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Abstract. A meta-level extension of a logic programming language is
presented. The resulting language, called 'LOG (read quote-log), provides
meta-programming facilities similar to those of Prolog while preserving a
declarative logical semantics. It also offers new meta-programming
opportunities as compared with Prolog due to its ability to treat whole
programs, i.e. sequences of clauses, as data objects. The extension
basically consists in defining a suitable naming scheme. It associates two
different but related meta-representations with every syntactic object of
the language, from characters to programs. The choice of the double meta-
representation is motivated by both the user and the implementation
viewpoints. All Prolog built-in meta-predicates can be redefined as 'LOG
programs by exploiting the new naming scheme. Then some syntactic
sugar is added to make the language more concrete. Some examples are
given, in particular to show the ability of the language to deal with
programs as data.

1 Introduction

The problem of meta-programming in the context of logic programming was
systematically faced for the first time by Bowen and Kowalski in [3]. Since that
time, a large number of researchers have carried this idea on in many directions.
Relatively few efforts, however, have been devoted to the design of an effective logic
programming language equipped with meta-programming capabilities similar to
those usually available in Prolog but defined in a cleaner way. Among them, we
must mention MetaProlog [2, 4], and, more recently, the Gödel language [6].

This paper moves along these lines and leads to the definition of an extended
logic programming language - called 'LOG - which provides meta-programming
facilities similar to (or, possibly, better than) those of Prolog. It has the very same
aims as Gödel, at least as far as the introduction of meta-programming facilities is
concerned: "... to have functionality and expressiveness similar to Prolog, but to
have greatly improved declarative semantics compared with Prolog" [6]. 'LOG is also
similar in aims to Barklund's proposal [1]: defining "a naming of Prolog formulas
and terms as Prolog terms to create a practical and logically appealing language for
reasoning about terms, programs, ...".

Also the applications we have in mind are mostly the same as those of the
mentioned proposals, namely the development of software tools (the meta-programs)
that manipulate other programs (the object programs) as data, such as debuggers,
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compilers, program-transformers, etc.. We do not consider as part of our language
any reflection mechanism which would allow a meta-representation to be obtained
from the object it denotes or vice versa. This differentiates (both in aims and in
nature) our proposal from others, such as Reflective Prolog [5] and R-Prolog* [15],
that, on the contrary, assume a reflection mechanism to be available, though not
visible at the user level.

The main problem is that of defining a suitable naming scheme by which the
syntactic entities of the language can be referred to and manipulated at the meta-level.
Here we stress the fact that naming should apply to every syntactic entity of the
language, from characters to programs. In addition, we want the naming scheme to
be effective, that is to burden not too much the user with an heavy notation, and to
allow efficient implementations of the language to be devised.

The key idea underlying our proposal is to provide two different but related
meta-level representations for each syntactic object of the language. Precisely, the
meta-level representations consist of a constant name and a structured ground term,
called the structural representation. The name describes an entity as a whole, while
the structural representation describes the structure of the entity in terms of the
names of its components, thus allowing one to explore its internal structure.
Moreover, for each composite syntactic object, it is possible to relate its name to its
structural representation by means of the predefined predicate <=>. While neither
meta-representation is especially original on its own, using them together seems to
offer quite interesting possibilities.

The idea of a double meta-representation was already applied in a more
pragmatical sense and to a limited extent (programs only) to the definition of the
meta-logical facilities of the EnvProlog language, an extended Prolog aimed at
building Prolog programming environments [10, 11, 12]. In this paper, we start
instead with a pure logic programming language and we apply the naming scheme to
every syntactic entity of the language. Then we show that a more concrete version of
the language embodying this naming scheme can be obtained by the addition of a
suitable syntactic level; this makes the language easier to be handled both for the
user and the implementation. We show also that the resulting language exhibits
higher meta-programming attitudes than Prolog (in particular, as regards the ability
to deal with programs as first-class data objects) while preserving a logical reading.

Section 2 presents the main features of the naming scheme provided by 'LOG:
names, structural representations and the <=> operator used to relate the name and the
structural representation of each syntactic object. The usage and motivations of the
double meta-representation from the user viewpoint are discussed in Section 3.
Section 4 discusses how usual Prolog built-in meta-predicates can be redefined in
'LOG. Section 5 presents the syntactic additions and conventions we assume for the
concrete version of 'LOG. The ability of our language to deal with programs as data
is highlighted in Section 6 by showing some simple examples. Finally, Section 7
briefly discusses the implementation issue, pointing out some motivations for the
use of the double meta-representation also from the language implementation
viewpoint.

2 Meta-Representations

'LOG syntax is mostly the usual syntax of logic programming languages (cf. for



instance [9]) and will be skipped here, except for those parts concerning the meta-
representations.

We start with an ordinary Horn clause language and we conservatively extend it
to one in which every syntactic entity is named by ground terms of the language.
Precisely, each 'LOG syntactic object has two meta-representations associated with
it, called the name and the structural representation of the object.

2 . 1 Names

The name of an object is a constant symbol which is isomorphic in structure to the
object it refers to. If e is a syntactic expression of the language, 'e' is its name. For
example,

'append([],X,X).
 append([A|X],Y,[A|Z]) :- append(X,Y,Z)'

is the name of a program defining the usual append predicate which concatenates two
lists. As another example, 'f(a,g(X))' is the name of the term f(a,g(X)).

Objects having a name in 'LOG are programs, clauses (including goals), terms,
symbols and characters. Accordingly, names are partitioned into five different classes:
program names, clause names, term names, symbol names and character names.
Notice that these classes are not necessarily disjoint. The same name, in fact, can
denote different syntactic expressions depending on the context where it is used; for
instance, 'alpha' can represent either a symbol or a term with no arguments or a
clause with no body or a single clause program. Also notice that we do not consider
atomic formulas as a syntactic class of the language. Indeed it seems more
appropriate to the meta-programming paradigm we are considering here to treat atoms
simply as terms.

2 . 2 Structural Representations

Every composite syntactic object (i.e., symbols, terms, clauses and programs) has a
second meta-representation associated with it, called the structural representation.
This meta-representation is a ground term which describes the structure of the object
it denotes in terms of the names of its components.

If e  = e1e2…en 
is a syntactic expression where e1, e2, …, en are its

component sub-expressions then the structural representation of e  is
[ 'e1', 'e2' ,…,'en'].

For instance, if P = C1.C2. … .Cn is a program then ['C1','C2',…,'Cn'] is the
program structure of P where 'Ci ' is the clause name of the clause Ci. Similarly, if
f(a,g(X,b)) is a term, the corresponding term structure is ['f','a','g(X,b)']. The
only exception is the structural representation of clauses. Clause structures (other
than goal clause structures) rely on the reserved symbol clause for distinguishing the
head from the body part (e.g. clause('p',['q','r']) for p:- q,r). In Section 5 we will
introduce a synthetic notation for structural representations which is more convenient
for the user (in contrast with the list notation, also called explicit notation, presented
here). Since it is simply syntactic sugar it can be ignored for the moment.

While names are constant symbols (hence atomic entities), structural



representations are compound ground terms. Therefore, one can easily define terms
similar to structural representations apart from the occurrence of meta-level variables
in place of some of the names 'ei ' of its component sub-expressions. Such terms
will be considered as partially specified structural representations. For instance,
['f',X] is not a term structure; however, if the meta-level variable X is instantiated to
the name of some term we get a complete term structure, e.g. ['f','a'], ['f','g(b)'],
and so on.

Meta-variables in an incomplete structural representation are dealt with as real
variables in contrast with object level variables that are frozen inside the names that
constitute the structural representation. Therefore the two term names 'f(X)' and
'f(a)' cannot unify at the meta-level, whereas ['f',X] and ['f','a'] unify, yielding
the substitution X = 'a'.

Names and structural representations are syntactic entities; therefore they have a
name and a structural representation too. For instance, the name of the term name
'Alpha' is '

 

 

 

'

 

Alpha' 

 

'

 

. Thus, 'LOG supports the definition of an infinite tower of
meta-levels. Anyway, meta-levels are strictly separated: at each level, the syntactic
entities of the lower levels are visible through their names only; variables do not
make an exception to this rule. No reflection mechanism is supported by 'LOG.

2 . 3 Relating Names and Structural Representations

The name and the structural representation of an object can be related to each other by
the use of the predefined predicate <=> (written infix), called the destructuring or
simply the double arrow operator.

The informal semantics of <=> is: a goal N <=> S is true if N is the name of an
object o and S is the ground structural representation of the same object o. Thus,
<=> simply defines a binary relation, called the destructuring relation, between names
and structural representations, i.e. between syntactic expressions of the language.

Actually, we have distinguished five different classes of name symbols. It
follows that we must distinguish among different forms of the generic operator <=>,
accordingly to the different types of its arguments. We will use the four different
operators <=p=>, <=c=>, <=t=> and <=s=> for programs, clauses, terms and
symbols respectively, still using the generic double arrow operator when speaking of
its properties in general and no ambiguities arise (we will see in Section 5 that these
differences can be hidden by an upper syntactic level). Here are two simple examples
of goals involving <=>:

?- 'p :- q,r. q. r.' <=p=>  [ 'p :- q,r', 'q', 'r '].
yes.

?-  ' f(g(a),b,C)'  <=t=>  [ 'f ',A,'b','C'].
A = 'g(a)'.

The second goal succeeds provided the meta-variable A is instantiated to 'g(a)'.

2 . 4 Semantics

The main differences in the semantics of 'LOG w.r.t. the standard case (as described



for instance in [9]) are due to the presence of the double arrow operators.
As regards the declarative semantics of 'LOG, first a privileged interpretation

domain resulting from suitable modifications to the classical Herbrand universe is
defined then the privileged interpretation of <=> is given as a relation over this
domain.

The modified Herbrand universe H is defined in almost the same way as usual
except that it is built out of the set of characters composing names besides the set of
function and constant symbols that occur in the program in such a way to include all
the names and ground structures which can be constructed in that program.

The privileged interpretations of the <=> operators are defined as binary
relations over such H. In particular, for any TN, TS ∈ H, whether TN <=t=> TS
holds or not can be established by: TN  has the form 't', TS  has the form
['f','t1',...,'tn'], t is a term, and t = f•(•t1•,•...•,•tn•) where • is the usual string
concatenation relation and = is the usual syntactic equality. Similar definitions can
be given for <=p=>, <=c=> and <=s=>.

Procedurally, a goal N <=> S succeeds from a program P if either N is a name
and there exists a ground instance S' of S such that <N,S'> is in the destructuring
relation, or N is a variable, S is ground and there exists an instance N' of N such that
<N',S> is in the destructuring relation. If, on the contrary, N is a variable and S is
not ground then the goal is unsolvable and its proof is delayed till either one of the
above cases occurs.

A refutation of P ∪ {G} is a finite derivation G, G1,...,Gn of P ∪ {G} such that
the last derived goal only contains destructuring goals in unsolvable form and there
exists a substitution θ which makes all them true simultaneously. A computed
answer for a refutation of P ∪ {G} is now a pair <σ,C> where σ is a substitution for
the variables in G computed as in the standard case and C is the (possibly empty) set
of destructuring goals in unsolvable form.

Delaying the solution of a goal containing the <=> operator allows a declarative
reading of programs to be preserved. The order of literals in a clause or in a goal is
immaterial. For example, the goal

?- S <=s=> ['a','l'|X], X = ['p','h','a'].

succeeds with computed answer substitution S = 'alpha' and no destructuring goal
left unsolved.  If, on the contrary,  at the end of the computation  a  goal of the form
N <=> S cannot be solved because N is a variable and S is not ground then N <=> S
is returned as part of the computed answer: it will be considered as a constraint on
values the not yet instantiated meta-variables occurring in it can assume. For
example, in

?- N <=t=> ['f'|A], A = ['a'|B].

A = ['a'|B],
N <=t=> ['f','a'|B].

there are obvious valid instances of the meta-variables B and N, but not all of them
are viable. Actually the way the double arrow operators are dealt with in our proposal
can be viewed as a simple form of Constraint Logic Programming [7, 8].



3 Using the Meta-Representations

Names and structural representations are two descriptions of a syntactic object at two
different levels of abstraction. There are circumstances in which the inner structure of
the object we want to refer to is not important at all. For instance, when writing a
procedure for appending two programs we just need to know that we have to append
lists of clauses, without getting into their internal details. In other cases, on the
contrary, it is important to access the inner components of the syntactic object we
have to deal with.

The two different meta-representations 'LOG supplies are intended to satisfy
these two different uses. The structural representation of an entity describes the
structure of the entity in terms of the names of its components, which, on the
contrary, are viewed as monolithic entities. Thus, for instance, the clause

p(X,f(a)) :- q(X),r(a,b)
can be represented in 'LOG as

clause('p(X,f(a))',[ 'q(X)', 'r(a,b)'])
while in other proposals using structural descriptive names only (e.g. [1, 5]) also
sub-components are represented as structured terms. For example, according to
Barklund's proposal [1], the above clause should be represented as

clause(atom(p,[var(0),compound(f,[const(a)])]),
conj(atom(q,[var(0)]),atom(r,[const(a),const(b)]))

Notice that if symbols had a name too then they should be replaced by the structured
terms, e.g. lists of characters, representing them.

Having the structural representation only, it may result quite cumbersome for
the user to represent such entities as programs and clauses at the meta-level, and, on
the other hand, it may result quite expensive for the implementation to maintain the
structural representation of low level entities, such as symbols. Actually, proposals
which use a structural meta-representation only usually do not cover the naming of
all the syntactic entities of the language: they usually exclude the two extremes,
namely programs and symbols. The use of a synthetic notation as a shorthand for
complex structured names, such as the one proposed in [5], solves only the problem
of notational conciseness but still leaves the implementation problems unsolved (the
implementation issue will be briefly addressed in Section 7).

Whenever a deeper detail level is needed, 'LOG provides the user with the <=>
operator. Given the name of an entity, one can obtain its structure by applying the
proper <=> operator to the name. Thus, for instance, if we want to know which is
the name of the predicate defined by the above clause we can go inside the clause
structure by unification and then apply <=t=> to its first argument. The goal

? - clause('p(X,f(a))',['q(X)','r(a,b)']) =  clause(H,_),
H <=t=> [N|_]

will instantiate N to 'p'.
As a more comprehensive example, which makes use of the full power of the

double arrow operators, we show the definition of a predicate psort which is able to
sort clauses of a program according to the names of their head predicates. The
arguments of psort are two program names, namely the object program and its
sorted version.



psort(Prog,Sorted_Prog) :-
Prog <=p=> ProgStruct,
sort(ProgStruct,Sorted_ProgStruct),
Sorted_Prog <=p=> Sorted_ProgStruct.

sort(L1,L2) :- ...
%true if list L2 is L1 sorted w.r.t. the order
%relation defined by the predicate order/2

order(Cl1,Cl2) :- %true if Cl1 precedes Cl2
Cl1 <=c=> clause(Head1|_),
Head1 <=t=> [PName1|_],
Cl2 <=c=> clause(Head2|_),
Head2 <=t=> [PName2|_],
string_comp(PName1,PName2).

where the predicate string_comp(PName1,PName2) tests if the atomic symbol S1
precedes S2 w.r.t. a standard order of characters as defined by the list ['a','b',...,'z'].
It employs the <=s=> operator to obtain the lists of the characters composing the
given symbols and then compares these lists.

It is important to realize that this program does not use any extra-logical
feature. To obtain something similar in C_Prolog one should use such extra-logical
built-in predicates as clause , =.. and @ <  (the latter used in place of our
string_comp).

4 "Reconstructing" Prolog Built-in Meta-Predicates

All the meta-predicates Prolog usually supplies in the form of built-in predicates are
definable in 'LOG, at least in principle, within the language itself. In particular, the
object level provability relation of a goal from a program can be defined, even if
quite inefficiently, as a 'LOG program, similarly to the definition of the demo
predicate given in [3]. In this way it is possible, on the one hand, to give these
predicates a logic semantics, and, on the other hand, to ignore them while performing
a formal analysis of the language.

Actually, some of Prolog built-in meta-predicates, such as =.., name and ==,
become unnecessary in 'LOG, since explicit representations of terms and symbols are
directly available. For instance, the Prolog clause

p(X) :- X =.. [F,a1|Args],q(F).

can be replaced in 'LOG by the clause

p(X) :- X <=t=> [F,'a1'|Args],q(F).

where the argument of p is assumed to be a term name. Now, assume q is defined as
q(f)  (resp., q('f ') in 'LOG). In Prolog the goal p(f(a1))  succeeds while,
unfortunately, the goal p(X) fails. In 'LOG, on the contrary, also the goal p(X)
succeeds yielding the constraint X <=t=> ['f','a1'|Y]. This establishes that X is
constrained to be the name of a term of the form f(a,...). In particular, the solution
X  = 'f(a1)' can be obtained from this constraint by instantiating Y to [].

Some other simple Prolog meta-predicates, such as var, atom, etc., can be



defined quite easily in 'LOG. var, in particular, is concerned with a crucial point,
that isvariable naming. Let us briefly comment upon this point. The name of an
object level variable Alpha is 'Alpha'. Its structural representation instead is
['Alpha'] that is a list of a single element which is a symbol name. Given the
symbol name, its structural representation can be easily obtained via the <=s=>
predicate. Thus we can inspect the internal structure of the symbol and check whether
it is a variable or not (we assume the syntactic conventions of most Prolog systems
where variables are symbols with initial capital). Therefore, the Prolog meta-
predicate var can be redefined in 'LOG as follows:

var(TN) :- TN <=t=> [SN],
SN <=s=> [CN|_],
upperAlphabet(U), member(CN,U).

upperAlphabet(['_','A','B',…,'Z']).

where TN is intended to be instantiated to a term name. The goal ?-var('Alpha')
clearly succeeds with this definition. The goal ?-var('f(a)'), on the contrary, fails
since the call to <=t=> in var fails. Notice that if TN is not instantiated yet when
var is called then the solution of the destructuring goals in var is simply
postponed. Thus, the goal ?-var (X)  succeeds with computed answer
X<=t=>[SN],SN<=s=>['_'|_]; and then, through backtracking, with computed
answer X<=t=>[SN],SN<=s=>['A'|_], and then X<=t=>[SN],SN<=s=>['B'|_], and
so on. This result establishes that a variable is a non-structured term whose first
character is any of '_', 'A', 'B',... . The goal ?-var(X),X='f(a)' clearly fails,
whereas the same goal erroneously succeeds in conventional Prolog.

Using 'LOG meta-programming facilities it is also possible to define the
unification procedure between two object level terms and then use it to define other
typical Prolog meta-predicates. The unification procedure can be implemented as a
predicate unify(T1,T2,Subs) where T1 and T2 are the names of the terms to be
unified and Subs encodes the computed object level variable substitutions as a list of
pairs X/t where X is the name of a variable occurring in T1 or T2 and t is a term
name. Thus, for instance, the two term names 'f(X,b)' and 'f(a,Y)' do not unify at
the meta-level but they unify at the object level: unify('f(X,b)', 'f(a,Y)',S)
succeeds with S = ['X'/'a','Y'/'b'].

Using unify it is easy to define, for instance, extended versions of the call and
clause built-in predicates of ordinary Prolog, where the program to work with and
the generated substitutions are handled explicitly as new arguments of the predicates.
Following EnvProlog [10], we call these meta-predicates ecall and eclause,
respectively. In particular, the ecall predicate is defined as follows:

ecall(PN,GN,Subs,C)

holds if the goal represented by GN can be proved in the object level program
represented by the program name PN. Subs is a (possibly empty) list of pairs X/t
representing the substitutions of the object level variables occurring in G and C is a
(possibly empty) list of constraints, that is destructuring goals N<=>S in unsolvable
form, generated by the proof of G. For example:

?- ecall('p(a,Y) :- q(Y). q(f(b))', ':- p(X,Y)',S,C).
S = ['X'/'a', 'Y'/'f(b)'], C = [].



5 Towards a Concrete Language

Some syntactic sugar can be added to the language described so far to make its
implementation more efficient and simplify its use.

First, we extend the syntax of names so to be able to determine for each name
which kind of name it is, i.e. which syntactic class the named objects belong to, by
simply looking at the name itself. This ability can be advantageously exploited by
the language implementation to select at compile time the most adequate internal
representation for each different kind of name (see Section 7 for a discussion of the
implementation issue). Furthermore, the appropriate instance of the generic operator
<=> can now be selected automatically, accordingly to the kind of its arguments; so
the user must be concerned with only a single overloaded <=> operator, letting the
language implementation have the task of disambiguating it.

The syntactic conventions we will use for names are summarized in Figure 1.
Assuming these conventions, each name uniquely identifies an object of a precise
syntactic class. For instance, '{alpha}', '.alpha.', 'alpha' and '/alpha/' represent a
program, a clause, a term and a symbol, respectively. Also ground structural meta-
representations of different kinds can easily be distinguished each others accordingly
to the different kinds of their components. For instance, a list of clause names is
necessarily a program structure, a list of term names is necessarily a goal clause and
so on. As an example, the three similar structures [ 'b ' , 'e ' , ' t ' , 'a ' ] ,
['/b/','e','t','a'] and [%b,%e,%t ,%a]  can be easily mapped on to the goal
clause :- b,e,t,a, the term b(e,t,a) and the symbol beta, respectively.
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 program:  c1.c2. ... .cn '{c1.c2. ... .cn}'
 clause: h:-b1, ... ,bn '.h:-b1, ... ,bn.'
 term: f(t1, ... ,tn) 'f(t1, ... ,tn)'
 symbol: abc '/abc/' 
 character: c %c

Figure 1

A further step towards a more concrete programming language is introducing a
synthetic notation for structural representations which is more convenient for the
programmer than the list-like explicit notation used so far. The synthetic notation for
the structural representation of an expression e closely resembles the corresponding
name of e, except that double quotes are used instead of single quotes. For instance,
the synthetic structural representation of the program c1.c2. ... .cn is "{c1.c2. ...
.cn}", whereas the synthetic structural representation of the term f(t1,...,tn) is
" f ( t1, . . . , tn)" .

Meta-variables can be easily handled by the explicit notation of structural
representations. However, it would be desirable to use meta-variables in the synthetic
notation as well. In order to allow object level variables to be easily distinguished
from meta-variables also when using the synthetic notation we admit the former to



be enclosed in quotes whenever ambiguities might arise. Thus, for instance, the term
structures ['/f/',X,'Y'] and [F,'g(X)','X'] can be represented unambiguously in
synthetic notation as "f(X,'Y')" and "F(g(X),'X')", respectively.

Moreover, the usual Prolog notation used to represent the rest of a list is easily
extended to structural representations in synthetic form. For instance, the
(incomplete) term structure ['/f/','a'|R] can be rewritten in synthetic notation as
"f(a|R)". As another example, a predicate that concatenates two program structures
can be defined as follows (cf. [12]):

appendPS("{}",P,P).
appendPS("{C|P1}",P2,"{C|P3}") :- appendPS(P1,P2,P3).

Finally, a synthetic notation is introduced also to represent nested term
structures in a more convenient way. Nested term structures are lists of term
structures (rather than of term names) which can be constructed by repeated
applications of <=t=> . For instance, given the term name ' f(a,g(b))' the
corresponding nested term structure is [ ' / f / ' , [ ' /a/ ' ] , [ ' /g/ ' , [ ' /b/ ' ] ] ]  or, in
synthetic form, "* f(a,g(b))". Meta-variables in partially specified nested term
structures may occur at any depth in the term. For instance, in ['/g/',['/h/',X]],
i.e. "* g(h(X))", X is clearly a meta-variable. Notice that nested term structures
where all object level variables are replaced by meta-level variables closely
correspond to non-ground representations in Gödel [7]. Also notice that, as a special
case, "f(X1,...,Xn)" and "* f(X1,...,Xn)", n≥0 and X1,...,Xn (meta-)variables, are
equivalent synthetic notations for the partially specified term structure
[ ' / f / ' ,X1 , . . . ,Xn ] .

Nested term structures can be advantageously exploited to give an alternative
definition of the ecall meta-predicate which provides some form of communication
from the object level to the meta-level which turn out to be very useful in practice.

ecall(PN,NGS)

holds if there is an instance NGS' of the list of partially specified nested term
structures NGS such that the conjunction of goals represented by NGS' can be
derived, at the object level, from the program represented by the program name PN.
For example

?- ecall('{p(X) :- q(X).  q(a)}', ["p(X)","q(X)"]).
X = "a".

Similarly, it would be possible to define also a version of eclause working
with lists of partially specified nested term structures instead of lists of term names
and then use it to define the vanilla meta-interpreter in almost the same way as in
ordinary Prolog.

6 Programs as Data

One of the most peculiar feature of our language is the ability to deal with whole
programs, i.e. finite sequences of clauses, as data objects. In this section, we briefly
point out two classes of problems for which program names may result particularly
useful. A wider discussion about this topic can be found in [12].



6 . 1 Program Structuring

A program can contain an assertion a(PN) about another program designated by the
program name PN. Therefore, the set of clauses in a program can be partitioned into
separate smaller subsets defined as inner programs. Inner programs can be dealt with
as data by the enclosing program, i.e. by the program at the meta-level. For
example, the program

alpha prog '{p(X) :- q(X),r. q(a). r}'.
beta prog '{p(b). q(a)}'.
p(X) :- q(X).
q(c).

where prog is a user-defined infix operator, contains the definition of two inner
programs. The three definitions of the predicate p occurring in the three different
programs are dealt with as definitions of three distinct predicates, i.e., predicate
names in a program are local to that program. Predicates in an inner program can be
accessed only using meta-predicates such as ecall and eclause. For example, adding
the clause

demo(N,G) :- N prog P,ecall(P,G).

to the above program, we can issue the goal

?- demo(alpha,"p(X)").
X = "a".

where simple mnemonic names, such as alpha and beta in the example, can be used
instead of program names to refer to programs.

The use of structural-descriptive names for representing programs at the meta-
level is a major difference with respect to MetaProlog [2, 4]. In MetaProlog theories
(i.e., sets of clauses) are named via simple constant names with no resemblance of
the structure of the object they denote. Thus, "All MetaProlog program databases ...
are set up either by reading them in from files or by dynamically constructing them
using system predicates" [4]. In 'LOG, on the contrary, a program name lists
explicitly clauses that compose it. Thus our solution is well suited to support
program modularization. Program names can be statically nested at any depth. The
global program database can be split into a number of smaller program units,
possibly nested, which can be accessed only via meta-predicates such as ecall.

 In addition, 'LOG allows meta-variables to occur in program structures
whereas the same is not feasible in MetaProlog. As a consequence, it is not possible
in MetaProlog to define for instance a predicate like the predicate appendPS of
Section 5: such a predicate could be implemented in a rather awkward way as a series
of add_to calls. On the other hand, the use of structural descriptive names is not
adequate to support the construction of self-referential sentences.

6 . 2 Clausal Representation of Data Structures

Programs can be used also to collect clauses defining some complex data structure so
that it can be managed as any other term (e.g. passed to a procedure as a parameter)
maintaining all the advantages of the clausal representation (e.g. access by



unification). For example, the following assertion

g1 graph '{a(a,b).a(a,c).a(b,c).a(b,d).a(c,d)}'.

can be used to define a graph, named g1, where graph is a user-defined infix operator
and, as usual, a(X,Y) represents an arc between two nodes X and Y.

With such a representation, it is easy to define general predicates dealing with
graphs, such as, for instance, a predicate path(X,Y,G) for finding a path between
two nodes X and Y in a given graph G:

path(G,X,Y) :- ecall(G,"a(X,Y)").
path(G,X,Y) :- ecall(G,"a(X,Z)"),path(G,Z,Y).

Thus, it is possible to solve, for instance, the goal:

?- g1 graph G,path(G,a,d).

Different graphs can coexist in the same program if each graph is defined as a
separate program, possibly with its own mnemonic name. This is much more
difficult, and less elegant, to obtain using standard Prolog.

7 Implementation Issues

The naming scheme we have chosen for 'LOG and, in particular, the use of a double
meta-representation is justified also by a number of implementation concerns we will
try to summarize in this section.

First of all, we notice that the use of meta-level names which are isomorphic in
structure to the named objects allows the internal representation of meta-level names
to be used directly as the internal representation of the objects themselves. No
explicit link between objects and object names must be maintained by the system as,
on the contrary, it would be necessary if unstructured constant names were used (e.g.
in MetaProlog).

Therefore, having two meta-representations for the same object actually
amounts to having two different internal representations for the same object. When
using the structural representation we are likely to inspect the structural composition
of the named object. This requires a list-like internal representation to allow standard
unification to be used to access components. Conversely, when using the constant
name we want to deal with an object as a monolithic entity. No logical operation is
allowed to access the internal structure of a constant. A name could be stored in main
memory simply as a string.

However, an efficient implementation of the language could choose a different
internal representation of names without interfering with their structural
representation. Indeed, although all Prolog built-in meta-predicates are in principle
definable in 'LOG, the concrete version of our language should provide also a low
level implementation of most of them in order to obtain acceptable execution
efficiency for practical applications. Of course this require an adequate internal
representation of the object to be dealt with. In particular, an efficient
implementation of meta-predicates dealing with programs, such as ecall and
eclause, requires program names to be stored in such a way to make accessing
clauses as fast as possible. Thus, for instance, program names can be represented
internally as a tree-like structure with auxiliary pointers and indexes or hash tables
for improving search operations on clauses.



If we had the structural representation only, and therefore only the list-like
internal representation for every object then there would be an unacceptable
decreasing in the overall efficiency of the language. Just think of the overhead (both
in space and in time) caused by representing all symbols as character lists. If, on the
other hand, we had only names, and therefore only special-purpose internal
representations, as required by any real implementation to obtain a reasonable
execution efficiency, then any attempt to access the structure of a syntactic entity
would cause non-trivial difficulties. Ad-hoc operations should be provided in this case
instead of standard unification.

With our solution, which internal representation of an object must be used can
be established by the user by selecting the appropriate meta-level representation of
the object. Given one representation, the other one can be built in a quite
straightforward manner. To this regard, notice that a structural representation
describes the structure of an object in terms of the names of its components. So it is
possible to use directly the internal representation of names as the elements of the
internal representation of the structured name of an object. Furthermore, one
representation can be built from the other one only when it is really necessary, that
is, whenever a goal N<=>S is encountered and one of its arguments is a variable
while the other one is a ground term. If both the representations of the same object
are present a double link is used to connect them to each other.

Finally, notice that the syntactic conventions established in Section 5 allows
the language implementation to always select at compile time the appropriate
internal representations for each different kind of names and ground structural
representations.

8 Conclusions

In this paper we have presented the meta-logic facilities the language 'LOG supplies
and briefly discussed their motivations and uses. In particular, we have described a
naming scheme for logic programs which allows two different but related meta-
representations (namely, names and structured representations) to be associated with
each syntactic entity of the language, from programs to characters. The availability
of such a naming scheme allows all the meta-predicates usually available in Prolog
to be defined as 'LOG programs. Also interesting extended versions of some of these
predicates (such as ecall, eclause, etc.) can be provided quite easily. Furthermore we
have shown simple applications of program names which have no immediate
correspondent in standard Prolog.

A simple though inefficient prototype of the language described in this paper
has been implemented in C_Prolog. A more concrete and complete version of this
language, called Quote-Prolog, is under development at present. In particular, the
notion of program name, program structure and the <=> operator dealing with them
had already been implemented in EnvProlog [10, 11, 12] and has been now
successfully re-implemented (in a better structured way, and including clause names)
in a new extended Prolog interpreter written in Modula 2. It is planned for the near
future to continue this implementation to include all the meta-level features of 'LOG.
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