
whenever t is not in the range of · E .

The next step consists in defining the translation maps for [·〉, 〈·] and ]·,·[. We
represent these relations by means of the binary predicates initiates, terminates
and exclusive, respectively. The traditional formulations of EC give an explicit
representation to the occurrences of events. We utilize the unary predicate happens
for this purpose. The corresponding representation functions are defined as follows:

• [·〉 I = {initiates e E p P : e ∈ E, p ∈ P, and e ∈ [p〉};

• 〈·] T = {terminates e E p P : e ∈ E, p ∈ P, and e ∈ 〈p]};

• ]·,·[ X = {exclusive p P q P : p, q ∈ P and ]p, q[};

• E H = {happens e E : e ∈ E}.

At this point, we define the representation of the GMEC-structure H by taking the
union of the representations of its constituent entities:

H S = E H ∪ [·〉 I ∪ 〈·] T ∪ ]·,·[ X .

In Section 2, we assumed that the ordering information of a GMEC problem was
specified by means of partial orders in W . When integrating GMEC into practical
applications, e.g. [10], this assumption turns out to be inadequate since, in general,
the host system will simply pass the raw ordering data to the GMEC module as
they are recorded. Therefore, we choose to represent this kind of information as our
knowledge states and to reconstruct the corresponding strict ordering as needed. We
assume the information source to be reliable, and thus the raw ordering information
constitutes a binary acyclic relation in O. We use the binary predicate beforeFact
to represent the atomic ordered pairs contained in a binary acyclic relation o ∈ O.
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The function · O relates a knowledge state to its concrete syntax. It is defined as
follows:

o O = {beforeFact e1
E e2

E : (e1, e2) ∈ o}.

The last entity we need to represent is the GMEC-language of H. We encode
the formulas in LH as terms in the language of hereditary Harrop formulas. Specif-
ically, we use the ternary function symbol period to represent atomic formulas and
the constants not, and, or, must and may, with the obvious arities, as the concrete
syntax of the logical symbols of GMEC: ¬, ∧ , ∨ , 2 and 3, respectively. The rep-
resentation function · L for GMEC-formulas is specified by the following recursive
definition, based on the structure of the formula in LH being represented:

• p(e1, e2)
L = period e1

E p P e2
E

• ¬ϕ L = not ϕ L

• ϕ1 ∧ ϕ2
L = and ϕ1

L ϕ2
L

• ϕ1 ∨ ϕ2
L = or ϕ1

L ϕ2
L

• 2ϕ L = must ϕ L

• 3ϕ L = may ϕ L

Notice that we have overloaded the symbol not. However, its position dictates its
use: within a term, it represents the negation of LH, and at the predicate level it
stands as the negation-as-failure operator. In order to simplify the notation, we
will write the previously defined translation maps as · , whenever the omitted
subscript is easily deducible from the context.

Figure 3.2 shows an implementation of GMEC in the language of HH-formulas.
We call this program the naive implementation of GMEC, and refer to it as GMEC.
Clause (1) models object level equality. Clauses (2) and (3) define the predicate
before that reconstructs the transitive closure of the ordering information currently
stored in the program. The remaining clauses show the actual implementation of
GMEC. We use the unary predicate holds to represent the validity of a GMEC-
formula with respect to the GMEC-structure and the knowledge state represented
in the program. Said in a different way, we aim at representing the judgment
IH; o+ |= ϕ by means of the relation GMEC, H , o =⇒ holds ϕ .

Clauses (4) and (5) implement the definition of modal valuation of the stan-
dard GMEC-model given in Definition 4; the latter corresponds to the negation of
the meta-predicate nb (recall that ; is the concrete syntax for disjunction in the
language of HH-formulas). These clauses coincide with the standard Prolog axiom-
atization of EC [20]. Clauses (6-8) map the object-level propositional connectives
to the corresponding meta-level operators.

Clauses (9-10) define holds for 2-moded GMEC-formulas. They implement
directly the statement of the remark following Lemma 2.5. In order to check that
the formula 2ϕ holds in the current state of knowledge, first we check ϕ locally and
then we ascertain that there is no future knowledge state where 2ϕ does not hold.
Clause (10) attempts to find a counterexample to this requirement, i.e. a proper
extension of the current world (i.e. a state of knowledge that orders two currently
unrelated events e1 and e2) where 2ϕ fails to hold. No such knowledge state must
exist for the body of clause (9) to hold. Notice the essential use of implication in
the goal position in these cases.
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% -------- Equality

X = X. (1)

% -------- Transitive closure of knowledge states

before E1 E2 :- (2)
beforeFact E1 E2.

before E1 E2 :- (3)
beforeFact E1 E, before E E2.

% -------- Propositional formulas

holds (period Ei P Et) :- (4)

happens Ei, initiates Ei P,

happens Et, terminates Et P,

before Ei Et,

not (broken Ei P Et).

broken Ei P Et :- (5)

happens E,

before Ei E, before E Et,

(initiates E Q ; terminates E Q),

(exclusive P Q; P = Q).

holds (not X) :- (6)

not (holds X).

holds (and X Y) :- (7)

holds X, holds Y.

holds (or X Y) :- (8)

holds X; holds Y.

% -------- Modal formulas

holds (must X) :- (9)

holds X,

not (fails must X).

fails must X :- (10)
happens E1, happens E2,

not (E1 = E2),

not (before E1 E2),

not (before E2 E1),

beforeFact E1 E2 =>

not (holds (must X)).

holds (may X) :- (11)

holds X.

holds (may X) :- (12)

happens E1, happens E2,

not (E1 = E2),

not (before E1 E2),

not (before E2 E1),

beforeFact E1 E2 =>

holds (may X).

FIGURE 3.2. GMEC, a Naive Implementation of GMEC.

The remaining clauses deal with GMEC-formulas having 3 as their main con-
nective in a similar manner. Note that the implementation of holds for GMEC-
formulas involving modalities requires the exhaustive exploration of all extensions
of the current knowledge state. This approach is clearly expensive, and for this rea-
son we qualify GMEC as the naive implementation of GMEC. An enhanced program
for GMEC that takes the specific properties of GMEC into account is analyzed in
detail in section 3.4.

In section 3.1, we described hereditary Harrop formulas as an extension to Horn
clauses permitting the use of implication and universal quantification in goal po-
sitions. Since the latter connective is available, it is tempting to replace clauses
(9-10) by
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holds (must X) :- (∗)
holds X,

forall[E1, E2]

(happens E1, happens E2,

not (before E1 E2),

not (before E2 E1),

beforeFact E1 E2 => holds (must X)).

implementing in this way the statement of Lemma 2.5 directly, instead of taking
the complicated detours dictated by the subsequent remark. Unfortunately, this
clause is not a faithful transcription of the lemma. The bug originates from the
confusion between the two forms of universal quantification discussed at the end of
Section 3.1.

Recall that universal quantification in the language of hereditary Harrop formu-
las is interpreted intensionally. Therefore, solving the body of clause (∗) requires
generating two new events, say e∗1 and e∗2, and using them to solve the embedded
goal. However, e∗1, e

∗
2 6∈ E, therefore the subgoals happens e∗1 and happens e∗2

will never succeed.
This is obviously not the behavior that we have in mind. We would rather want

the variables E1 and E2 to be instantiated to all events in E in turn, i.e. have the
quantifier interpreted extensionally. We showed in Section 3.1 how this effect can
be achieved by taking advantage of negation-as-failure and embedded implication:
recall that an extensional goal ∀x ∈ S.G(x) can be expressed in the language of
hereditary Harrop formulas as the goal (∀x. ((x ∈ S ∧ ¬G(x)) → p′)) → ¬p′ for
some new atomic formula p′. Indeed the quantifier has been moved to a program
position and is therefore solved extensionally by unification. These are precisely
the steps that led to the displayed formulation of clauses (9-10), where fails must

is used as the accessory atomic formula.

3.3. Soundness and Completeness Results

In this section, we show that GMEC is a faithful implementation of the semantics
given in Section 2.3 for GMEC. This statement is formalized in the soundness
and completeness theorem (Theorem 3.9) that concludes the section. This result
is accomplished in a number of steps: we present here only the most important
ones; their proofs, together with auxiliary lemmas, can be found in Appendix A.
First we need to prove that before is a sound and complete implementation of the
transitive closure over knowledge states, then we show that the implementation of
atomic formulas is sound and complete, and finally we will be able to freely mix
boolean connectives and modal operators.

We begin with a lemma about the properties of before. When only ordering
information is concerned, we do not need to refer to the representation of the
underlying GMEC-structure, but only implicitly to the representation of events.
First, we show that the HH-formula before e1 e2 is provable precisely when
(e1, e2) is in the transitive closure of the current knowledge state. Moreover, the
goal before e1 e2 finitely fails exactly when (e1, e2) is not in the transitive
closure of the current knowledge state.

The second part of this lemma will be of extreme importance when dealing with
negative sequents since before is the only predicate, besides holds, that has a
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recursive definition, and therefore that could diverge.
.
.

Lemma 3.1. (Soundness and completeness of before w.r.t. transitive closure)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then for any e1, e1 ∈ E

a. GMEC, o =⇒ before e1 e2 iff (e1, e2) ∈ o+;

b. GMEC, o =⇒ not (before e1 e2 ) iff (e1, e2) 6∈ o+.

On the basis of this result, we address the problem of proving that the clauses
for atomic GMEC-formulas implement the semantics of MVIs. We start by proving
a lemma that states that the predicate broken behaves like the negation of the
meta-predicates nb.

Lemma 3.2. (Correspondence between broken and nb)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC, H , o =⇒ broken e1 p e2 iff ¬nb(p, e1, e2, o
+) holds in H;

b. GMEC, H , o =⇒ not (broken e1 p e2 ) iff nb(p, e1, e2, o
+) holds in H.

At this point, we have all the tools we need to prove that the implementation of
holds on bare atomic formulas behaves isomorphically to the satisfiability relation
on these formulas. Therefore, GMEC provides an effective implementation of MVIs.

Theorem 3.6. (GMEC computes MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC, H , o =⇒ holds (period e1 p e2 ) iff

p(e1, e2) ∈MV I(o+);

b. GMEC, H , o =⇒ not (holds (period e1 p e2 )) iff

p(e1, e2) 6∈MV I(o+).

We conclude this section by stating its main result, namely, soundness and com-
pleteness of GMEC with respect to the GMEC-frame semantics.

..

Theorem 3.9. (Soundness and completeness of GMEC w.r.t. GMEC-frames)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, o a state of knowledge
and ϕ and GMEC-formula, then

a. GMEC, H , o =⇒ holds ϕ iff o+ |= ϕ;

b. GMEC, H , o =⇒ not (holds ϕ ) iff o+ 6|= ϕ.

3.4. A Semi-Naive Implementation of GMEC

Theorem 3.9 establishes a strong connection between the GMEC semantics and the
hereditary Harrop program GMEC displayed in Figure 3.2, providing in this way a
computational flavor to the Generalized Modal Event Calculus presented in Section
2. Although this is a valuable theoretical property, it loses most of its practical ap-
peal as soon as we give a close look at the treatment of the modal operators in GMEC.



31

Indeed, checking the validity of a goal having 2 as its main connective (clauses (9)
and (10)) triggers the exploration of all the states of knowledge reachable from the
current ordering information (unless failure occurs). The situation is not better in
the case of 3-moded formulas (clauses (11-12)): “only” an arbitrarily large subset
of the extension of the current state of knowledge must be examined. It is easy to
figure out that the cardinality of the set of extensions of a given state of knowl-
edge is in general exponential in the number of events. This contrasts with the
polynomial complexity of EC [8] and of its simply moded extensions CREC and
SKEC.

In this section, we solve these problems, up to a certain extent, by providing
an alternative implementation for the GMEC semantics. We will not be able to
completely avoid the exhaustive exploration of the set of possible future knowledge
states. However, the resulting decision procedure will operate solely on the local
state in a number of cases that are likely to occur in real applications (this is the
case, for instance, of the beverage dispenser example from Section 2).

The key idea behind our enhanced implementation of GMEC is to take into
account the meta-properties of our framework for the modal event calculus. First,
we exploit the intrinsic properties of GMEC. In particular, Lemmas 2.6 and 2.7
suggest a local method for checking the validity of atomic formulas preceded by
a single occurrence of a modal operator. Remember that the definition of the
functions 2MV I(·) and 3MV I(·) relies on formulas of this form. Being able to
compute the value of these functions locally is clearly of crucial importance for
practical applications. Second, we can take advantage of the equivalences that hold
in GMEC (Corollaries 2.1 and 2.2). Although they occasionally permit eliminating
occurrences of a modal operator, we will mainly use these equivalences as rewriting
rules to push the modalities as close to the atomic formulas as possible, with the
goal of using Lemmas 2.6 and 2.7 whenever possible. Alternatively, we could have
used the equivalences of Corollaries 2.1 and 2.2 to precompile a GMEC-formula
into a form on which these lemmas can be applied directly.

This technique cannot be applied systematically. In particular, we know from
Section 2.3 that formulas of the form 2(ϕ′ ∨ ϕ′′), and dually 3(ϕ′ ∧ ϕ′′), cannot be
reduced. Moreover, the formulas 23ϕ and 32ϕ are reducible only for particular
ϕs. In these cases, and only in these cases, the actual exploration of the extensions
of the current knowledge state cannot be avoided.

On the basis of these considerations, we will now describe a second (semi-naive)
implementation of GMEC in the language of hereditary Harrop formulas. The en-
hanced program, that we call GMEC+, shares with GMEC the encoding presented in
Section 3.2 for the various entities at hand. Moreover, for the sake of simplicity, we
use the same names as in Figure 3.2 for predicates performing the same function-
alities. This program is presented in Figures 3.3–3.4. Clauses (1’-8’) in Figure 3.3
do not undergo any change.

The upper part of Figure 3.4 illustrates the definition of holds for 2-moded
GMEC-formulas 2ϕ. In order to apply the previous observations, we need to look
at the main connective of ϕ. Clauses (9′) and (10′) deal with the case where ϕ is
atomic by implementing the statement of Lemma 2.6, with (10′) corresponding to
the negation of the meta-predicate nsb. Clauses (11′-12′, 15′-16′) implement some
of the reductions described by Corollaries 2.1 and 2.2. The other clauses deal with
the remaining patterns for ϕ by means of the brute-force approach derived from the
remark following Lemma 2.5. They are instances of clauses (9-10) of GMEC. Notice
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% -------- Equality

X = X. (1′)

% -------- Transitive closure of knowledge states

before E1 E2 :- (2′)
beforefact E1 E2.

before E1 E2 :- (3′)
beforefact E1 E, before E E2.

% -------- Propositional formulas

holds (period Ei P Et) :- (4′)

happens Ei, initiates Ei P,

happens Et, terminates Et P,

before Ei Et,

not (broken Ei P Et).

broken Ei P Et :- (5′)
happens E,

before Ei E, before E Et,

(initiates E Q; terminates E Q),

(exclusive P Q; P = Q).

holds (not X) :- (6′)
not (holds X).

holds (and X Y) :- (7′)
holds X, holds Y.

holds (or X Y) :- (8′)

holds X; holds Y.

FIGURE 3.3. GMEC+, a Semi-Naive Implementation of GMEC (part I ).

that clause (17′) subsumes clause (16′). Therefore, the latter ought to be given
precedence over the former.

The lower part of Figure 3.4 shows the treatment of GMEC-formulas having
3 as their main connective. The underlying idea is similar to the previous case.
Notice that clause (26′) subsumes clause (25′).

We have extensively investigated in [2, 10] two axiomatic variants of the Event
Calculus based on clauses (9′-10′) and (19′, 5′) respectively. These calculi, called
respectively the Skeptical Event Calculus (SKEC ) and the Credulous Event Cal-
culus (CREC ), now emerge as a by-product of the broader notion of Generalized
Modal Event Calculus.

We want now to prove that GMEC+ is a faithful implementation of the GMEC
semantics presented in Section 2.3. In order to achieve this goal, we need to process
GMEC+ through the same steps applied to GMEC in Section 3.3. Fortunately we can
borrow from that section Lemmas 3.4, 3.5, 3.1, 3.2 and Theorem 3.6 since on the
one hand the clauses of GMEC involved in these statements are present also in GMEC+,
and on the other hand, they are not subject to interferences from the new clauses.
This claim, which validity can be easily checked, will save us a lot of work.

Our first endeavor will be to prove that the predicate skeBroken behaves like the
negation of the meta-predicate nsb. The statement and the proof of this result recall
Lemma 3.2, according to which broken is a sound and complete implementation of
nb.

Lemma 3.3. (Correspondence between skeBroken and nsb)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then
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% -------- Must-formulas

holds (must (period Ei P Et)) :- (9′)
happens Ei, initiates Ei P,

happens Et, terminates Et P,

before Ei Et,

not (skeBroken Ei P Et).

skeBroken Ei P Et :- (10′)
happens E,

not (E = Ei), not (E = Et),

not (before E Ei),

not (before Et E),

(initiates E Q; terminates E Q),

(exclusive P Q; P = Q).

holds (must (not X)) :- (11′)
holds (not (may X)).

holds (must (and X Y)) :- (12′)
holds (and (must X) (must Y)).

holds (must (or X Y)) :- (13′)
holds (or X Y),

not (fails must or X Y).

fails must or X Y :- (14′)
happens E1, happens E2,

not (E1 = E2),

not (before E1 E2),

not (before E2 E1),

beforeFact E1 E2 =>

not (hold (must (or X Y))).

holds (must (must X)) :- (15′)
holds (must X).

holds (must (may (must X))) :- (16′)
holds (must (may X)).

holds (must (may X)) :- (17′)

holds (may X),

not (fails must may X).

fails must may X :- (18′)

happens E1, happens E2,

not (E1 = E2),

not (before E1 E2),

not (before E2 E1),

beforeFact E1 E2 =>

not (hold (must (may X))).

%-------- May-formulas

holds (may (period Ei P Et)) :- (19′)
happens Ei, initiates Ei P,

happens Et, terminates Et P,

not (before Et Ei),

not (broken Ei P Et).

holds (may (not X)) :- (20′)

holds (not (must X)).

holds (may (and X Y)) :- (21′)
holds (and X Y).

holds (may (and X Y)) :- (22′)
happens E1, happens E2,

not (E1 = E2),

not (before E1 E2),

not (before E2 E1),

beforeFact E1 E2 =>

holds (may (and X Y)).

holds (may (or X Y)) :- (23′)
holds (or (may X) (may Y)).

holds (may (may X)) :- (24′)
holds (may X).

holds (may (must (may X))) :- (25′)

holds (may (must X)).

holds (may (must X)) :- (26′)
holds (must X).

holds (may (must X)) :- (27′)
happens E1, happens E2,

not (E1 = E2),

not (before E1 E2),

not (before E2 E1),

beforeFact E1 E2 =>

holds (may (must X)).

FIGURE 3.4. GMEC+, a Semi-Naive Implementation of GMEC (part II ).

a. GMEC+, H , o =⇒ skeBroken e1 p e2 iff

¬nsb(p, e1, e2, o
+) holds in H;

b. GMEC+, H , o =⇒ not (skeBroken e1 p e2 ) iff

nsb(p, e1, e2, o
+) holds in H.

We will now prove that holds applied to the encoding of atomic formulas pre-
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ceded by one occurrence of a modal operator behaves isomorphically to the satis-
fiability relation for these formulas. Therefore, GMEC+ provides an effective imple-
mentation of MVIs (by Theorem 3.6), necessary MVIs and possible MVIs.

We first consider 2-moded atomic formulas and make explicit their relation to
necessary MVIs. The proof of this statement relies on the previous lemma.

Theorem 3.10. (GMEC+ computes necessary MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC+, H , o =⇒ holds (must (period e1 p e2 )) iff

p(e1, e2) ∈ 2MV I(o+);

b. GMEC+, H , o =⇒ not (holds (must (period e1 p e2 ))) iff

p(e1, e2) 6∈ 2MV I(o+).

A similar result holds for possible MVIs, formalized as the function 3MV I(·).
Indeed, holds constitutes a decision procedure for the validity relation for 3-moded
atomic formulas.

Theorem 3.11. (GMEC+ computes possible MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC+, H , o =⇒ holds (may (period e1 p e2 )) iff

p(e1, e2) ∈ 3MV I(o+);

b. GMEC+, H , o =⇒ not (holds (may (period e1 p e2 ))) iff

p(e1, e2) 6∈ 3MV I(o+).

Finally, we can prove that a formula is valid in the GMEC semantics if and
only if the goal obtained by encoding it and using it as the argument of holds is
derivable in GMEC+. Moreover, a goal of this form has only finite derivations since
each step in the computation either simplifies the encoded formula itself within the
current ordering, or leads to a more complete state of knowledge but keeps the goal
unchanged. Therefore holds captures also the unsatisfiability of a GMEC-formula.

Theorem 3.12. (Soundness and completeness of GMEC+ w.r.t. GMEC-frames)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, o a state of knowledge
and ϕ and GMEC-formula, then

a. GMEC+, H , o =⇒ holds ϕ iff o+ |= ϕ;

b. GMEC+, H , o =⇒ not (holds ϕ ) iff o+ 6|= ϕ.

4. CONCLUSIONS AND FURTHER DEVELOPMENTS

This paper proposed and formally analyzed GMEC, a modal extension of EC to
compute current, necessary and possible MVIs in a context where the ordering of
events is relative, partial and incremental. Unlike previous modal extensions of
EC (e.g., MEC [2]), GMEC supports a free mix of boolean connectives and modal
operators. The paper presented two sound and complete implementations of GMEC
as logic programs in the language of hereditary Harrop formulas. Maybe more
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important than the results themselves is the method we adopted to achieve them.
First, we provided a precise semantic formalization in order to capture the intuitions
underlying EC and its modal extensions. In this way, we could prove properties
of EC (and subsequentially of GMEC) rather than claim them. Second, we used a
proof-theoretic approach for proving the faithfulness of our implementations with
respect to the behavior of GMEC, as expressed by the semantics.

We are developing this work in several directions. First, we are investigating in-
termediate modal event calculi featuring the polynomial complexity of MEC with-
out sacrificing too much of the expressive power of GMEC. Preliminary results
can be found in [4], where we developed a new modal event calculus which retains
enough of the expressive power of GMEC while admitting an efficient polynomial
implementation in the style of MEC. The practical usefulness of such a calculus is
showed by applying it to a case study taken from the domain of fault diagnosis. We
are also exploring the possibility of dealing with preconditions, boolean connectives
and modal operators in a uniform framework. As proved in [11], an indiscrimi-
nated use of preconditions immediately makes the problem of MVIs computation
NP-hard. Nevertheless, we believe that a formal study of various modal event cal-
culi with preconditions can shed some light on the dynamics of preconditions, and
possibly lead to polynomial approximations of the computation of MVIs. Prelimi-
nary results in this direction can be found in [3]. Finally, we are considering more
complex specifications of the ordering information such as non-committed data (e.g.
disjunctive orderings) and possibly inconsistent orderings.
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A. PROOFS AND AUXILIARY LEMMAS FROM SECTION 3

Lemma 3.4 (Soundness and completeness of = w.r.t. equality for events)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, e1, e2 ∈ E and o a state of
knowledge. Then

a. GMEC, H , o =⇒ e1 = e2 is derivable iff e1 = e2;

b. GMEC, H , o =⇒ not ( e1 = e2 ) is derivable iff e1 6= e2.

Proof.
(a. ⇒) Being the goal e1 = e2 atomic, the last rule applied must have been atom+

with clause (1) and substitution σ = {X 7→ e1 , X 7→ e2 }. This substitution is well-
formed iff e1 = e2 . Therefore, we have that e1 = e2 by the injectivity of the represen-
tation function · E .

(a. ⇐) If e1 = e2, a derivation of GMEC, H , o =⇒ e1 = e2 is obtained by application
of rules atom+ and true+.

(b. ⇒) By the uniform provability property, the last inference rule applied is naf+.
Therefore, the sequent GMEC, H , o 6=⇒ e1 = e2 is provable. By property 3.1, the
sequent GMEC, H , o =⇒ e1 = e2 has no derivation. Finally, by (a), e1 6= e2.

(b. ⇐) If e1 6= e2, we have that e1 6= e2 since · E is injective. Therefore, rule atom–

succeeds with no premisses for the sequent GMEC, H , o 6=⇒ e1 = e2 . Therefore, by rule

naf+, GMEC, H , o =⇒ not ( e1 = e2 ) is derivable. 2
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Lemma 3.5 (Soundness and completeness of = w.r.t. equality for properties)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, p1, p2 ∈ P and o a state of
knowledge. Then

a. GMEC, H , o =⇒ p1 = p2 is derivable iff p1 = p2;

b. GMEC, H , o =⇒ not ( p1 = p2 ) is derivable iff p1 6= p2.

Proof. Similar to the proof of previous lemma. 2

Lemma 3.1 (Soundness and completeness of before w.r.t. transitive closure)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then for any e1, e2 ∈ E

a. GMEC, H , o =⇒ before e1 e2 is derivable iff (e1, e2) ∈ o+;

b. GMEC, H , o =⇒ not (before e1 e2 ) is derivable iff (e1, e2) 6∈ o+.

Proof. We will provide a rigorous proof of this simple statement. The proofs given in
the rest of this appendix will be more sketchy. However, it should be clear to the reader
how to rewrite them in a similar style. Indeed, in order to limit the length of these proofs,
we will mainly focus on the critical steps, that correspond to the applications of rules
atom+ and atom–. The application of the remaining rules will often be maintained
implicit in the informal arguments used to chain critical rules.

Throughout this and many of the subsequent inductive proofs, we will rely on the
following strict schema. The cases of the induction are treated in dedicated paragraphs
headed with an identifying label. Within each paragraph, the proof is organized in a series
of lines consisting of three zones. On the left, we have a counter used for referencing. The
central field contains a formal relation that is claimed to hold. The right part of each line
provides a justification of this claim. Each step is in general justified with respect to the
previous line (to the statement of the theorem in the case of the first line). Occasionally,
the justification will refer to one or more non-immediate predecessors of the current line.
In these cases, we take advantage of the counter. In certain occasions, we will have to
follow alternative courses in the proof, and each should be proved in order for the overall
proof to be correct. We use bullets (•) to identify the first line of each alternative, and
indent the subsequent lines.

(a. ⇒) We proceed by induction on the structure of a derivation tree for the positive
sequent GMEC, H , o =⇒ before e1 e2 . Since before e1 e2 is atomic, the last rule
applied must have been atom+. The only program formulas that match this atom are
clauses (2) and (3). Therefore, the proof can proceed in two ways:

[1] GMEC, H , o =⇒ before e1 e2 assumption

[2] • GMEC, H , o =⇒ beforeFact e1 e2 by rule atom+ on [1] and clause (2),

[3] (beforeFact e1 e2 ) ∈ o by rule atom+ on [2] and since no rule for
beforeFact is defined in GMEC or H ,

[4] (e1, e2) ∈ o by definition of · O,

[5] (e1, e2) ∈ o+ by definition of transitive closure;

[6] • GMEC, H , o =⇒ beforeFact e1 e ,

before e e2

by rule atom+ on [1] and clause (3), for some
event e,

[7] GMEC, H , o =⇒ beforeFact e1 e by rule and+ on [6] (left branch),

[8] (beforeFact e1 e ) ∈ o by rule atom+ on [7] and since no rule for
beforeFact is defined in GMEC or H ,

[9] (e1, e) ∈ o by definition of · O,
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[10] GMEC, H , o =⇒ before e e2 by rule and+ on [6] (right branch),

[11] (e, e2) ∈ o+ by induction hypothesis on [10],

[12] (e1, e2) ∈ o+ by definition of transitive closure on [9, 11].

(a. ⇐) Let σ = e′1 . . . e
′
l, with e′1 = e1 and e′l = e2 be a sequence of events such that,

for i = 1 . . . l − 1, (e′i, e
′
i+1) ∈ o, proving in this way that (e1, e2) ∈ o+. We conduct the

proof by induction on the length l of this sequence.

Case l = 1:

[1] (e1, e2) ∈ o assumption

[2] (beforeFact e1 e2 ) ∈ o by definition of · O,

[3] GMEC, H , o =⇒ beforeFact e1 e2 by rules true+ and atom+,

[4] GMEC, H , o =⇒ before e1 e2 by rules atom+ on [3] and clause (2).

Case l > 1: Then σ = e1, e . . . e2 with (e1, e) ∈ o and (e, e2) ∈ o+. Thus

[1] (e1, e) ∈ o and (e, e2) ∈ o+ assumption

[2] (e1, e) ∈ o conjunct from [1],

[3] (beforeFact e1 e ) ∈ o by definition of · O,

[4] GMEC, H , o =⇒ beforeFact e1 e by rules true+ and atom+,

[5] (e, e2) ∈ o+ conjunct from [1],

[6] GMEC, H , o =⇒ before e e2 by induction hypothesis,

[7] GMEC, H , o =⇒ beforeFact e1 e ,

before e e2

by rule and+ on [4, 6],

[8] GMEC, H , o =⇒ before e1 e2 by rule atom+ on [7] and clause (2).

(b. ⇒) The last rule applied in a derivation of GMEC, H , o =⇒ not (before e1 e2 )

must have been naf+. Therefore, the negative sequent GMEC, H , o 6=⇒ before e1 e2
has a derivation. Now, by property 3.1, the sequent GMEC, H , o =⇒ before e1 e2 is
not derivable. Thus, by (a), (e1, e2) 6∈ o+.

(b. ⇐) By property 3.2, it is enough to show that, whenever (e1, e2) 6∈ o+, the sequent
GMEC, H , o =⇒ before e1 e2 is finitely non-provable. We show a stronger property,
i.e. that the search for a proof of a sequent of this form must terminate (either with success,
as in (a), or with failure).

Assume ab absurdum that the sequent GMEC, H , o =⇒ before e1 e2 has an infinite
derivation. Being the goal atomic, this sequent must result from the application of rule
atom+ to either clause (2) or clause (3), which define before. As the former is a fact in
program GMEC, we must discard this alternative: the derivation would otherwise terminate
after one application of rule true+. Therefore, rule atom+ has been used on clause (3)
and the sequent GMEC, H , o =⇒ beforeFact e1 ê1 , before ê1 e2 for some event
ê1 ∈ E. By an application of rule and+, we reduce this sequent to GMEC, H , o =⇒
beforeFact e1 ê1 and GMEC, H , o =⇒ before ê1 e2 . By definition of · O, the
former corresponds to (e1, ê1) ∈ o. The latter is a reinstantiation of our original problem.

By iterating this reasoning pattern ad infinitum, we conclude that the recursive clause

(3) must have been applied infinitely many time for the original sequent to have an in-

finite derivation. In particular, the sequents GMEC, H , o =⇒ beforeFact êi êi+1 are

derivable for an infinite sequence of events {êi}i∈ω (with ê0 = e1). Thus (êi, êi+1) ∈ o

for all i ∈ ω. At this point, we must remember that E is finite. Therefore, there are two

distinct indices i, j with i < j such that êi = êj . Then, by definition of transitive closure,

we have that (êi, êj) ∈ o+, but this violates the irreflexivity of o+. 2

Lemma 3.2 (Correspondence between broken and nb)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then
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a. GMEC, H , o =⇒ broken e1 p e2 iff ¬nb(p, e1, e2, o
+) holds in H;

b. GMEC, H , o =⇒ not (broken e1 p e2 ) iff nb(p, e1, e2, o
+) holds in H.

Proof.
(a. ⇒) Assume that the sequent GMEC, H , o =⇒ broken e1 p e2 is derivable. By
rule atom+ on clause (5) and a number of applications of rule and+, we are left with the
sequents below. For the sake of conciseness, we display the proof in a tabular form: the
left column displays the derived sequents, the corresponding meta-mathematical property
is shown in the central column, and the right column contains a justification of this
correspondence.

GMEC, H , o =⇒ happens e e ∈ E by definition of E ,

GMEC, H , o =⇒ before e1 e (e1, e) ∈ o+ by lemma 3.1,

GMEC, H , o =⇒ before e e2 (e, e2) ∈ o+ by lemma 3.1,

GMEC, H , o =⇒ initiates e q ;

terminates e q

(e ∈ [q〉
∨ e ∈ 〈q])

by definition of [·〉

and of 〈·] ,

GMEC, H , o =⇒ exclusive p q ;

p = q

(e ∈]p, q[
∨ p = q)

by definition of ]·,·[

and lemma 3.5.

We need to take the conjunction of the items in the central column in order to obtain
a statement equivalent to GMEC, H , o =⇒ broken e1 p e2 :

(e1, e) ∈ o
+ ∧ (e, e2) ∈ o

+ ∧ (e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q).

We now abstract over the event e and the property q and obtain the formula

∃e ∈ E. ∃q ∈ P. ((e1, e) ∈ o
+ ∧ (e, e2) ∈ o

+ ∧ (e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q))

that is equivalent, after some logical manipulations, to ¬nb(p, e1, e2, o
+).

(a. ⇐) Assume now that ¬nb(p, e1, e2, o
+) is valid in H, i.e. that

∃e ∈ E. ((e1, e) ∈ o
+ ∧ (e, e2) ∈ o

+ ∧ ∃q ∈ P. ((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q))).

Let e′ and q′ be such e and q respectively. Then, by instantiation, we obtain:

(e1, e
′) ∈ o

+ ∧ (e′, e2) ∈ o
+ ∧ (e′ ∈ [q′〉 ∨ e

′ ∈ 〈q′]) ∧ (]p, q′[∨ p = q
′).

Each conjunct, plus the fact that e′ ∈ E, can be immediately rewritten as a valid sequent.
We use conventions similar to the ones adopted in the first part of this proof.

e′ ∈ E GMEC, H , o =⇒ happens e′ by definition of E ,

(e1, e
′) ∈ o+ GMEC, H , o =⇒ before e1 e′ by lemma 3.1,

(e′, e2) ∈ o+ GMEC, H , o =⇒ before e′ e2 by lemma 3.1,

(e′ ∈ [q〉
∨ e′ ∈ 〈q])

GMEC, H , o =⇒ initiates e′ q ;

terminates e′ q

by definition of [·〉

and of 〈·] ,

(e ∈]p, q[
∨ p = q)

GMEC, H , o =⇒ exclusive p q ;

p = q

by definition of ]·,·[

and lemma 3.5.

We have proved in this way every goal in the body of clause (5). Thus, by a number of
applications of rule and+ and an application of rule atom+, the head of this clause is
valid, i.e.

GMEC, H , o =⇒ broken e1 p e2 .

(b. ⇒) By property 3.1 and (a).

(b. ⇐) By rule naf+ and properties 3.2–3.3, we are reduced to proving that GMEC, H , o

=⇒ broken e1 p e2 has only (failed) finite derivations. Assume ab absurdum that
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there is an infinite derivation of this sequent. The last inference rules applied in this

derivation must be atom+ and and+. Therefore, one of the atomic formulas in the body

of rule (5) must have an infinite derivation. Clearly, only predicates having a recursive

definition are candidate. The only predicate having this property is before, but by lemma

3.1 this sequent has finite derivations only. 2

Theorem 3.6 (GMEC computes MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC, H , o =⇒ holds (period e1 p e2 ) iff p(e1, e2) ∈MV I(o+);

b. GMEC, H , o =⇒ not (holds (period e1 p e2 )) iff p(e1, e2) 6∈MV I(o+).

Proof.
(a. ⇒) Assume that GMEC, H , o =⇒ holds (period e1 p e2 ). We prove that,
under this hypothesis, (p(e1, e2), o

+) ∈ υH; the thesis will follow by the definitions of
validity and of the function MV I(·).

By applying rule atom+ on clause (4), and then rule and+, we get reduced to proving
the following relations, where, as in the proof of lemma 3.2, the left and central columns
stand in an if-and-only-if relation justified by the right column.

GMEC, H , o =⇒ happens e1 e1 ∈ E by definition of E ,

GMEC, H , o =⇒ initiates e1 p e1 ∈ [p〉 by definition of [·〉 ,

GMEC, H , o =⇒ happens e2 e2 ∈ E by definition of E ,

GMEC, H , o =⇒ terminates e2 p e2 ∈ 〈p] by definition of 〈·] ,

GMEC, H , o =⇒ before e1 e2 (e1, e2) ∈ o+ by lemma 3.1,

GMEC, H , o =⇒
not (broken e1 p e2 )

nb(p, e1, e2, o
+) by lemma 3.2.

Now, it suffices to notice that the second, fourth, fifth and sixth relation on the right-
hand side correspond respectively to the conditions (i), (ii), (iii) and (iv) of the defini-
tion of evaluation. Therefore (p(e1, e2), o

+) ∈ υH, thus IH; o+ |= p(e1, e2) and finally
p(e1, e2) ∈ MV I(o+).

(a. ⇐) Assume that p(e1, e2) ∈ MV I(o+). Therefore, by definition, (p(e1, e2), o
+) ∈

υH, i.e.
e1 ∈ [p〉 ∧ e2 ∈ 〈p] ∧ (e1, e2) ∈ o+ ∧ nb(p, e1, e2, o

+).
Each conjunct and the fact that e1, e2 ∈ E can be related to sequent derivations by
reversing the previous construction:

e1 ∈ E GMEC, H , o =⇒ happens e1 by definition of E ,

e1 ∈ [p〉 GMEC, H , o =⇒ initiates e1 p by definition of [·〉 ,

e2 ∈ E GMEC, H , o =⇒ happens e2 by definition of E ,

e2 ∈ 〈p] GMEC, H , o =⇒ terminates e2 p by definition of 〈·] ,

(e1, e2) ∈ o+ GMEC, H , o =⇒ before e1 e2 by lemma 3.1,

nb(p, e1, e2, o
+) GMEC, H , o =⇒

not (broken e1 p e2 )

by lemma 3.2.

Therefore, we have derivations for all the atomic formulas in the body of clause 4. By
some applications of rule and+ and then of rule atom+, we produce a derivation for the
sequent

GMEC, H , o =⇒ holds (period e1 p e2 )

(b. ⇒) By property 3.1 and (a).
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(b. ⇐) As in the proof of lemma 3.2, it suffices to prove that the sequent:

GMEC, H , o =⇒ holds (period e1 p e2 )

has only (possibly failed) finite derivations. The last inference rule applied during the

search for a proof of this sequent must be atom+ on clause (4). Therefore, it has an

infinite derivation if and only if an atomic subgoal in the body of this clause has an

infinite derivation. However, by lemmas 3.1 and 3.2, and the definition of H , every such

subgoal is finitely provable or unprovable. 2

Lemma 3.7 (Soundness of GMEC w.r.t. the GMEC-frame semantics)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, o a state of knowledge and
ϕ and GMEC-formula, then

a. if GMEC, H , o =⇒ holds ϕ , then IH; o+ |= ϕ;

b. if GMEC, H , o 6=⇒ holds ϕ , then IH; o+ 6|= ϕ.

Proof. Since the definition of the predicate holds contains recursive calls in the context
of negation-as-failure (clauses (6), (9) and (10)), the statements (a) and (b) depend on
each other. Therefore, we need to use a proof technique somewhat more elaborated than
in the case of the previous results.

Indeed we will prove the two statements simultaneously by mutual induction. The
inductive argument is on the ordered pair consisting of the number of connectives in the
formula ϕ and height of the derivation trees for the sequents

a. GMEC, H , o =⇒ holds ϕ and

b. GMEC, H , o 6=⇒ holds ϕ .

Technically, this corresponds to a nested induction over the structure of ϕ and on the
structure of the two sequent derivations.

For the sake of readability, we use singly framed labels to denote the proof cases for
(a) and double frames for the proof cases for (b).

ϕ = p(e1, e2) and ϕ = p(e1, e2) The result follows by theorem 3.6.

ϕ = ¬ϕ′

[1] GMEC, H , o =⇒ not (holds ϕ′ ) by rule atom+ on clause (6),

[2] GMEC, H , o 6=⇒ holds ϕ′ by rule naf+,

[3] IH; o+ 6|= ϕ′ by induction hypothesis (b),

[4] IH; o+ |= ¬ϕ′ by definition of |=.

ϕ = ¬ϕ′

[1] GMEC, H , o 6=⇒ not (holds ϕ′ ) by rule atom– on clause (6),

[2] GMEC, H , o =⇒ holds ϕ′ by rule naf–,

[3] IH; o+ |= ϕ′ by induction hypothesis (a),

[4] IH; o+ 6|= ¬ϕ′ by the consistency of |=.

ϕ = ϕ′ ∧ ϕ′′

[1] GMEC, H , o =⇒ holds ϕ′ , holds ϕ′′ by rules atom+ on clause (7),

[2] GMEC, H , o =⇒ holds ϕ′ by rule and+ on [1],

[3] IH; o+ |= ϕ′ by induction hypothesis (a),
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[4] GMEC, H , o =⇒ holds ϕ′′ by rule and+ on [1],

[5] IH; o+ |= ϕ′′ by induction hypothesis (a),

[6] IH; o+ |= ϕ′ ∧ ϕ′′ by definition of |= on [3, 5].

ϕ = ϕ′ ∧ ϕ′′

[1] GMEC, H , o 6=⇒ holds ϕ′ , holds ϕ′′ by rules atom– on clause (7),

[2] • GMEC, H , o 6=⇒ holds ϕ′ by rule and–1 on [1],

[3] IH; o+ 6|= ϕ′ by induction hypothesis (b),

[4] • GMEC, H , o 6=⇒ holds ϕ′′ by rule and–2 on [1],

[5] IH; o+ 6|= ϕ′′ by induction hypothesis (b),

[6] IH; o+ 6|= ϕ′ ∧ ϕ′′ by the consistency of |= on [3, 5].

ϕ = ϕ′ ∨ ϕ′′

[1] GMEC, H , o =⇒ holds ϕ′ ; holds ϕ′′ by rules atom+ on clause (8),

[2] • GMEC, H , o =⇒ holds ϕ′ by rule or+1 on [1],

[3] IH; o+ |= ϕ′ by induction hypothesis (a),

[4] • GMEC, H , o =⇒ holds ϕ′′ by rule or+2 on [1],

[5] IH; o+ |= ϕ′′ by induction hypothesis (a),

[6] IH; o+ |= ϕ′ ∨ ϕ′′ by definition of |= on [3, 5].

ϕ = ϕ′ ∨ ϕ′′

[1] GMEC, H , o 6=⇒ holds ϕ′ ; holds ϕ′′ by rules atom– on clause (8),

[2] GMEC, H , o 6=⇒ holds ϕ′ by rule or– on [1],

[3] IH; o+ 6|= ϕ′ by induction hypothesis (b),

[4] GMEC, H , o 6=⇒ holds ϕ′′ by rule or– on [1],

[5] IH; o+ 6|= ϕ′′ by induction hypothesis (b),

[6] IH; o+ 6|= ϕ′ ∨ ϕ′′ by the consistency of |= on [3, 5].

ϕ = 2ϕ′

[1] GMEC, H , o =⇒ holds ϕ′ ,

not (fails must ϕ′ )

by rule atom+ on clause (9),

[2] GMEC, H , o =⇒ holds ϕ′ by rule and+ on [1],

[3] IH; o+ |= ϕ′ by induction hypothesis (a),

[4] GMEC, H , o =⇒ not (fails must ϕ′ ) by rule and+ on [1],

[5] GMEC, H , o 6=⇒ fails must ϕ′ by rules naf+,

[6] GMEC, H , o 6=⇒ happens t1,

happens t2,

not (before t1 t2),

not (before t2 t1),

beforeFact t1 t2
=> not (holds (must ϕ′ ))

by rule atom– on clause (10); since the
variables E1 and E2 are implicitly quan-

tified in front of the clause, this relation
should hold for all terms t1 and t2,

[7] • GMEC, H , o 6=⇒ happens t1 by rule and–1 on [6],

[8] t1 6∈ E by rule atom– and definition of E ,

[9] • GMEC, H , o 6=⇒ happens t2 by rules and–2 and and–1 on [6],

[10] t2 6∈ E by rule atom– and definition of E ,

[11] • GMEC, H , o 6=⇒ not (before t1 t2) by rules and–2 and and–1 on [6],

[12] GMEC, H , o =⇒ before t1 t2 by rules naf–,

[13] ( t1 , t2 ) ∈ o+ by lemma 3.1,

[14] • GMEC, H , o 6=⇒ not (before t2 t1) by rules and–2 and and–1 on [6],

[15] GMEC, H , o =⇒ before t2 t1 by rules naf–,

[16] ( t2 , t1 ) ∈ o+ by lemma 3.1,
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[17] • GMEC, H , o 6=⇒ beforeFact t1 t2
=> not (holds (must ϕ′ ))

by rule and–2 on [6],

[18] GMEC, H , o ↑ ( t1 , t2 )
6=⇒ not (holds (must ϕ′ ))

by rule impl– and the definition of · O,

[19] GMEC, H , o ↑ ( t1 , t2 )
=⇒ holds (must ϕ′ )

by rule naf–,

[20] IH; {o ↑ ( t1 , t2 )}+ |= 2ϕ′ by induction hypothesis (a), since {o ↑
( t1 , t2 )}+ is a proper extension of o,

[21] ∀t1, t2. ( t1 6∈ E

∨ t2 6∈ E

∨ ( t1 , t2 ) ∈ o+

∨ ( t2 , t1 ) ∈ o+

∨ IH; {o ↑ ( t1 , t2 )}+ |= 2ϕ′)

by taking the disjunction of [8, 10, 13,
16, 20],

[22] ¬∃t1, t2. ( t1 ∈ E

∧ t2 ∈ E

∧ ( t1 , t2 ) 6∈ o+

∧ ( t2 , t1 ) 6∈ o+

∧ IH; {o ↑ ( t1 , t2 )}+ 6|= 2ϕ′)

by logical equivalences,

[23] ¬∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ 6|= 2ϕ′)

by definition of · E ,

[24] IH; o+ |= 2ϕ′ by combining [3] and [23] and lemma

2.5.

ϕ = 2ϕ′

[1] GMEC, H , o 6=⇒ holds ϕ′ ,

not (fails must ϕ′ )

by rule atom– on clause (9),

[2] • GMEC, H , o 6=⇒ holds ϕ′ by rule and–1 on [1]

[3] IH; o+ 6|= ϕ′ by induction hypothesis (b),

[4] • GMEC, H , o 6=⇒ not (fails must ϕ′ ) by rule and–1 on [1]

[5] GMEC, H , o =⇒ fails must ϕ′ by rule naf–,

[6] GMEC, H , o =⇒ happens t1,

happens t2,

not (before t1 t2),

not (before t2 t1),

beforeFact t1 t2
=> not (holds (must ϕ′ ))

by rule atom+ on clause (10), for some
term t1 and t2,

[7] GMEC, H , o =⇒ happens t1 by rule and+ on [6],

[8] t1 = e1 with e1 ∈ E by definition of E ,

[9] GMEC, H , o =⇒ happens t2 by rule and+ on [6],

[10] t2 = e2 with e2 ∈ E by definition of E ,

[11] GMEC, H , o =⇒ not (before e1 e2 ) by rule and+ on [6],

[12] (e1, e2) 6∈ o+ by lemma 3.1,

[13] GMEC, H , o =⇒ not (before e2 e1 ) by rule and+ on [6],

[14] (e2, e1) 6∈ o+ by lemma 3.1,

[15] GMEC, H , o =⇒ beforeFact e1 e2
=> not (holds (must ϕ′ ))

by rule and+ on [6],

[16] GMEC, H , o ↑ (e1, e2)
=⇒ not (holds (must ϕ′ ))

by rule impl+ and the definition of ·
O,

[17] GMEC, H , o ↑ (e1, e2)
6=⇒ holds (must ϕ′ )

by rule naf+,

[18] IH; {o ↑ (e1, e2)}
+ 6|= 2ϕ′ by induction hypothesis (b), since {o ↑

( t1 , t2 )}+ is a proper extension of o,
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[19] ∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ 6|= 2ϕ′)

by taking the conjunction of [8, 10, 12,
14, 18],

[20] IH; o+ 6|= 2ϕ′ by Lemma 2.5 on [3, 19].

ϕ = 3ϕ′

[1] • GMEC, H , o =⇒ holds ϕ′ by rules atom+ on clause (11),

[2] IH; o+ |= ϕ′ by induction hypothesis (a),

[3] • GMEC, H , o =⇒ happens t1,

happens t2,

not (before t1 t2),

not (before t2 t1),

beforeFact t1 t2
=> holds (may ϕ′ )

by rule atom+ on clause (12), for some

term t1 and t2,

[4] GMEC, H , o =⇒ happens t1 by rule and+ on [3],

[5] t1 = e1 with e1 ∈ E by definition of E ,

[6] GMEC, H , o =⇒ happens t2 by rule and+ on [3],

[7] t2 = e2 with e2 ∈ E by definition of E ,

[8] GMEC, H , o =⇒ not (before e1 e2 ) by rule and+ on [3],

[9] (e1, e2) 6∈ o+ by lemma 3.1,

[10] GMEC, H , o =⇒ not (before e2 e1 ) by rule and+ on [3],

[11] (e2, e1) 6∈ o+ by lemma 3.1,

[12] GMEC, H , o =⇒ beforeFact e1 e2
=> holds (may ϕ′ )

by rule and+ on [3],

[13] GMEC, H , o ↑ (e1, e2)
=⇒ holds (may ϕ′ )

by rule impl+ and the definition of ·
O,

[14] IH; {o ↑ (e1, e2)}
+ |= 3ϕ′ by induction hypothesis (b), since {o ↑

( t1 , t2 )}+ is a proper extension of o,

[15] ∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ |= 3ϕ′)

by taking the conjunction of [5, 7, 9,

11, 14],

[16] IH; o+ |= 3ϕ′ by lemma 2.5 on [2, 15].

ϕ = 3ϕ′

[1] GMEC, H , o 6=⇒ holds ϕ′ by rules atom– on clause (11),

[2] IH; o+ 6|= ϕ′ by induction hypothesis (b),

[3] GMEC, H , o 6=⇒ happens t1,

happens t2,

not (before t1 t2),

not (before t2 t1),

beforeFact t1 t2
=> holds (may ϕ′ )

by rule atom– on clause (12); since the
variables E1 and E2 are implicitly quan-

tified in front of the clause, this relation
should hold for all terms t1 and t2,

[4] • GMEC, H , o 6=⇒ happens t1 by rule and–1 on [3],

[5] t1 6∈ E by rule atom– and definition of E ,

[6] • GMEC, H , o 6=⇒ happens t2 by rules and–2 and and–1 on [3],

[7] t2 6∈ E by rule atom– and definition of E ,

[8] • GMEC, H , o 6=⇒ not (before t1 t2) by rules and–2 and and–1 on [3],

[9] GMEC, H , o =⇒ before t1 t2 by rules naf–,

[10] ( t1 , t2 ) ∈ o+ by lemma 3.1,

[11] • GMEC, H , o 6=⇒ not (before t2 t1) by rules and–2 and and–1 on [3],

[12] GMEC, H , o =⇒ before t2 t1 by rules naf–,

[13] ( t2 , t1 ) ∈ o+ by lemma 3.1,
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[14] • GMEC, H , o 6=⇒ beforeFact t1 t2
=> holds (may ϕ′ )

by rule and–2 on [3],

[15] GMEC, H , o ↑ ( t1 , t2 )
6=⇒ holds (must ϕ′ )

by rule impl– and the definition of · O,

[16] IH; {o ↑ ( t1 , t2 )}+ 6|= 3ϕ′ by induction hypothesis (b), since {o ↑
( t1 , t2 )}+ is a proper extension of o,

[17] ∀t1, t2. ( t1 6∈ E

∨ t2 6∈ E

∨ ( t1 , t2 ) ∈ o+

∨ ( t2 , t1 ) ∈ o+

∨ IH; {o ↑ ( t1 , t2 )}+ 6|= 3ϕ′)

by taking the disjunction of [5, 7, 10,

13, 16],

[18] ¬∃t1, t2. ( t1 ∈ E

∧ t2 ∈ E

∧ ( t1 , t2 ) 6∈ o+

∧ ( t2 , t1 ) 6∈ o+

∧ IH; {o ↑ ( t1 , t2 )}+ |= 3ϕ′)

by logical equivalences,

[19] ¬∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ |= 3ϕ′)

by definition of · E ,

[20] IH; o+ 6|= 3ϕ′ by combining [2] and [19] and lemma
2.5. 2

Lemma 3.8 (Completeness of GMEC w.r.t. the GMEC-frame semantics)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, o a state of knowledge and
ϕ and GMEC-formula, then

a. if IH; o+ |= ϕ, then GMEC, H , o =⇒ holds ϕ ;

b. if IH; o+ 6|= ϕ, then GMEC, H , o 6=⇒ holds ϕ .

Proof. As in the previous lemma, we need to cope with the two statements simultane-
ously. Therefore, we proceed by a nested mutual induction on the structure of the formula
ϕ and the cardinality of Ext(o+).

We rely on essentially the same conventions as in the proof of lemma 3.7. The two
proofs are essentially dual.

ϕ = p(e1, e2) and ϕ = p(e1, e2) The desired result follows by theorem 3.6.

ϕ = ¬ϕ′

[1] IH; o+ 6|= ϕ′ by definition of |=,

[2] GMEC, H , o 6=⇒ holds ϕ′ by induction hypothesis (b),

[3] GMEC, H , o =⇒ not (holds ϕ′ ) by rule naf+,

[4] GMEC, H , o =⇒ holds ¬ϕ′ by rule atom+ on clause (6).

ϕ = ¬ϕ′

[1] IH; o+ |= ϕ′ by the consistency of |=,

[2] GMEC, H , o =⇒ holds ϕ′ by induction hypothesis (a),

[3] GMEC, H , o 6=⇒ not (holds ϕ′ ) by rule naf–,

[4] GMEC, H , o 6=⇒ holds ¬ϕ′ by rule atom– on clause (6).

ϕ = ϕ′ ∧ ϕ′′
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[1] IH; o+ |= ϕ′ and IH; o+ |= ϕ′′ by definition of |=,

[2] IH; o+ |= ϕ′ conjunct in [1]

[3] GMEC, H , o =⇒ holds ϕ′ by induction hypothesis (a),

[4] IH; o+ |= ϕ′′ conjunct in [1]

[5] GMEC, H , o =⇒ holds ϕ′′ by induction hypothesis (a),

[6] GMEC, H , o =⇒ holds ϕ′ , holds ϕ′′ by rule and+ on [3, 5],

[7] GMEC, H , o =⇒ holds ϕ′ ∧ ϕ′′ by rule atom+ on clause (7).

ϕ = ϕ′ ∧ ϕ′′

[1] IH; o+ 6|= ϕ′ or IH; o+ 6|= ϕ′′ by the consistency of |=,

[2] • IH; o+ 6|= ϕ′ subcase of [1]

[3] GMEC, H , o 6=⇒ holds ϕ′ by induction hypothesis (b),

[4] GMEC, H , o 6=⇒ holds ϕ′ , holds ϕ′′ by rule and–1,

[5] • IH; o+ 6|= ϕ′′ subcase of [1]

[6] GMEC, H , o 6=⇒ holds ϕ′′ by induction hypothesis (b),

[7] GMEC, H , o 6=⇒ holds ϕ′ , holds ϕ′′ by rule and–2,

[8] GMEC, H , o 6=⇒ holds ϕ′ ∧ ϕ′′ by rules atom– on [4, 7] and clause (7).

ϕ = ϕ′ ∨ ϕ′′

[1] IH; o+ |= ϕ′ or IH; o+ |= ϕ′′ by definition of |=,

[2] • IH; o+ |= ϕ′ subcase of [1]

[3] GMEC, H , o =⇒ holds ϕ′ by induction hypothesis (a),

[4] GMEC, H , o =⇒ holds ϕ′ ; holds ϕ′′ by rule or+1,

[5] • IH; o+ |= ϕ′′ subcase of [1]

[6] GMEC, H , o =⇒ holds ϕ′′ by induction hypothesis (a),

[7] GMEC, H , o =⇒ holds ϕ′ ; holds ϕ′′ by rule or+2,

[8] GMEC, H , o =⇒ holds ϕ′ ∨ ϕ′′ by rules atom+ on [4, 7] and clause
(8).

ϕ = ϕ′ ∨ ϕ′′

[1] IH; o+ 6|= ϕ′ and IH; o+ 6|= ϕ′′ by the consistency of |=,

[2] IH; o+ 6|= ϕ′ conjunct in [1]

[3] GMEC, H , o 6=⇒ holds ϕ′ by induction hypothesis (b),

[4] IH; o+ 6|= ϕ′′ conjunct in [1]

[5] GMEC, H , o 6=⇒ holds ϕ′′ by induction hypothesis (b),

[6] GMEC, H , o 6=⇒ holds ϕ′ ; holds ϕ′′ by rule or– on [3, 5],

[7] GMEC, H , o 6=⇒ holds ϕ′ ∨ ϕ′′ by rule atom– on clause (8).

ϕ = 2ϕ′

[1] IH; o+ |= 2ϕ′ assumption

[2] IH; o+ |= ϕ′ by Lemma 2.5 on [1],

[3] GMEC, H , o =⇒ holds ϕ′ by induction hypothesis (a),

[4] ¬∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ 6|= 2ϕ′)

by Lemma 2.5 on [1],

[5] ¬∃t1, t2. ( t1 ∈ E

∧ t2 ∈ E

∧ ( t1 , t2 ) 6∈ o+

∧ ( t2 , t1 ) 6∈ o+

∧ IH; {o ↑ ( t1 , t2 )}+ 6|= 2ϕ′)

by definition of · E
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[6] ∀t1, t2. ( t1 6∈ E

∨ t2 6∈ E

∨ ( t1 , t2 ) ∈ o+

∨ ( t2 , t1 ) ∈ o+

∨ IH; {o ↑ ( t1 , t2 )}+ |= 2ϕ′)

by logical equivalences

[7] • t1 6∈ E subcase of [6]

[8] GMEC, H , o 6=⇒ happens t1 by rule atom– and definition of E ,

[9] • t2 6∈ E subcase of [6]

[10] GMEC, H , o 6=⇒ happens t2 by rule atom– and definition of E ,

[11] • ( t1 , t2 ) ∈ o+ subcase of [6]

[12] GMEC, H , o =⇒ before t1 t2 by lemma 3.1,

[13] GMEC, H , o 6=⇒ not (before t1 t2) by rules naf–,

[14] • ( t2 , t1 ) ∈ o+ subcase of [6]

[15] GMEC, H , o =⇒ before t2 t1 by lemma 3.1,

[16] GMEC, H , o 6=⇒ not (before t2 t1) by rules naf–,

[17] • IH; {o ↑ ( t1 , t2 )}+ |= 2ϕ′ subcase of [6]

[18] GMEC, H , o ↑ ( t1 , t2 )
=⇒ holds (must ϕ′ )

by induction hypothesis (a), since {o ↑

( t1 , t2 )}+ is a proper extension of o,

[19] GMEC, H , o ↑ ( t1 , t2 )
6=⇒ not (holds (must ϕ′ ))

by rule naf–,

[20] GMEC, H , o 6=⇒ beforeFact t1 t2
=> not (holds (must ϕ′ ))

by rule impl– and the definition of · O,

[21] GMEC, H , o 6=⇒ happens t1,

happens t2,

not (before t1 t2),

not (before t2 t1),

beforeFact t1 t2
=> not (holds (must ϕ′ ))

by rules and–1 and and–2 on [8, 10,
13, 16, 20],

[22] GMEC, H , o 6=⇒ fails must ϕ′ by rule atom– on clause (10); this re-
lation should hold for all terms t1 and

t2 since the variables E1 and E2 are im-
plicitly quantified in front of the clause,

[23] GMEC, H , o =⇒ not (fails must ϕ′ ) by rules naf+,

[24] GMEC, H , o =⇒ holds 2ϕ′ by rules and+ on [3, 23] and atom+

on clause (9).

ϕ = 2ϕ′

[1] IH; o+ 6|= ϕ′ or
∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ 6|= 2ϕ′)

by Lemma 2.5,

[2] • IH; o+ 6|= ϕ′ subcase of [1]

[3] GMEC, H , o 6=⇒ holds ϕ′ by induction hypothesis (b),

[4] GMEC, H , o 6=⇒ holds ϕ′ ,

not (fails must ϕ′ )

by rule and–1,

[5] • ∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ 6|= 2ϕ′)

subcase of [1]

[6] e1 ∈ E conjunct in [5]

[7] GMEC, H , o =⇒ happens e1 by definition of E ,

[8] e2 ∈ E conjunct in [5]

[9] GMEC, H , o =⇒ happens e2 by definition of E ,



49

[10] (e1, e2) 6∈ o+ conjunct in [5]

[11] GMEC, H , o =⇒ not (before e1 e2 ) by lemma 3.1,

[12] (e2, e1) 6∈ o+ conjunct in [5]

[13] GMEC, H , o =⇒ not (before e2 e1 ) by lemma 3.1,

[14] IH; {o ↑ (e1, e2)}
+ 6|= 2ϕ′ conjunct in [5]

[15] GMEC, H , o ↑ (e1, e2)
6=⇒ holds (must ϕ′ )

by induction hypothesis (b), since {o ↑

( t1 , t2 )}+ is a proper extension of o

[16] GMEC, H , o ↑ (e1, e2)
=⇒ not (holds (must ϕ′ ))

by rule naf+,

[17] GMEC, H , o =⇒ beforeFact e1 e2
=> not (holds (must ϕ′ ))

by rule impl+ and the definition of ·
O,

[18] GMEC, H , o =⇒ happens e1 ,

happens e2 ,

not (before e1 e2 ),

not (before e2 e1 ),

beforeFact e1 e2
=> not (holds (must ϕ′ ))

by rule and+ on [7, 9, 11, 13, 17],

[19] GMEC, H , o =⇒ fails must ϕ′ by rule atom+ on clause (10), with
E1 and E2 instantiated to e1 and e2

respectively,

[20] GMEC, H , o 6=⇒ not (fails must ϕ′ ) by rule naf–,

[21] GMEC, H , o 6=⇒ holds ϕ′ ,

not (fails must ϕ′ )

by rule and–2,

[22] GMEC, H , o 6=⇒ holds 2ϕ′ by rules atom– on [4, 21] and clause

(9).

ϕ = 3ϕ′

[1] IH; o+ |= ϕ′ or
∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ |= 3ϕ′)

by lemma 2.5,

[2] • IH; o+ |= ϕ′ subcase of [1]

[3] GMEC, H , o =⇒ holds ϕ′ by induction hypothesis (a),

[4] GMEC, H , o =⇒ holds 3ϕ′ by rule atom+ on clause (11),

[5] • ∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ |= 3ϕ′)

subcase of [1]

[6] e1 ∈ E conjunct in [5]

[7] GMEC, H , o =⇒ happens e1 by definition of E ,

[8] e2 ∈ E conjunct in [5]

[9] GMEC, H , o =⇒ happens e2 by definition of E ,

[10] (e1, e2) 6∈ o+ conjunct in [5]

[11] GMEC, H , o =⇒ not (before e1 e2 ) by lemma 3.1,

[12] (e2, e1) 6∈ o+ conjunct in [5]

[13] GMEC, H , o =⇒ not (before e2 e1 ) by lemma 3.1,

[14] IH; {o ↑ (e1, e2)}
+ |= 3ϕ′ conjunct in [5]

[15] GMEC, H , o ↑ (e1, e2)
=⇒ holds (may ϕ′ )

by induction hypothesis (a), since {o ↑

( t1 , t2 )}+ is a proper extension of o,

[16] GMEC, H , o =⇒ beforeFact e1 e2
=> holds (may ϕ′ )

by rule impl+ and the definition of ·
O,
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[17] GMEC, H , o =⇒ happens e1 ,

happens e2 ,

not (before e1 e2 ),

not (before e2 e1 ),

beforeFact e1 e2
=> holds (may ϕ′ )

by rule atom+ on [7, 9, 11, 13, 16]
and clause (12), with e1 and e2 sub-
stituted for the variables E1 and E2

respectively,

[18] GMEC, H , o =⇒ holds 3ϕ′ by rules atom+ on clause (12).

ϕ = 3ϕ′

[1] IH; o+ 6|= 3ϕ′ assumption

[2] IH; o+ 6|= ϕ′ by lemma 2.5 on [1],

[3] GMEC, H , o 6=⇒ holds ϕ′ by induction hypothesis (b),

[4] ¬∃e1, e2 ∈ E. ((e1, e2) 6∈ o+

∧ (e2, e1) 6∈ o+

∧ IH; {o ↑ (e1, e2)}
+ |= 3ϕ′)

by lemma 2.5 on [1],

[5] ¬∃t1, t2. ( t1 ∈ E

∧ t2 ∈ E

∧ ( t1 , t2 ) 6∈ o+

∧ ( t2 , t1 ) 6∈ o+

∧ IH; {o ↑ ( t1 , t2 )}+ |= 3ϕ′)

by definition of · E ,

[6] ∀t1, t2. ( t1 6∈ E

∨ t2 6∈ E

∨ ( t1 , t2 ) ∈ o+

∨ ( t2 , t1 ) ∈ o+

∨ IH; {o ↑ ( t1 , t2 )}+ 6|= 3ϕ′)

by logical equivalences,

[7] • t1 6∈ E subcase of [6]

[8] GMEC, H , o 6=⇒ happens t1 by rule atom– and definition of E ,

[9] • t2 6∈ E subcase of [6]

[10] GMEC, H , o 6=⇒ happens t2 by rule atom– and definition of E ,

[11] • ( t1 , t2 ) ∈ o+ subcase of [6]

[12] GMEC, H , o =⇒ before t1 t2 by lemma 3.1,

[13] GMEC, H , o 6=⇒ not (before t1 t2) by rules naf–,

[14] • ( t2 , t1 ) ∈ o+ subcase of [6]

[15] GMEC, H , o =⇒ before t2 t1 by lemma 3.1,

[16] GMEC, H , o 6=⇒ not (before t2 t1) by rules naf–,

[17] • IH; {o ↑ ( t1 , t2 )}+ 6|= 3ϕ′ subcase of [6]

[18] GMEC, H , o ↑ ( t1 , t2 )
6=⇒ holds (must ϕ′ )

by induction hypothesis (b), since {o ↑
( t1 , t2 )}+ is a proper extension of o,

[19] GMEC, H , o 6=⇒ beforeFact t1 t2
=> holds (may ϕ′ )

by rule impl– and the definition of · O,

[20] GMEC, H , o 6=⇒ happens t1,

happens t2,

not (before t1 t2),

not (before t2 t1),

beforeFact t1 t2
=> holds (may ϕ′ )

by rules and–1 and and–2 on [8, 10,
13, 16, 19]; this is provable for all terms
t1 and t2,

[21] GMEC, H , o 6=⇒ holds 3ϕ′ by rule atom– on clauses (11) and (12)
for [3] and [20] respectively. 2

Theorem 3.9 (Soundness and completeness of GMEC w.r.t. GMEC-frames)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, o a state of knowledge and
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ϕ and GMEC-formula, then

a. GMEC, H , o =⇒ holds ϕ iff IH; o+ |= ϕ;

b. GMEC, H , o =⇒ not (holds ϕ ) iff IH; o+ 6|= ϕ.

Proof. By rules naf+ and naf–, the second statement can be rewritten as

b′. GMEC, H , o 6=⇒ holds ϕ iff IH; o+ 6|= ϕ.

It suffices now to apply lemmas 3.7 and 3.8 to the two directions of (a) and (b′) to prove

the theorem. 2

Lemma 3.3 (Correspondence between skeBroken and nsb)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC+, H , o =⇒ skeBroken e1 p e2 iff

¬nsb(p, e1, e2, o
+) holds in H;

b. GMEC+, H , o =⇒ not (skeBroken e1 p e2 ) iff

nsb(p, e1, e2, o
+) holds in H.

Proof. We proceed as in the proof of lemma 3.2.
(a. ⇒) By unfolding clause (5′), we obtain the following relations.

GMEC+, H , o =⇒ happens e e ∈ E by definition of E ,

GMEC+, H , o =⇒ not ( e = e1 ) e 6= e1 by lemma 3.4,

GMEC+, H , o =⇒ not ( e = e2 ) e 6= e2 by lemma 3.4,

GMEC+, H , o =⇒ not (before e e1 ) (e, e1) 6∈ o+ by lemma 3.1,

GMEC+, H , o =⇒ not (before e2 e ) (e2, e) 6∈ o+ by lemma 3.1,

GMEC+, H , o =⇒ initiates e q ;

terminates e q

(e ∈ [q〉
∨ e ∈ 〈q])

by definition of [·〉
and of 〈·] ,

GMEC+, H , o =⇒ exclusive p q ;

p = q

(e ∈]p, q[
∨ p = q)

by definition of ]·,·[

and lemma 3.5.

By taking the conjunction of the formulas displayed in the central column, we have:

e 6= e1 ∧ e 6= e2 ∧ (e, e1) 6∈ o
+ ∧ (e2, e) 6∈ o

+ ∧ ((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q))

By abstracting over e and q, we obtain

∃e ∈ E. ∃q ∈ P. e 6= e1
∧ e 6= e2
∧ (e, e1) 6∈ o+

∧ (e2, e) 6∈ o+

∧ ((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q))

that is equivalent, after some logical manipulations, to nsb(p, e1, e2, o
+).

(a. ⇐) Similarly to the situation encountered in the proof of lemma 3.2, this direction
of the proof follows by simply reversing the reasoning pattern just used. We omit it.

(b. ⇐) By property 3.1 and (a).

(b. ⇒) This direction follows by property 3.2 since the only calls in clause (10′) that

invoke recursive definitions involve the predicate before, that has only finite derivations,

by lemma 3.1. 2
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Theorem 3.10 (GMEC+ computes necessary MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC+, H , o =⇒ holds (must (period e1 p e2 )) iff

p(e1, e2) ∈ 2MV I(o+);

b. GMEC+, H , o =⇒ not (holds (must (period e1 p e2 ))) iff

p(e1, e2) 6∈ 2MV I(o+).

Proof. We proceed as in the proof of theorem 3.6.
(a. ⇒) Assume that GMEC+, H , o =⇒ holds (must (period e1 p e2 )) is derivable.
We will prove that e1 ∈ [p〉, e2 ∈ 〈p], (e1, e2) ∈ o+ and nsb(p, e1, e2, o

+) are entailed by
this hypothesis. The thesis will follow by lemma 2.6.

By unfolding clause (9′) we obtain the following relations:

GMEC+, H , o =⇒ happens e1 e1 ∈ E by definition of E ,

GMEC+, H , o =⇒ initiates e1 p e1 ∈ [p〉 by definition of [·〉 ,

GMEC+, H , o =⇒ happens e2 e2 ∈ E by definition of E ,

GMEC+, H , o =⇒ terminates e2 p e2 ∈ 〈p] by definition of 〈·] ,

GMEC+, H , o =⇒ before e1 e2 (e1, e2) ∈ o+ by lemma 3.1,

GMEC+, H , o =⇒
not (skeBroken e1 p e2 )

nb(p, e1, e2, o
+) by lemma 3.3.

The central column contains all the hypotheses needed for the application of lemma 2.6.

(a. ⇐) As in the proof of theorem 3.6, this direction follows by simply reversing the
reasoning pattern just used. We omit it.

(b. ⇐) By property 3.1 and (a).

(b. ⇒) By the definition of H and lemmas 3.1 and 3.3, clause (9′) cannot start a

diverging derivation. The desired result follows from property 3.2. 2

Theorem 3.11 (GMEC+ computes possible MVIs)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure and o a state of knowledge,
then

a. GMEC+, H , o =⇒ holds (may (period e1 p e2 )) iff

p(e1, e2) ∈ 3MV I(o+);

b. GMEC+, H , o =⇒ not (holds (may (period e1 p e2 ))) iff

p(e1, e2) 6∈ 3MV I(o+).

Proof. Similar to the proofs of theorems 3.6 and 3.10. 2

Theorem 3.12 (Soundness and completeness of GMEC+ w.r.t. GMEC-frames)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a GMEC-structure, o a state of knowledge and
ϕ and GMEC-formula, then

a. GMEC+, H , o =⇒ holds ϕ iff IH; o+ |= ϕ;

b. GMEC+, H , o =⇒ not (holds ϕ ) iff IH; o+ 6|= ϕ.
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Proof. As in theorem 3.9, (a) and (b) must be proved simultaneously in each direction.
We will only sketch the proof for the forward direction (⇒). The present discussion
together with the detailed proof of the analogous case treated as lemma 3.8 should suffice
to the intrepid reader to reconstruct this long proof in its entirety.

The forward direction of the proof requires the techniques exploited in the proof of
lemma 3.7, with the only difference that we need to distinguish finer proof cases for the
modal formulas. More precisely, whenever the main connective of a formula is modal, we
must consider the main connective of its immediate subformula.

For the sake of conciseness, we will perform the proof only for cases where the main
connective is 2. Again, we leave the rest of the proof to the valiant reader (the cases for
3 are similar, and whenever the main connective is non-modal, the analogous cases in the
proof of lemma 3.7 apply unchanged).

We are performing a mutual nested induction on the structure of the formula ϕ and of
the derivations for the sequents

a. GMEC+, H , o =⇒ holds ϕ and

b′. GMEC+, H , o 6=⇒ holds ϕ .

Again, we use single frames to label proof cases for (a), and double frames for proof cases
for (b′).

ϕ = 2p(e1, e2) and ϕ = 2p(e1, e2)

The result follows by theorem 3.10.

ϕ = 2¬ϕ′

[1] GMEC+, H , o =⇒ holds (not (may ϕ′ )) by rule atom+ on clause (11′),

[2] GMEC+, H , o =⇒ not (holds 3ϕ′ ) by rule atom+ on clause (6′),

[3] GMEC+, H , o 6=⇒ holds 3ϕ′ by rule naf+,

[4] IH; o+ 6|= 3ϕ′ by induction hypothesis (b),

[5] IH; o+ |= ¬3ϕ′ by definition of |=,

[6] IH; o+ |= 2¬ϕ′ by property 2.1.

ϕ = 2¬ϕ′

[1] GMEC+, H , o 6=⇒ holds (not (may ϕ′ )) by rule atom– on clause (11′),

[2] GMEC+, H , o 6=⇒ not (holds 3ϕ′ ) by rule atom– on clause (6′),

[3] GMEC+, H , o =⇒ holds 3ϕ′ by rule naf–,

[4] IH; o+ |= 3ϕ′ by induction hypothesis (a),

[5] IH; o+ 6|= ¬3ϕ′ by the consistency of |=,

[6] IH; o+ 6|= 2¬ϕ′ by property 2.1.

ϕ = 2(ϕ′ ∧ ϕ′′) and ϕ = 2(ϕ′ ∧ ϕ′′)

Similarly to the previous case, clause (12′) is used to push the modality inside the
formula. Then the technique seen in the proof of lemma 3.7 for the cases concerning
conjunction is applied. Finally, we appeal to property 2.1 to restore ϕ by pushing 2 out
as its main connective.

ϕ = 2(ϕ′ ∨ ϕ′′) and ϕ = 2(ϕ′ ∨ ϕ′′)

Take verbatim the proof cases for 2 from the proof of lemma 3.7 changing simply
the reference to clause (9) and (10) to references to clauses (13′) and (14′) respectively.
Clearly the structure of the subformula ϕ′ ∨ ϕ′′ needs not to be expanded.

ϕ = 22ϕ′
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[1] GMEC+, H , o =⇒ holds (must ϕ′ ) by rule atom+ on clause (15′),

[2] IH; o+ |= 2ϕ′ by induction hypothesis (a),

[3] IH; o+ |= 22ϕ′ by property 2.1.

ϕ = 22ϕ′

[1] GMEC+, H , o 6=⇒ holds (must ϕ′ ) by rule atom– on clause (15′),

[2] IH; o+ 6|= 2ϕ′ by induction hypothesis (b),

[3] IH; o+ 6|= 22ϕ′ by property 2.1.

ϕ = 23ϕ′

Both clauses (17′) and (16′) can have been used by rule atom+ as the last derivation
step. In the first case, we simply need to transpose the corresponding proof case for 2

from the proof of lemma 3.7. The second case applies only if ϕ = 232ϕ′′. We have the
following derivation:
[1] GMEC+, H , o =⇒ holds (must (may ϕ′ )) by rule atom+ on clause (16′),

[2] IH; o+ |= 23ϕ′′ by induction hypothesis (a),

[3] IH; o+ |= 232ϕ′′ by property 2.2.

ϕ = 23ϕ′

We must again distinguish two cases, based on the structure of ϕ′. If this formula is not
of the form 23ϕ′′, we behave as in the corresponding proof case for 2-moded formulas in
the proof of lemma 3.7.

Otherwise, the last rule applied must be atom– on clauses (17′) and (16′). The branch
concerning the first clause is handled again as the second proof case for 2 from the proof
of lemma 3.7. The branch referring to the second clause is instead handled as follows:
[1] GMEC+, H , o 6=⇒ holds (must (may ϕ′ )) subcase generated by clause (16′)

[2] IH; o+ 6|= 23ϕ′′ by induction hypothesis (b),

[3] IH; o+ 6|= 232ϕ′′ by property 2.2. 2
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