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Abstract. A meta-level extension of a logic programming language is
presented. The resulting language, called 'LOG (mpasie-log, provides
meta-programming facilities similar to those of Prolog while preserving a
declarative logical semantics. It also offers new meta-programming
opportunities as compared with Prolog due to its ability to treat whole
programs, i.e. sequences of clauses, as data objects. The extension
basically consists in defining a suitablaming schemdt associateswo
different but related meta-representations with every syntactic object of
the language, from characters to programs. The choice of the double meta-
representation is motivated by both the user and the implementation
viewpoints. All Prolog built-in meta-predicates can be redefined as 'LOG
programs by exploiting the new naming scheme. Then some syntactic
sugar is added to make the language more concrete. Some examples are
given, in particular to show the ability of the language to deal with
programs as data.

1 Introduction

The problem of meta-programming in the context of logic programming was
systematically faced for the first time by Bowen and Kowalski in [3]. Since that
time, a large number of researchers have carried this idea on in many directions.
Relatively few efforts, however, have been devoted to the designeffieativelogic
programming language equipped with meta-programming capabilities similar to
those usually available in Prolog but defined iol@anerway. Among them, we

must mention MetaProlog [2, 4], and, more recently, the Gddel language [6].

This paper moves along these lines and leads to the definition of an extended
logic programming language - called 'LOG - which provides meta-programming
facilities similar to (or, possibly, better than) those of Prolog. It has the very same
aims asGodel at least as far as the introduction of meta-programming facilities is
concerned: "... to have functionality and expressiveness similar to Prolog, but to
have greatly improved declarative semantics compared with Prolog"” [6]. 'LOG is also
similar in aims to Barklund's proposal [1]: defining "a naming of Prolog formulas
and terms as Prolog terms to create a practical and logically appealing language for
reasoning about terms, programs, ...".

Also the applications we have in mind are mostly the same as those of the
mentioned proposals, namely the development of software tools (the meta-programs)
that manipulate other programs (the object programs) as data, such as debuggers,
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compilers, program-transformers, etc.. We do not consider as part of our language
any reflection mechanism which would allow a meta-representation to be obtained
from the object it denotes or vice versa. This differentiates (both in aims and in
nature) our proposal from others, such as Reflective Prolog [5] and R-Prolog* [15],
that, on the contrary, assume a reflection mechanism to be available, though not
visible at the user level.

The main problem is that of defining a suitablming schemby which the
syntactic entities of the language can be referred to and manipulated at the meta-level.
Here we stress the fact that naming should applgvirysyntactic entity of the
language, from characters to programs. In addition, we want the naming scheme to
be effective that is to burden not too much the user with an heavy notation, and to
allow efficient implementationsf the language to be devised.

The key idea underlying our proposal is to provide different butrelated
meta-levelrepresentationgor each syntactic object of the language. Precisely, the
meta-levelepresentations consist of a constaatneand a structured ground term,
called thestructural representatianThe name describes an entity as a whole, while
the structural representation describes the structure of the entity in terms of the
namesof its components, thus allowing one to explore its internal structure.
Moreover, for each composite syntactic object, it is possible to relate its name to its
structural representation by means of the predefined predicateWhile neither
meta-representation is especially original on its own, using them together seems to
offer quite interesting possibilities.

The idea of a double meta-representation was already applied in a more
pragmatical sense and to a limited extent (programs only) to the definition of the
meta-logical facilities of th&nvProloglanguage, amxtended Prologimed at
building Prolog programming environments [10, 11, 12]. In this paper, we start
instead with a pure logic programming language and we apply the naming scheme to
every syntactic entity of the language. Then we show that a more concrete version of
the language embodying this naming scheme can be obtained by the addition of a
suitable syntactic level; this makes the language easier to be handled both for the
user and the implementation. We show also that the resulting language exhibits
higher meta-programming attitudes than Prolog (in particular, as regards the ability
to deal with programs as first-class data objects) while preserving a logical reading.

Section 2 presents the main features of the naming scheme provided by 'LOG:
names, structural representations andktleoperator used to relate the name and the
structural representation of each syntactic object. The usage and motivations of the
double meta-representation from the user viewpoint are discussed in Section 3.
Section 4 discusses how usual Prolog built-in meta-predicates can be redefined in
'LOG. Section 5 presents the syntactic additions and conventions we assume for the
concrete version of 'LOG. The ability of our language to deal with programs as data
is highlighted in Section 6 by showing some simple examples. Finally, Section 7
briefly discusses the implementation issue, pointing out some motivations for the
use of the double meta-representation also from the language implementation
viewpoint.

2 Meta-Representations

'LOG syntax is mostly the usual syntax of logic programming languages (cf. for



instance [9]) and will be skipped here, except for those parts concerning the meta-
representations.

We start with an ordinary Horn clause language and we conservatively extend it
to one in which every syntactic entity is named by ground terms of the language.
Precisely, each 'LOG syntactic object has meta-representatioressociated with
it, called thenameand thestructural representationf the object.

2.1 Names

The nameof an object is @onstantsymbol which is isomorphic in structure to the
object it refers to. IE is a syntactic expression of the languageis its name. For
example,

‘append([],X,X).
append([A|X],Y,[A]|Z]) :- append(X,Y,Z)'

is the name of a program defining the usymdend predicate which concatenates two
lists. As another examplé&(a,g(X))' is the name of the teriifa,g(X)).

Objects having a name in 'LOG are programs, clauses (including goals), terms,
symbols and characters. Accordingly, names are partitioned into five different classes:
program names, clause names, term names, symbol names and character names.
Notice that these classes are not necessarily disjoint. The same name, in fact, can
denote different syntactic expressions depending on the context where it is used; for
instance,'alpha’ can represent either a symbol or a term with no arguments or a
clause with no body or a single clause program. Also notice that we do not consider
atomic formulas as a syntactic class of the language. Indeed it seems more
appropriate to the meta-programming paradigm we are considering here to treat atoms
simply as terms.

2.2 Structural Representations

Every composite syntactic object (i.e., symbols, terms, clauses and programs) has a
second meta-representation associated with it, callestithetural representatian

This meta-representation is a ground term which describes the structure of the object
it denotes in terms of theamesof its components.

If e =ejes...epnis a syntactic expression wheeg, eo, ..., ey are its
component sub-expressions then the structural representatioe isf
['e1')'e2",....,'en'].

For instance, iP =C1.Co. ... .Cp is a program thefiCq','C2,...,'C is the
program structureof P where'Cj' is the clause name of the clauge Similarly, if
f(a,g(X,b)) is a term, the correspondingrm structureis ['f','a','g(X,b)']. The
only exception is the structural representation of clauSksisestructures (other
than goal clause structures) rely on the reserved syetghsle for distinguishing the
head from the body part (e.gause('p',['q’,'r']) for p:- g,r). In Section 5 we will
introduce asynthetic notatiorfior structural representations which is more convenient
for the user (in contrast with the list notation, also called explicit notation, presented
here). Since it is simply syntactic sugar it can be ignored for the moment.

While names are constant symbols (hence atomic entities), structural



representations are compound ground terms. Therefore, one can easily define terms
similar to structural representations apart from the occurrencetatlevel variables

in place of some of the names' of its component sub-expressions. Such terms
will be considered apartially specifiedstructural representations. For instance,
['f,X] is not a term structure; however, if the meta-level varigbie instantiated to

the name of some term we get a complete term structure[fe'a], ['f','g(b)1,

and so on.

Meta-variablesin an incomplete structural representation are dealt with as real
variables in contrast with object level variables that are frozen inside the names that
constitute the structural representation. Therefore the two term rigxesand
'f(a)' cannot unify at the meta-level, wherg&§X] and['f",'a’] unify, yielding
the substitutiorX = 'a’.

Names and structural representations are syntactic entities; therefore they have a
name and a structural representation too. For instance, the name of the term name
'Alpha’ is ""Alpha''. Thus, 'LOG supports the definition of an infinite tower of
meta-levels. Anyway, meta-levels are strictly separated: at each level, the syntactic
entities of the lower levels are visible through their names only; variables do not
make an exception to this rule. No reflection mechanism is supported by 'LOG.

2.3 Relating Names and Structural Representations

The name and the structural representation of an object can be related to each other by
the use of the predefined predicate> (written infix), called thedestructuringor
simply thedouble arrowoperator.
Theinformal semanticef <=> is: a goaN <=> S is true ifN is the name of an
objecto andS is the ground structural representation of the same objethus,
<=> simply defines a binary relation, called thestructuringrelation, between names
and structural representations, i.e. between syntactic expressions of the language.
Actually, we have distinguished five different classes of name symbols. It
follows that we must distinguish among different forms ofgeeeric operatok=>,
accordingly to the different types of its arguments. We will use the four different
operators<=p=>, <=c=>, <=t=> and<=s=> for programs, clauses, terms and
symbols respectively, still using the generic double arrow operator when speaking of
its properties in general and no ambiguities arise (we will see in Section 5 that these
differences can be hidden by an upper syntactic level). Here are two simple examples
of goals involving<=>:

?-'p:-qr. g. r.'<=p=>['p:-q,r,q,r].

yes.
?-'f(g(a),b,C)' <=t=>['f",A,'b",'C"].
A = 'g(a)"

The second goal succeeds provided the meta-vakallenstantiated ttg(a)'.

2.4 Semantics

The main differences in the semantics of 'LOG w.r.t. the standard case (as described



for instance in [9]) are due to the presence ofithéle arrowoperators.

As regards theleclarative semanticsf 'LOG, first a privileged interpretation
domain resulting from suitable modifications to the classical Herbrand universe is
defined then the privileged interpretation of> is given as a relation over this
domain.

The modifiedHerbrand universéd is defined in almost the same way as usual
except that it is built out of the set of characters composing names besides the set of
function and constant symbols that occur in the program in such a way to include all
the names and ground structures which can be constructed in that program.

The privileged interpretation®f the<=> operators are defined &$nary
relations over suchH. In particular, for anyTN, TS O H, whetherTN <=t=> TS
holds or not can be established byN has the formt, TS has the form
['f','t1',...,'"th'], t is a term, and = fe(stqe,s...e,*tne) Where ¢ is the usualtring
concatenatiorrelation and= is the usual syntactic equality. Similar definitions can
be given fork=p=>, <=c=> and<=s=>.

Procedurally, a goall <=> S succeeds from a progranif eitherN is a name
and there exists a ground instar®ef S such thakN,S'> is in the destructuring
relation, orN is a variableS is ground and there exists an instaNtef N such that
<N',S> is in the destructuring relation. If, on the contrafyis a variable an& is
not ground then the goal is unsolvable and its proof is delayed till either one of the
above cases occurs.

A refutationof P [0 {G} is a finite derivatiorG, G1,...Gp of P O {G} such that
the last derived goal only contains destructuring goals in unsolvable form and there
exists a substitutio® which makes all them true simultaneously.cAmputed
answerfor a refutation oP [0 {G} is how a pair ¢,C> whereo is a substitution for
the variables it computed as in the standard case @rglthe (possibly empty) set
of destructuring goals in unsolvable form.

Delaying the solution of a goal containing #ve> operator allows declarative
reading of programs to be preserved. The order of literals in a clause or in a goal is
immaterial. For example, the goal

?_ S <=s=> [|a|,|lle], X - [lpl,lhl,lal].
succeeds with computed answer substituion 'alpha’ and no destructuring goal
left unsolved If, on the contrary, at the end of the computation a goal of the form
N <=> S cannot be solved becausés a variable an8 is not ground theh <=> S
is returned as part of the computed answer: it will be consideredasstainton
values the not yet instantiated meta-variables occurring in it can assume. For
example, in

?- N <=t=> [f|A], A = [aB].

A = [aB],

N <=t=> ['f','a'|B].
there are obvious valid instances of the meta-varidblasdN, but not all of them

are viable. Actually the way the double arrow operators are dealt with in our proposal
can be viewed as a simple form of Constraint Logic Programming [7, 8].



3 Using the Meta-Representations

Names and structural representations are two descriptions of a syntactic object at two
different levels of abstraction. There are circumstances in which the inner structure of
the object we want to refer to is not important at all. For instance, when writing a
procedure for appending two programs we just need to know that we have to append
lists of clauses, without getting into their internal details. In other cases, on the
contrary, it is important to access the inner components of the syntactic object we
have to deal with.

The two different meta-representations 'LOG supplies are intended to satisfy
these two different uses. The structural representation of an entity describes the
structure of the entity in terms of the names of its components, which, on the
contrary, are viewed as monolithic entities. Thus, for instance, the clause

p(X.f(a)) :- q(X).r(a,b)
can be represented in 'LOG as

clause('p(X,f(a))".['q(X)",'r(a,b)])
while in other proposals using structural descriptive names only (e.g. [1, 5]) also
sub-components are represented as structured terms. For example, according to
Barklund's proposal [1], the above clause should be represented as

clause(atom(p,[var(0),compound(f,[const(a)])]),
conj(atom(q,[var(0)]),atom(r,[const(a),const(b)]))

Notice that if symbols had a name too then they should be replaced by the structured
terms, e.qg. lists of characters, representing them.

Having the structural representation only, it may result quite cumbersome for
the user to represent such entities as programs and clauses at the meta-level, and, on
the other hand, it may result quite expensive for the implementation to maintain the
structural representation of low level entities, such as symbols. Actually, proposals
which use a structural meta-representation only usually do not cover the naming of
all the syntactic entities of the language: they usually exclude the two extremes,
namely programs and symbols. The use of a synthetic notation as a shorthand for
complex structured names, such as the one proposed in [5], solves only the problem
of notational conciseness but still leaves the implementation problems unsolved (the
implementation issue will be briefly addressed in Section 7).

Whenever a deeper detail level is needed, 'LOG provides the user withsthe
operator. Given the name of an entity, one can obtain its structure by applying the
proper<=> operator to the name. Thus, for instance, if we want to know which is
the name of the predicate defined by the above clause we can go inside the clause
structure by unification and then applyt=> to its first argument. The goal

? - clause('p(X,f(a))",['q(X)",'r(a,b)']) = clause(H,_),
H <=t=> [N|_]
will instantiateN to 'p'.

As a more comprehensive example, which makes use of the full power of the
double arrow operators, we show the definition of a predjmsate which is able to
sort clauses of a program according to the names of their head predicates. The

arguments ofpsort are two program names, namely the object program and its
sorted version.



psort(Prog,Sorted_Prog) :-
Prog <=p=> ProgStruct,
sort(ProgStruct,Sorted_ProgStruct),
Sorted_Prog <=p=> Sorted_ProgStruct.
sort(L1,L2) :- ...
%true if list L2 is L1 sorted w.r.t. the order
%relation defined by the predicate order/2
order(CI1,CI2) :- %true if CI1 precedes CI2
ClI1 <=c=> clause(Head1l| ),
Headl <=t=>[PNamel|_],
ClI2 <=c=> clause(Head2|_),
Head2 <=t=>[PName2|_],
string_comp(PNamel,PName2).

where the predicat&tring_comp(PNamel,PName?) tests if the atomic symb@&ll
precedess2 w.r.t. a standard order of characters as defined by th&lj%t,...,'z.

It employs the<=s=> operator to obtain the lists of the characters composing the
given symbols and then compares these lists.

It is important to realize that this program does not use any extra-logical
feature. To obtain something similar in C_Prolog one should use such extra-logical
built-in predicates aslause, =.. and @< (the latter used in place of our
string_comp).

4 "Reconstructing” Prolog Built-in Meta-Predicates

All the meta-predicates Prolog usually supplies in the form of built-in predicates are
definable in 'LOG, at least in principle, within the language itself. In particular, the
object level provability relation of a goal from a program can be defined, even if
quite inefficiently, as a 'LOG program, similarly to the definition of tremo
predicate given in [3]. In this way it is possible, on the one hand, to give these
predicates a logic semantics, and, on the other hand, to ignore them while performing
a formal analysis of the language.

Actually, some of Prolog built-in meta-predicates, suck.gsname and==,
become unnecessary in 'LOG, since explicit representations of terms and symbols are
directly available. For instance, the Prolog clause

p(X) :- X =.. [F,al|Args],q(F).
can be replaced in 'LOG by the clause

p(X) :- X <=t=> [F,'al'|Args],q(F).
where the argument @fis assumed to be a term name. Now, assyinalefined as
q(f) (resp.,q('f") in 'LOG). In Prolog the goap(f(al)) succeeds while,
unfortunately, the goab(X) fails. In 'LOG, on the contrary, also the g@#K)
succeeds yielding the constraikt<=t=> ['f','al'|Y]. This establishes that is
constrained to be the name of a term of the fifem..). In particular, the solution
X ='f(al)' can be obtained from this constraint by instantia¥ing [].

Some other simple Prolog meta-predicates, suchaasatom, etc., can be



defined quite easily in 'LOGuar, in particular, is concerned with a crucial point,
that israriable naming Let us briefly comment upon this point. The name of an
object level variableAlpha is'Alpha'. Its structural representation instead is
['Alpha’] that is a list of a single element which is a symbol name. Given the
symbol name, its structural representation can be easily obtained aghe
predicate. Thus we can inspect the internal structure of the symbol and check whether
it is a variable or not (we assume the syntactic conventions of most Prolog systems
where variables are symbols with initial capital). Therefore, the Prolog meta-
predicatevar can be redefined in 'LOG as follows:
var(TN) :- TN <=t=> [SN],
SN <=s=> [CN|_],
upperAlphabet(U), member(CN,U).
upperAlphabet(['_','A",'B",...,'Z']).

whereTN is intended to be instantiated to a term name. The Goal('Alpha’)

clearly succeeds with this definition. The g@abar('f(a)’), on the contrary, fails
since the call tex=t=> in var fails. Notice that ifTN is not instantiated yet when

var is called then the solution of the destructuring goalssam is simply
postponed. Thus, the go&-var(X) succeeds with computed answer
X<=t=>[SN],SN<=s=>["_'|_]; and then, through backtracking, with computed
answerX<=t=>[SN],SN<=s=>['A’'|_], and thenX<=t=>[SN],SN<=s=>['B'|_], and

so on. This result establishes that a variable is a non-structured term whose first
character is any of ', 'A', 'B',... . The goal?-var(X),X="f(a)' clearly fails,
whereas the same goal erroneously succeeds in conventional Prolog.

Using 'LOG meta-programming facilities it is also possible to define the
unification procedure between two object level terms and then use it to define other
typical Prolog meta-predicates. The unification procedure can be implemented as a
predicateunify(T1,T2,Subs) whereT1 andT2 are the names of the terms to be
unified andSubs encodes the computed object level variable substitutions as a list of
pairs X/t whereX is the name of a variable occurringTia or T2 andt is a term
name. Thus, for instance, the two term narf@sb)' and'f(a,Y)' do not unify at
the meta-level but they unify at the object levahify(‘'f(X,b)','f(a,Y)',S)
succeeds withS = ['X'/'a','Y'/'b].

Using unify it is easy to define, for instance, extended versions ofdtend
clause built-in predicates of ordinary Prolog, where the program to work with and
the generated substitutions are handled explicitly as new arguments of the predicates.
Following EnvProlog [10], we call these meta-predicag¢eall andeclause,
respectively. In particular, thexall predicate is defined as follows:

ecall(PN,GN,Subs,C)
holds if the goal represented BN can be proved in the object level program
represented by the program naRie. Subs is a (possibly empty) list of paid§/t
representing the substitutions of the object level variables occurrf@gimC is a
(possibly empty) list of constraints, that is destructuring geats>S in unsolvable
form, generated by the proof Gf For example:

?- ecall('p(a,Y) :- q(Y). q(f(b))', - p(X,Y)",S,C).

S = [X'7a,'Y'/If(h)], C = [].



5 Towards a Concrete Language

Some syntactic sugar can be added to the language described so far to make its
implementation more efficient and simplify its use.

First, we extend the syntax of names so to be able to determine for each name
which kind of name it is, i.e. which syntactic class the named objects belong to, by
simply looking at the name itself. This ability can be advantageously exploited by
the language implementation to selattcompile timaghe most adequaiaternal
representatiorfor each different kind of name (see Section 7 for a discussion of the
implementation issue). Furthermore, the appropriate instance of the generic operator
<=> can now be selected automatically, accordingly to the kind of its arguments; so
the user must be concerned with only a single overloadedperator, letting the
language implementation have the task of disambiguating it.

The syntactic conventions we will use for names are summarized in Figure 1.
Assuming these conventions, each name uniquely identifies an object of a precise
syntactic class. For instancéalpha}, '.alpha.', ‘alpha’' and'/alpha/’ represent a
program, a clause, a term and a symbol, respectively. Also getruadural meta-
representation®f different kinds can easily be distinguished each others accordingly
to the different kinds of their components. For instance, a list of clause names is
necessarily a program structure, a list of term names is necessarily a goal clause and
so on. As an example, the three similar structites'e','t','a'],
[/b/','e','t",'a'] and [%b,%e,%t,%a] can be easily mapped on to the goal
clause:- b,e,t,a, the termb(e,t,a) and the symbadbeta, respectively.

objects names
program: cl.c2. ... .cn  ‘{cl.c2. ... .cn}
clause: h:-b1, ... ,bn ‘'.h:-bl1, ... ,bn.
term: f(t1, ... ,tn)  'f(t1, ... ,tn)'
symbol: abc '/abcl'
character. c¢ %c
Figure 1

A further step towards a more concrete programming language is introducing a
synthetic notatiorfor structural representations which is more convenient for the
programmer than the list-like explicit notation used so far. The synthetic notation for
the structural representation of an expressiafosely resembles the corresponding
name ofe, except that double quotes are used instead of single quotes. For instance,
the synthetic structural representation of the progeam?. ... .cnis "{cl.c2. ...

.cn}", whereas the synthetic structural representation of the tgtm..,tn) is
“f(t1,...,tn)".

Meta-variablescan be easily handled by the explicit notation of structural
representations. However, it would be desirable to use meta-variables in the synthetic
notation as well. In order to allow object level variables to be easily distinguished
from meta-variables also when using the synthetic notation we admit the former to



be enclosed in quotes whenever ambiguities might arise. Thus, for instance, the term
structures['/f/',X,'Y'] and[F,'g(X)','X'] can be represented unambiguously in
synthetic notation a%(X,'Y")" and"F(g(X),'X")", respectively.

Moreover, the usual Prolog notation used to represent the rest of a list is easily
extended to structural representations in synthetic form. For instance, the
(incomplete) term structurf/f/','a’|R] can be rewritten in synthetic notation as
"f(a|R)". As another example, a predicate that concatenates two program structures
can be defined as follows (cf. [12]):

appendPS('{}",P,P).
appendPS("{C|P1}",P2,"{C|P3}") :- appendPS(P1,P2,P3).

Finally, a synthetic notation is introduced also to represested term
structuresin a more convenient way. Nested term structures are lists of term
structures (rather than of term names) which can be constructed by repeated
applications of<=t=>. For instance, given the term nanf¢a,g(b))' the
corresponding nested term structure [$f/',['/a/'],['/g/",['/b/']]] or, in
synthetic form,"*f(a,g(b))". Meta-variables in partially specified nested term
structures may occur at any depth in the term. For instanc@gin['/h/',X]],

i.e. " g(h(X))", X is clearly a meta-variable. Notice that nested term structures
where all object level variables are replaced by meta-level variables closely
correspond tmon-ground representations Godel [7]. Also notice that, as a special
case,"f(Xq,....Xp)" and"*f(Xq,...,Xp)", 20 andXy,... Xy (Meta-)variables, are
equivalent synthetic notations for the partially specified term structure
['/f',X1,...,Xn].

Nested term structures can be advantageously exploited to give an alternative
definition of theecall meta-predicate which provides some form of communication
from the object level to the meta-level which turn out to be very useful in practice.

ecall(PN,NGS)
holds if there is an instandeGS' of the list of partially specified nested term
structuresNGS such that the conjunction of goals representedN®B' can be
derived, at the object level, from the program represented by the progranPName
For example

?-ecall({p(X) :- a(X). a(@)}, ["p(X)","a(X)"]).

X = "a"

Similarly, it would be possible to define also a versiorechuse working
with lists of partially specified nested term structures instead of lists of term names
and then use it to define the vanilla meta-interpreter in almost the same way as in
ordinary Prolog.

6 Programs as Data

One of the most peculiar feature of our language is the ability to deal with whole
programs, i.e. finite sequences of clauses, as data objects. In this section, we briefly
point out two classes of problems for which program names may result particularly
useful. A wider discussion about this topic can be found in [12].



6.1 Program Structuring

A program can contain an asserte(®N) about another program designated by the
program nam®N. Therefore, the set of clauses in a program can be partitioned into
separate smaller subsets definethasr programsInner programs can be dealt with

as data by the enclosing program, i.e. by the program at the meta-level. For
example, the program

alpha prog '{p(X) :- q(X),r. g(a). r}.

beta prog {p(b). q(a)}".

p(X) - a(X).

a(e).
whereprog is a user-defined infix operator, contains the definition of two inner
programs. The three definitions of the predigateccurring in the three different
programs are dealt with as definitions of three distinct predicates, i.e., predicate
names in a program alecal to that program. Predicates in an inner program can be

accessed only using meta-predicates suatabandeclause. For example, adding
the clause

demo(N,G) :- N prog P,ecall(P,G).
to the above program, we can issue the goal

?- demo(alpha,"p(X)").
X ="a"

where simple mnemonic names, suctalaba andbeta in the example, can be used
instead of program names to refer to programs.

The use oftructural-descriptivenames for representing programs at the meta-
level is a major difference with respect to MetaProlog [2, 4]. In MetaProlog theories
(i.e., sets of clauses) are namedsiiaple constanhames with no resemblance of
the structure of the object they denote. Thus, "All MetaProlog program databases ...
are set up either by reading them in from files or by dynamically constructing them
using system predicates" [4]. In 'LOG, on the contrary, a program name lists
explicitly clauses that compose it. Thus our solution is well suited to support
program modularizationProgram names can be statically nested at any depth. The
global program database can be split into a number of smaller program units,
possibly nested, which can be accessed only via meta-predicates sualh as

In addition, 'LOG allows meta-variables to occur in program structures
whereas the same is not feasible in MetaProlog. As a consequence, it is not possible
in MetaProlog to define for instance a predicate like the prediggiendPS of
Section 5: such a predicate could be implemented in a rather awkward way as a series
of add_to calls. On the other hand, the use of structural descriptive names is not
adequate to support the construction of self-referential sentences.

6.2 Clausal Representation of Data Structures
Programs can be used also to collect clauses defining some complex data structure so

that it can be managed as any other term (e.g. passed to a procedure as a parameter)
maintaining all the advantages of the clausal representation (e.g. access by



unification). For example, the following assertion
gl graph '{a(a,b).a(a,c).a(b,c).a(b,d).a(c,d)}"

can be used to define a graph, namedvheregraph is a user-defined infix operator
and, as usuah(X,Y) represents an arc between two nodesndy.

With such a representation, it is easy to define general predicates dealing with
graphs, such as, for instance, a predipat®(X,Y,G) for finding a path between
two nodesX andy in a given grapl®:

path(G,X,Y) :- ecall(G,"a(X,Y)").
path(G,X,Y) :- ecall(G,"a(X,2)"),path(G,Z,Y).

Thus, it is possible to solve, for instance, the goal:
?- gl graph G,path(G,a,d).

Different graphs can coexist in the same program if each graph is defined as a
separate program, possibly with its own mnemonic name. This is much more
difficult, and less elegant, to obtain using standard Prolog.

7 Implementation Issues

The naming scheme we have chosen for 'LOG and, in particular, the use of a double
meta-representation is justified also by a number of implementation concerns we will
try to summarize in this section.

First of all, we notice that the use of meta-level names whicts@meorphic in
structureto the named objects allows the internal representation of meta-level names
to be used directly as the internal representation of the objects themselves. No
explicit link between objects and object names must be maintained by the system as,
on the contrary, it would be necessary if unstructured constant names were used (e.qg.
in MetaProlog).

Therefore, having two meta-representations for the same object actually
amounts to having two different internal representations for the same object. When
using the structural representation we are likely to inspect the structural composition
of the named object. This requireBst-like internal representation to allow standard
unification to be used to access components. Conversely, when using the constant
name we want to deal with an object as a monolithic entity. No logical operation is
allowed to access the internal structure of a constant. A name could be stored in main
memory simply as atring.

However, an efficient implementation of the language could choose a different
internal representation of names without interfering with their structural
representation. Indeed, although all Prolog built-in meta-predicates are in principle
definable in 'LOG, the concrete version of our language should provide also a low
level implementation of most of them in order to obtain acceptable execution
efficiency for practical applications. Of course this require an adequate internal
representation of the object to be dealt with. In particular, an efficient
implementation of meta-predicates dealing wittograms such ascall and
eclause, requires program names to be stored in such a way to make accessing
clauses as fast as possible. Thus, for instance, program names can be represented
internally as a tree-like structure with auxiliary pointers and indexes or hash tables
for improving search operations on clauses.



If we had thestructural representatiomnly, and therefore only the list-like
internal representation for every object then there would be an unacceptable
decreasing in the overall efficiency of the language. Just think of the overhead (both
in space and in time) caused by representing all symbols as character lists. If, on the
other hand, we had onlgames and therefore only special-purpose internal
representations, as required by any real implementation to obtain a reasonable
execution efficiency, then any attempt to access the structure of a syntactic entity
would cause non-trivial difficulties. Ad-hoc operations should be provided in this case
instead of standard unification.

With our solution, which internal representation of an object must be used can
be established by the user by selecting the appropriate meta-level representation of
the object. Given one representation, the other one can be built in a quite
straightforward manner. To this regard, notice that a structural representation
describes the structure of an object in terms ohtireesof its components. So it is
possible to use directly the internal representation of names as the elements of the
internal representation of the structured name of an object. Furthermore, one
representation can be built from the other one only when it is really necessary, that
is, whenever a goal N<=>S is encountered and one of its arguments is a variable
while the other one is a ground term. If both the representations of the same object
are present a double link is used to connect them to each other.

Finally, notice that the syntactic conventions established in Section 5 allows
the language implementation to always select at compile time the appropriate
internal representations for each different kind of names and ground structural
representations.

8 Conclusions

In this paper we have presented the meta-logic facilities the language 'LOG supplies
and briefly discussed their motivations and uses. In particular, we have described a
naming scheméor logic programs which allows two different but related meta-
representations (namely, names and structured representations) to be associated with
each syntactic entity of the language, from programs to characters. The availability
of such a naming scheme allows all the meta-predicates usually available in Prolog
to be defined as 'LOG programs. Also interesting extended versions of some of these
predicates (such &sall, eclause, etc.) can be provided quite easily. Furthermore we
have shown simple applications of program names which have no immediate
correspondent in standard Prolog.

A simple though inefficient prototype of the language described in this paper
has been implemented in C_Prolog. A more concrete and complete version of this
language, calle@Quote-Prolog is under development at present. In particular, the
notion of program name, program structure and<tive operator dealing with them
had already been implemented EnvProlog[10, 11, 12] and has been now
successfully re-implemented (in a better structured way, and including clause names)
in a new extended Prolog interpreter written in Modula 2. It is planned for the near
future to continue this implementation to include all the meta-level features of 'LOG.



References

1.

10.

11.

12.

13.

14.

15.

J. Barklund: What is a Meta-variable in Prolog?. In: H.D. Abramson and M.H.
Rogers (eds.Meta-Programming in Logic Programming: Proceedings of the
META88 WorkshopBristol. MIT Press, 1990, pp. 383-398.

K.A. Bowen: Meta-Level Programming and Knowledge Representdtien.
Generation Computing, 1985, pp. 359-383.

K.A. Bowen, R.A. Kowalski: Amalgamating Language and Metalanguage in
Logic Programming. In: K.L. Clark, S.A. Tarnlund (edslwogic
Programming Academic Press, 1982, pp. 153-172.

. K.A. Bowen, T. Weinberg: A Meta-Level Extension of Prolog. IEEE

Symposium on Logic Programmirigoston, 1985, pp. 669-675.

S. Costantini, G.A. Lanzarone: A Metalogic Programming Language. In: G.
Levi, M. Martelli (eds.):Logic Programming: Proceedings of the 6th
International ConferencgeLisbon. MIT Press, 1989, pp. 218-233.

P.M. Hill, J.W. Lloyd: The Gddel Report (Preliminary Version). Technical
Report TR-91-02, Department of Computer Science, University of Bristol,
March 1991.

J. Jaffar, J.L. Lassez: Constraint Logic ProgrammingPhoceedings of the
14th POPL Conferencéjlunich. ACM, 1987, pp. 111-118.

P. Lim, P.J. Stuckey: Meta-Programming as Constraint Programming. In: S.
Debray, M. Hermenegildo (edsbogic Programming: Proceedings of the 1990
North American Conference on Logic Programmidgrusalem. MIT Press,
1990, pp. 416-430.

. J.W. Lloyd: Foundations of Logic Programmingpringer Verlag, 2nd ed.,

1987.

A. Martelli, G.F. Rossi: Enhancing Prolog to Support Prolog Programming
Environments. In: H. Ganzinger (edBSOP'88: 2nd European Symposium on
Programming,Nancy. Lecture Notes in Computer Science 300, Springer
Verlag, 1988, pp. 317-327.

G.F. Rossi: Meta-programming Facilities in an Extended Prolog. In: I. Plander
(ed.): Artificial Intelligence and Information-Control Systems of Robots-89
North Holland, 1989

G.F. Rossi: Programs as Data in an Extended Prolog. To appeéhén:
Computer JournalBritish Computer Society, 1992.

S. Safra, E. Shapiro: Meta-interpreters for Real. In H-J. Kugler, (ed.):
Information Processing 86North-Holland, 1986, pp. 271-278.

L. Sterling, A. Lakhotia: Composing Prolog Meta-interpreters. In: R.A.
Kowalski, K.A. Bowen (eds.)Logic Programming: Proceedings of the 5th
International Conference and Symposjudeattle, MIT Press, 1988, pp. 386-
4083.

H. Sugano H.: Meta and Reflective Computation in Logic Programming and
Its Semantics. In: M. Bruynooghe (ed.): META%hd Workshop on Meta-
Programming in Logic Programmind.euven, 1990, pp. 19-34.



