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Abstract

We propose a general and uniform modal framework for the Event Calculus (EC) and its skeptical
and credulous variants. The resulting temporal formalism, called the Generalized Modal Event
Calculus (GMEC), extends considerably the expressive power of EC when information about the
ordering of events is incomplete. It provides means of inquiring about the evolution of the maximal
validity intervals of properties relatively to all possible refinements of the ordering data by allowing
free mixing of propositional connectives and modal operators. We first give a semantic definition
of GMEC; then, we propose a declarative encoding of GMEC in the language of hereditary Harrop
formulae and prove the soundness and completeness of the resulting logic programs'.
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This web of times — the strands of which approach to one another, bi-
furcate, intersect or ignore each other through the centuries — embraces
every possibility. We do not exist in most of them. In some you exist
and not I, while in others I do, and you do not, and in yet others both of
us exist. In this one, in which chance has favored me, you have come to
my gate. In another, you, crossing the garden, have found me dead. In
yet another, I say these very same words, but am an error, a phantom.

— The Garden of the Forking Paths, Jorge Luis Borges

1 Introduction

This paper proposes a general and uniform modal framework for Kowalski and Sergot’s Event Calculus
(EC) [12] and its skeptical and credulous variants [1, 2, 3]. Given a set of event occurrences, EC
allows one to derive maximal validity intervals (MVIs hereafter) over which properties initiated or
terminated by those events hold. As new events or additional ordering information about known
events are recorded, EC updates accordingly the set of MVIs. Most approaches based on EC assume
the occurrence time of each event to be known; here, we explore the case of partially ordered events
devoid of an explicit occurrence time. In this case, EC is neither able to derive all admissible MVIs
nor to distinguish which of the derived intervals are defeasible and which are not.

The problem of computing which facts must be or may possibly be true over certain time intervals
in presence of partially ordered events has been already addressed in the literature, e.g. [1, 2, 3, 5, 6,
16, 19], and case studies in the domains of diagnosis and planning have been analyzed in [3] and [16],
respectively. In [5], Dean and Boddy showed that this computation is intractable in the general case
and proposed polynomial approximations that compute either a subset of necessary facts or a superset
of possible ones.

In [2] and [3], we defined two variants of EC, called Skeptical EC (SKEC) and Credulous EC
(CREC), which respectively compute the necessarily true MVIs and the possibly true MVIs in the
restricted setting where the occurrence of events is not subject to preconditions?. SKEC and CREC
can be given a polynomial implementation, that can be further enhanced by exploiting transitive
reduction graph processing techniques [4]. In [1], we defined a uniform modal interpretation for EC,
SKEC and CREC, called the Modal Event Calculus (MEC). MEC deals with atomic formulae (MVTs
computed EC) as well as simply modalized atomic formulae, i.e. atomic formulae prefixed by only one
modality (MVIs computed by SKEC and CREC). Tt is provided with a sound and complete axiomatic
formulation in a logic programming framework.

In this paper, we define a Generalized Modal Event Calculus (GMEC) that extends MEC by
allowing a free mixing of propositional connectives and modal operators. Such a capability is useful to
deal with real-world applications, as pointed out in [3]. We initially capture the intuitions underlying
GMEC by giving a semantic formulation of EC and extending it to a modal interpretation that takes
into account all possible refinements of the ordering data. Then, we provide GMEC with a sound and
complete ariomatization in the language of hereditary Harrop formulae and rely on a proof-theoretic
approach for proving the faithfulness of our implementations with respect to the behavior of GMEC,
as expressed by the semantics.

We believe that our approach contributes to the conceptual understanding of EC, an important but
not yet fully understood formalism for reasoning about events and their effects. Moreover, the proposed
method can be exploited to increase the confidence in alternative axiomatizations of EC by proving

2Tt is worth noting that as soon as we abandon this restricted setting and allow one to use preconditions or boolean
connectives, (the generalized versions of ) SKEC and CREC respectively compute a subset of the necessarily true MVTs
and a superset of the possibly true MVIs. Consider the following example. Take two properties p and ¢ which are
respectively initiated by events e; and ey, provided that precondition r holds. Moreover, suppose that both events
terminate r. Consider a scenario where (i) both e and e; occurred, but their ordering is unknown, and (ii) an event e,
occurred before e; and ey, initiated r. A precise temporal reasoner should conclude that either p or ¢ must hold. On
the contrary, CREC concludes that both p and ¢ may hold, while SKEC concludes that neither p nor g necessarily hold.



them sound and complete with respect to the corresponding semantics on a syntactic (proof-theoretic)
ground. Finally, it seems suited to act as a general framework for studying significant extensions of
EC (e.g. GMEC). We expect this approach to be applicable to related formalisms as well (e.g. the
situation calculus).

The paper is organized as follows. In Section 2, we first recall some basic definitions about orderings
and tailor them to the needs of the subsequent discussion; then, we formally define GMEC and presents
its fundamental properties. In Section 3, we summarize the definition and operational semantics of
hereditary Harrop formulae and use this language to give two sound and complete encodings of GMEC.
The conclusions provide an assessment of the work done and discuss future developments. For the sake
of readability, we have collected the proofs of the results presented in Section 3 in the Appendix.

2 The Generalized Modal Event Calculus

In this section, we formally define the Generalized Modal Event Calculus (GMEC). We consider the
case in which the set of event occurrences has been fixed once and for all and the input process consists
in the addition of information about the relative ordering of event pairs. Furthermore, we assume that
events do not happen simultaneously and that the ordering information is always consistent.

The section is organized as follows. We first recall some notions about ordering relations. Then, we
provide EC with a semantic interpretation that validates, in the current knowledge state, precisely the
MVIs computed by EC. By considering all possible knowledge states with the associated reachability
relation, this model is naturally lifted to a modal interpretation. The corresponding extension of
EC with propositional connectives and modalities substantially augments the expressive power of EC.
Next, we formally state a number of properties of the proposed formalization that will be later exploited
to increase the efficiency of GMEC implementations.

2.1 Ordering Relations

In the following, we will rely upon different notions of ordering and ordered set. The ordering inform-
ation, as usually represented in EC, constitutes a quasi-order, i.e. an ordering relation missing some
transitive links; however, this information is used in EC as a strict order. Moreover, the structure
representing the possible evolutions of the ordering data constitutes a non-strict order.

Definition 2.1 (Quasi-orders, strict orders, non-strict orders)

Let E be a set and R a binary relation on E. R is called a quasi-order if it is acyclic; a strict
order if it is irreflexive, asymmetric and transitive; a non-strict order if it is reflexive, antisymmetric
and transitive. The structure (E, R) is respectively called a quasi-ordered set, a strictly ordered set
and a non-strictly ordered set. O

We denote the sets of all quasi-orders and of all strict orders on E as Og and Wg, respectively. Tt is
easy to show that, for any set £, Wg C Of (actually, Wg C Og if E has at least three elements). We
will use the letters o and w possibly subscripted to denote quasi-orders and strict orders, respectively.

We indicate the transitive closure of a relation R as R*. Clearly, if (F,0) is a quasi-ordered set,
then (E, o%) is a strictly ordered set. Two quasi-orders o1, 02 € OF are equally informative if of = of .
This induces an equivalence relation ~ on Og. It is easy to prove that, for any set £, Og,. and Wg
are isomorphic. In the following, we will often identify a quasi-order o with the corresponding element
ot of Wrg.

The set 28%F of all binary relations on E naturally becomes a non-strictly ordered set when
considered together with the usual subset relation C. Moreover, (2EXE, U,Nn, ,Ex E,Q) is aboolean
lattice. Since Wy is a subset of 2F%F | the restriction of C to this set still forms a non-strict order.
Indeed, we have that, for any set E, (Wg,C) is a non-strictly ordered set. It can be easily proved



that (Wg,N, Q) forms a lower semi-lattice. Moreover, for any w1, ws € Wg, the relation wy 1 wy =
(w1 Uws)™T is the least upper bound (lub) of w1 and ws whenever this element belongs to Wg. Note
that wy 1 ws € Wg if wy and ws contain symmetric pairs.

Given w in Wg, any w’' € Wg such that w C w' is called an extension of w. We denote the set of
all extensions of w as Ext(w). We have that for any w € W, if (e1, e3) € w, then for all w’ € Ezt(w),
(e1,€e3) € w'. For any w € Wg, Ext(w) enjoys the same properties of Wg. More precisely, (Ezt(w), C)
is a non-strictly ordered set, (Ezt(w),N,w) is a lower semi-lattice, and 1 characterizes the partial
operation of lub over this semi-lattice. Notice in particular that Ext(Q) = Wg.

Whenever E is a finite set, also W is finite since it is a subset of 2%, Moreover, all Ext(w) for
w € Wg are finite as well. This property allows us to prove statements by induction on the cardinality
of Fat(w) for w € Wg and F finite. We will need this fact in the proofs of the results of Section 3.

We conclude the treatment of orderings by giving some definitions related to the notion of interval.
Let £ be aset and w € Wg. A pair (e1,e2) € w is called an interval of w. Given two distinct intervals
(e1,€2) and (€}, eh) over w, we say that (e1, e2) is a subinterval of (e}, eb) (or (€}, eh) is a superinterval
of (e1,es)) with respect to w if either e; = €} or (e},e1) € w and dually es = e}, or (eg,e}) € w. We
write in this case (e1,es) Cuw (€], €5). We have that, for any ordering w € Wg, (w, Cy) is a strictly
ordered set.

2.2 Formalization of GMEC

EC proposes a general approach to representing and reasoning about events and their effects in a
logic programming framework. It takes the notions of event, property, time-point and time-interval as
primitives and defines a model of change in which events happen at time-points and initiate and/or
terminate time-intervals over which some property holds. EC also embodies a notion of default per-
sistence according to which properties are assumed to persist until an event that interrupts them
occurs (an event e interrupts the validity of a property p if it initiates/terminates p itself or a property
q which is incompatible with p). This formalism was originally designed to compute the maximal
validity intervals (MVIs) over which properties hold uninterruptedly.

In order to formalize these entities, we define the notion of EC-structure that records the time-
independent (factual) parameters of an EC problem, i.e. the sets of relevant events and properties, the
relations that associate events to the properties they initiate and to the properties they terminate, and
the pairs of mutually incompatible properties.

Definition 2.2 (EC-structure)

A structure for the Event Calculus (EC-structure) is a quintuple H = (E, P, [-), (], ]-,-[) such
that:

o E={ey,...,en} and P ={p1,...,pm} are finite sets of events and properties, respectively.

e [V: P —=2F and (]: P — 2F are respectively the initiating and terminating map of H. For
every property p € P, [p) and (p] represent the set of events that initiate and terminate p,
respectively.

e |--[C P x P is an irreflexive and symmetric relation, called the exclusivity relation, that models
exclusivity among properties. O

Since we consider situations where events are ordered relatively to one another, we will represent
an MVI for a property p as p(e;, e:), where e; and e; are the events that initiate and terminate p,
respectively. MVIs are thus intervals labeled by properties. Let us adopt the set of all property-labeled
intervals as the language of EC. The task performed by EC reduces to deciding which formulae are
MVIs and which are not. GMEC extends this language by allowing combinations of property-labeled
intervals by means of propositional connectives and modal operators.



Any EC-structure is also a structure for the Generalized Modal Event Calculus (hereafter GMEC-
structure). The language for GMEC is defined as follows.

Definition 2.3 (GMEC-language)

Let H = (E, P, [-), (], ]-+[) be a GMEC-structure. The base language of # (EC-language) is
the set of propositional letters Ay = {p(e1,e2) : p € P and e1,e5 € E}. The GMEC-language of
H, denoted by Ly, is the modal language with propositional letters in Ay and logical operators in
{—,A,Vv,0,0}. We refer to the elements of Ay and Ly as atomic formulae and GMEC-formulae,
respectively. O

Notice that, beyond structured notation we use for atomic formulae, £ is a propositional language.

We call knowledge state a partial (consistent) specification of the events ordering. Standard imple-
mentations of EC represent knowledge states as quasi-orders, and take their transitive closure in order
to make inferences concerning MVIs. Therefore, given a GMEC-structure # = (E, P, [), (], |-,'[), we
interpret atomic formulae relatively to the set Wg (denoted Wy in this context) of the strict orderings
among events in F. Given a current state of knowledge w, the semantics of EC is defined by the
(propositional) valuation v}, which discriminates MVIs from other intervals in w.

In order for p(er, e2) to be an MVI relatively to the knowledge state w, (e1, e2) must be an interval
inw, i.e. (e, es) € w. Moreover, e; and e3 must witness the validity of the property p at the ends of this
interval by initiating and terminating p, respectively. These requirements are enforced by conditions
(éi¢), (1) and (i1), respectively, in the definition of valuation given below. The maximality requirement
is caught by the meta-predicate nb(p,eq,e2,w) in condition (iv), which expresses the fact that the
validity of an MVI must not be broken by any interrupting event. Any event e which is known to have
happened between e; and e in w and that initiates or terminates a property that is either p itself or
a property exclusive with p interrupts the validity of p(eq, es).

EC has been traditionally defined by means of a set of axioms [12]. In its logic programming
implementation, the valuation v, is represented by the predicate holds, which relies on the predicate
broken for testing for interrupting events (i.e. the negation of the meta-predicate nb). The original
definition of these predicates will be recovered in our implementation in Section 3.

GMEC expands the scope of EC by shifting the focus from the current knowledge state—say w—to
all knowledge states that are reachable from w, i.e. Ezt(w), and more generally to W5. By definition,
w’ is an extension of w if w C w’. Since C is a non-strict order, (W%, C) can be naturally viewed as a
finite, reflexive and transitive modal frame. If we consider this frame together with the straightforward
modal extension of the valuation v}, to an arbitrary knowledge state, we obtain a modal model for

GMEC.

Definition 2.4 (GMEC-model)

Let H = (E, P, [), {], ]'v]) be a GMEC-structure. We denote as Oy and Wy the set Op
of quasi-orders and the set Wg of strict orders over E, respectively. We call the elements of Oy
(and consequently of Wy ) knowledge states. The GMEC-frame Fy of H is the frame (Wy, C).
The intended GMEC-model of H is the modal model 3 = (Wy, C,vy), where the valuation vy C
Wy x Ay is defined in such a way that (w,p(e1, e2)) € vy if and only if

i. e1 € [p);
i. ey € (pl;
iti. (e1,e9) € w;
iv. nb(p,e1,e2,w), where

nb(p, e, ez, w) iff —Je€ E. (e1,e) Ew
A (e e2) Ew
A JgeP((eelg Vee(qd) A(pglvr=q)).



The satisfiability relation is defined as follows:

Tu;w = pler,ea)  iff  (w,pler,ea)) € va;

Tu;w =~ ff Ty w b g

TnswlE et Nps iff  TyywlkEer and Iy w = e

TniwlkEeiVes  iff TyywlEer or Iy;w = g

Iy;w | By iff  Vw' € Wy such that w C w', Ty;w' | ;

Ty, w = Op iff  Jw € Wy such that w C w' and Iy;w' |E . O

We will drop the subscripts 3 whenever this does not lead to ambiguities. Moreover, given a
knowledge state w in Wy and a GMEC-formula ¢ over H, we write w |= ¢ for Zg; w = .

Notice that the definition of satisfiability given in the previous inductive definition is always con-
sistent, i.e. for every knowledge state w € Wy and formula ¢ it is not possible to have both w = ¢
and w | —¢p. In the sequel, we will take advantage of a slightly different formulation of consistency.
We have the following property that can be easily proven by induction on the structure of the formula

®.
Property 2.5 (Completeness of the satisfiability relation)

Let H = (E, P, [), (], ]']) be @ GMEC-structure. For all w € W and GMEC formula ¢, if
w H# —p, then w = . [ |

Theorem 2.6 (GMEC and S/)
Fach thesis of S4 is a valid formula of GMFEC.

To prove Theorem 2.6, it suffices to show that each axiom of S4 is a valid formula of GMEC,
and that each rule of S4 preserves validity. The proof of these conditions is straigthforward, and thus
omitted. The following equivalences among GMEC formulae, that will result particularly useful in
Section 3, immediately follow from Theorem 2.6

Corollary 2.7 (Some equivalent GMEC-formulae)
Let ¢, ¢1 and g3 be GMEC formulae. Then, for every knowledge state w € W,

e whkEO-p iff wE —Op
o wlECnp iff whgkE-Op
o wiEO(p1 Awa) iff wEDp AOp
o wEO(p1 V) iff  wkEOpr V Op

e w D00y iff w = Ogp

o whk OOy iff wgkOp

o wEOOOOY iff wlEOOp

o w =000y iff wgE<OOy [ |

Observe that, unfortunately, there is no way of reducing formulae of the form O(¢1 V ¢2) and
&1 A p2). An interesting consequence of Corollary 2.7 is that every modal formula ¢ is equivalent
to a formula of the form ¢, O, Oy, OOy, SOY, OOOY or GOOY, where the main connective of 3

1s non-modal.



2.3 Properties of the Formalization

We will now give a number of results concerning the adequacy of the definition of GMEC-structure
with respect to the informal concept of MVT introduced in [12], and the modal extensions defined in
[1, 2, 3]. We have already shown that a satisfiable atomic formula p(eq, €2) identifies an interval during
which the property p holds. These intervals are maximal and uninterrupted, i.e. p does not hold on
any superinterval or subinterval of (eq, es):

Lemma 2.8 (Satisfiable atomic formulae are MVIs)

Let H = (E, P, [-), (], ]';']) be @ GMEC-structure and w € W such that w |= p(e1,e2). Then
Vel eh € | |

Proof.

a. Assume ab absurdum that (e}, e}) Cw (e1,€2) and w |= p(e), eh). If (e1,€}) € w, then, e} would
violate nb(p, e1, €2, w), and therefore w £ p(e1, e2). The situation is similar if (e}, e2) € w.

b. Assume that (eq,es) Cu (€],€5) and w |= p(ef, ey). The situation is dual to the previous case.

In this paper, we use GMEC to investigate how the MVIs derivable within the current set of ordered
pairs of events is updated due to the arrival of new ordering information. The set of MVIs can change
non-monotonically in response to the acquisition of ordering data. We wish to find the laws that rule
this behavior. GMEC entitles us to identify on the one hand the set of MVIs that cannot be invalidated
no matter how the ordering information is updated (as far as it is consistent), and on the other hand
those intervals that will possibly become MVIs depending on which ordering data are acquired. Notice
that this statement must be relativized to the current set of events: we do not (and in general cannot)
predict the behavior of the system as new events happenings are recorded, but we are able to draw
conclusions about how the current system can evolve as the ordering information is refined.

The sets of MVIs that are necessarily and possibly valid in the current state of knowledge w
correspond respectively to the O- and O-moded atomic formulae which are valid in w. We define the
sets MV I(w), OMVI(w) and GCMVI(w) of respectively MVIs, necessary MVIs and possible MVIs
with respect to w as follows:

MV I(w) = {pler,e2) 1w = pler,e2)}
OMVI(w) = {ple1,es):wl= Opler,es)}
OMVI(w) = {p(er,ea) :w = Opler,ea)}

In the following, it will be useful to view these sets as functions MVI(-), OMVI(-) and OCMVI(-) of
the knowledge state w.

We have that the set of necessary MVIs with respect to w will persist whatever the evolution of
the ordering information will be. Similarly, each element in the set of possible MVIs of w is valid in
at least one extension of w.

Lemma 2.9 (Behavior of OMVI(-) and OMVI(-) with respect to MV I(-))
Let H = (E, P, [-), (], ]-/]) be a GMEC-structure and w € W, then
a. if pler,eq) € AOMVI(w), then Yu' € Ext(w), pler,ea) € MVI(w');
b. if pler,e2) € OMVI(w), then Iuw' € Ext(w), p(er,ez) € MV I(uw').



Proof.

a. pler,es) €OMVI(w) off w |= Op(er,ea),
iff  VYw' such that w C w',w' = p(e1,es)
iff  Yuw' € Ext(w),w' | p(er,ea)
iff  Yw' € Ext(w),p(er,e2) € MVI(w').

b. Similar. [ |

The sets of necessary MVIs, MVIs and possible MVIs in the current state of knowledge form an
inclusion chain as formally stated by Lemma 2.10.

Lemma 2.10 (Necessary MVIs and possible MVIs enclose MVIs)
Let H = (E, P, [}, (], ]'/]) be a GMEC-structure and w € W, then

OMVI(w) C MVI(w) C OMVI(W).

Proof.
By the definition of the involved sets, these relations can be rewritten as follows:

a. if w |= Op(eq,es), then w = p(eq, e2);
b. if w = p(er,ez), then w = Op(ey, eq).

The validity of these expressions is a direct consequence of the reflexivity of the accessibility relation
of GMEC-frames. Indeed, w |= Op(e1,e2) iff p(er,e2) is valid in every extension of w, in particular
in w itself. Analogously, if w |= p(e;,es), then w = Op(eq, ea). [ |

When the arrival of a new piece of ordering information causes a transition into a more refined
state of knowledge, the current set of MVIs can be subject to two transformations. On the one hand,
the update may create a new MVI by connecting an event ey, initiating a property p, and an event
ey terminating p. On the other hand, a new link can transform a previously innocuous event e into
an interrupting event for some MVT p(eq, e2). Therefore, the function MV I(+) is non-monotonic with
respect to the evolution of the ordering information.

On the contrary, O- and $-moded atomic formulae are entities that possess a monotonic behavior:
the set of necessary MVIs can only grow as the current ordering information is refined, while the set
of possible MVIs shrinks monotonically as we acquire new ordering information and a smaller number
of future states is viable.

Lemma 2.11 (Monotonicity of O- and &-moded atomic formulae)
Let H = (E, P, [-), (], ]-/[) be a GMEC-structure and w and w' two states of knowledge, then

a. ifw Cw then OMVI(w) COMVI(w');
b. if w Cw' then OMVI(w') C OMVI(w).

Proof.
By the definition of MVI(-), OMVI(-) and OCMVI(-), these relations can be rewritten as follows:

a. if w |= Op(eq, es), then w' = Op(eq, e2);
b. if w' | Opler,ez), then w | Op(eq, es).



By the definition of GMEC-frame, where C plays the role of accessibility relation, these relations
hold trivially: if w |= Op(eq,ez2), then p(eq,es) is valid in every extension of w, but these comprise
all extensions of w’, thus w' | Op(eq,e2); similarly, if w' = Op(eq, ea) then p(eq, ea) holds in an
extension w* of w’, but since w C w’ and C is transitive, w* is an extension of w as well, and thus

w = Opley, es). [ |

By combining the interpretations of Lemmas 2.10 and 2.11, we have that OMVI(:) and OMVI(-)
constrain the variability of the set of MVIs derivable using EC. The state of minimum information
corresponds to the absence of any ordering data: OMVI(-) and MVI(-) derive no formula, while
OMVI(:) derives all consistent property-labelled intervals. As new ordering information arrives,
OMVI(:) increases, OMVI(-) decreases, but MVI(-) always sits somewhere between them. When
enough ordering information has been entered (at worst when the set of events has been completely
ordered) OMV I(-) and OCMVI(-) meet at a common value constraining MV /(-) to assume that same
value.

The following example shows that the GMEC fragment including only atomic formulae and simply
modalized atomic formulae is expressive enough to model real-world application domains. We consider
the functioning of the simple beverage dispenser depicted in Figure 2.1: by setting the selector to the
apple or to the orange position, apple juice or orange juice is obtained, respectively. Choosing the stop
position terminates the output of juice.

Apple STOP Orange]

(5> o] [a]2 <] [8]> < 14]

e
suppl yAople suppl yQrange suppl yAopl e

Figure 2.1: A Beverage Dispenser

We consider a scenario in which there are two events (e; and es) that initiate the property
supplyApple, two events (es and eg) that initiate the property supplyOrange, and two events (es
and e4) that terminate both the property supplyApple and the property supplyOrange.

This knowledge is modeled as follows in GMEC:

E = {e1,e2,¢e3,¢e4,¢5,¢€6};

P = {supplyApple, supplyOrange};



[supplyApple) = {e1, es};

[supplyOrange) = {es, es};

(supplyApple] = (supplyOrange] = {e2, ea};

|supplyApple, supplyOrange|.

Suppose that, in the intended final ordering, events are ordered according to their indices. Therefore,
the final situation is represented in Figure 2.1. In our example, we will consider the following sequence
of ordered pairs, which arrive one at a time: (e1,e4); (e1,eq); (e2,€4); (e1,€2); (e3,eq); (ea,es);
(e2,€e3); (e2,€6); (es,es). This sequence has been devised so that the complete situation shown in
Figure 2.1 can be fully derived only after the last update. The 9 ordered pairs are entered into
the database in sequence. The following table shows the evolution of the computation: each row
corresponds to the addition of one of these ordered pairs to the database.

MVIs derived by EC Necessary MVIs Possible MVTIs

aler,e2),a(er,eq),a(er,es),
% % o(es, e2),0(es, e4),0(es, ¢6),
a(es, e2), ales, ea), ales, eq)
a(ely 2)7‘1(617 4)7“(61756)7
?- updateOrder(eq, e4). a(er,eq) 1) o(es,e2),0(es,e4),0(e3,€6),
CL(€5, 2),(1(65, 4)7“(65756)
0(91792)70(P1794)7a(91796)7
?- updateOrder(eq, e¢). a(er,es),a(er, ) o o(es,e2),0(es,e4),0(e3,e6),
a(es,ea), ales,eq),ales, eq)

?- updateOrder(ez, e3). | a(e1,e2),a(er,ee),0(es,e4) (0] aler,e2),aler, ),
0(53764)70(53756)7{1(55756)
?- updateOrder(es, eg). a(er,e2),0(es, es) a(er,e2) aEel’ezg’0(63’64)’0(63’66)’

( )

?- updateOrder(es, e¢). | a(ei,e2),0(es,e4),a(es,e6) | a(er,e2),0(es,es),a(es,eq) | a(er,e2),o(es,eq),ales,eq)

The first column shows which update is being performed. The second column contains the list of
the MVTIs derived by EC, i.e. the result of running a generic query of the form ?— holds(period B; X F;).
For conciseness, we represented period(e;, supplyApple, e;) as the more compact notation a(e;, e;) and
period(e;, supplyOrange, e;) as the more compact o(e;, e;). The third and fourth columns contains the
list of necessary and possible MVIs, respectively.

Let us now move to the general case of arbitrary GMEC formulae. The following lemma stands as
the basis for the treatment of the modal operators in Section 3. Tt shows how the satisfiability test for
an arbitrary GMEC-formula having a modality as its main connective can be reduced to first testing
the satisfiability of its immediate subformula in the current world and then checking the satisfiability
of the original formula in the ‘one-step’ extensions of the current knowledge state.

Lemma 2.12 (Unfolding modalities)

LetH = (E, P, [}, (], ]/]) be a GMEC-structure, ¢ € Ly a GMEC-formula over H, and w € W.
Then

a. wEOp iff w= ¢ and Y(eq, es) such that (e1,ez), (e2,e1) € w, w1t {(e1,e2)} E Op;

b. w = Oy iff w = ¢ or ey, ea) such that (e1,ez), (ea,e1) € w, w1t {(e1,e2)} E Cop.
Proof.

First notice that if (e1,e2) ¢ w and (e2,e1) € w, then w 1 {(e1,e2)} € W since, in this case,
upgrading w with (e1, ea) cannot violate asymmetry in any way.



Moreover, for every w € W,

Ext(w) ={w}u | ]  Ezt(w?{(e1,e2)}).

(61,52)€w
(ez,e1)@w

Indeed, let w' € Ext(w). Then, by definition, w C w'. Therefore, either w' = w or there exists a pair
(e1,€2) € w'\w. In the latter case, w' € Ext(w 1 {(e1, e2)}). The opposite inclusion is straightforward.
We have now the needed tools to prove the statement of the lemma.

a. wEOp iff Yu' € Ext(w),v' |E ¢
Zﬁc Yuw' € {w} U U (e1,e2)gw El“t(w T {(51a52)});w' IZ 14
(e2,e1)Fw
iff w E ¢ and for each ey, e € E such that (e1,e2) € w and (es,€1) € w,
it holds that for each w' € Fat(w 1 {(e1,€2)}),w" |E ¢
iff w E ¢ and for each e1,es € E such that (e1,e2), (e2,€1) € w,
w1 {(e1,e2)} | De.

b. The proof is similar to (a). ]

In the sequel, we will use a different but clearly equivalent form of a:

wlkEDOp ff wlEe and
1t 1s not the case that

J(eq, e2) such that (eq,es), (e2,e1) € w. w1t {(e1,e2)} £ Oep.

Lemma 2.12 allows one to prove interesting properties of GMEC-models. As an example, it is
possible to show that GMEC-models validate the so-called McKinsey formula O¢ — $O¢. Consider
a GMEC-model Zy and a world w € Wy such that w = OC¢. By Lemma 2.12, we have that w | ¢
and for every (ei,es) such that (e1,es), (e2,e1) € w, w T {(e1,e2)} |E OC@. By recursively applying
such an argument, we have that for all w’ such that w C w', w' = O¢. Since, by Definition 2.2, the
set of events is finite, at last we arrive at a world wy in which for every pair of events (e, e2), it is
either (e1,e2) € wy or (ez,e1) € wy and wy |E O¢. Here we can apply again Lemma 2.12 (< part) to
conclude that w; |= ¢ or there exists (e, e2) such that (e, e2), (e2,€1) € w and wy 1 {(e1,e2)} E Oo.
However, since wy is final, we have that wy = ¢. Another application of Lemma 2.12 (O part) yields
wy = O¢. Then, another application of it (& part) leads to wy = $O¢. We can then go back to w
by using Lemma 2.12 (< part), e.g. if wy = w* 1 {(e1, e2)} for some (e1, e2) and wy |= OO, then we
have that w* |= ©¢0O¢, and so on.

Next, we seek for a manner of computing necessary and possible MVIs (simply moded atomic
formulae) that does not require to explore future states of knowledge. In both cases, we will be able
to devise necessary and sufficient local conditions. These properties stand as the basis for the imple-
mentation of SKEC and CREC [1, 3], and will allow us to improve the naive GMEC implementation
based on the result of Lemma 2.12 (semi-naive implementation).

An MVI p(eq, e2) is undefeasible whatever ordering information is acquired if no event can interrupt
it. An event e can possibly interrupt the validity of p(eq, es) if it initiates or terminates p or a property
that is exclusive with p, and it could be consistently located between e; and es with respect to w. The
negation of this condition is expressed by the meta-predicate nsb(p, e1, ea, w).

Lemma 2.13 (Local condition for atomic necessity)

Let H = (E, P, [), (], ]-,]) be @ GMEC-structure. Then for any e1,es € E, p € P and w € W,
pler, e2) € OMVI(w) iff the following conditions are satisfied:

10



€1 € [p>a
ez € (pl,

(e1,€2) € w,

nsb(p, e, ea, w)

where nsb(p, e1, ea, w) stands for the expression

Vee EEVNge P. e=¢e
V e=e¢ey
Vo (e,e1) Ew
Vo (e2,e) Ew
vV (e€lg) Vee(d = lpalAp# q)
Proof.

By definition, the first member of the equivalence, p(e1, e2) € AMV I(w), reduces tow |= Op(eq, es).
We will take advantage of this formulation in the proof.

(<) Let us proceed by contradiction. So, assume that e; € [p), ea € (p], (e1,€2) € w and
nsb(p,e1, ea, w), but there exist an extension w’ of w such that w’ |= p(e1, e2) does not hold, i.e. such
that nb(eq, ea, w’) is false. After some logical manipulations, the latter statement rewrites to

Je€ E.3ge P((er,e) €w' A(e,ea) €w' Ale€lg) Vee(g)Apalvp=a0).
Let ¢’ and ¢’ witness the validity of this formula. By instantiation, we obtain:
(er,e) €w' A (e ea) ew’ A (" €lg) Ve e(d])A(p,d[VP=1) (1)
We can instantiate the expression for nsb(p, €1, e2, w) with these values too. The resulting formula is:
el=erVe=eV(e)EwV(ege)ewV (e ely) e eld] = -lpd[Ap#d) (2

We must show that none of the alternatives in formula (2) applies. Since w’ is a strict order, the
validity of (1) implies that €’ can be neither e; nor es. Analogously, by lemma 2.11, either (¢’,e;) € w
or (ez,€') € w would violate the asymmetry of w’. Finally, the choice of ¢’ contradicts the last
alternative, i.e. that (' € [¢') V € € (¢'] = —lp,¢'[Ap # ¢'). This concludes this direction of the
proof.

(=) We will again proceed by contradiction. Clearly, if e; & [p) or e2 & (p], then we cannot obtain
w’ |= p(ey, e2) in any state of knowledge w’. If (e, e2) ¢ w, then there exist extensions of w containing
(e2,€e1). Because of asymmetry, these extensions cannot contain (eq, e3), thus p(es, e3) cannot be valid
in them.

Assume now that e; € [p), es € (p] and (e1,es) € w but that nsb(p, ey, es, w) does not hold.
Therefore, there are an event ¢’ and a property ¢’ such that:

dFe A Fes A (e a)duwA (end)guw A €lg) Ve eldl) A pdVp=1q).

Since the pair (e1,es) € w, there exists at least one extension w’ of w such that (eq,e’) € w' and
(e',es) € w'. Therefore,

(er,e)yew A (e e)ew AN(€ld)yVveeld])A(pdlvp=1)

hence nb(p, e1, ea, w') does not hold. This contradicts the assumed hypothesis, i.e. that w |= Op(eq, e3).
|

Tt is worth noting that the definition of nsb(p, €1, €2, w) is more restrictive than that of nb(p, e1, e2, w).
Let us say that e is a critical event for a given property p if and only if e initiates or terminates a
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property ¢ such that either p = ¢ or ]p, ¢[. Condition nb(p, e1,e2, w) states that there are no critical
events e € E such that both (e1,¢e) € w and (e, e2) € w, while condition nsb(p, e1, €2, w) states that
there are no critical events e € E, with e # e1 and e # €3, such that both (e,e1) ¢ w and (ez,¢e) & w.

A labeled interval p(e1,es) might become an MVI for p in an extension of the current knowledge
state w if ey initiates p, e; terminates p, the interval (e;,es) is consistent with w, and there are no
already known interrupting events between e; and e;. More formally, we have that:

Lemma 2.14 (Local condition for atomic possibility)

Let H=(FE, P, ['), (], I';[) be a GMEC-structure. Then for any e1,es € E, p€ P and w € W,
pler, e2) € OMVI(w) iff the following conditions are satisfied:

® e € [p>f
o e € (pl,
(e2,€1) € w,

e nb(p,e1, ez, w).

Proof.
As in the previous proof, we reduce the relation p(e1,e2) € SMVI(w) to w E Op(er, es). We
operate on this equivalent formulation.

(<) Let us construct an extension w’ of w such that w’ = p(e1,e2). The state of knowledge w’ is
defined as w’ = (wU{(e1, e2)})T. First notice that w' is consistent (i.e. it does not violate asymmetry)
since w is consistent and (es, e1) ¢ w. Then observe that nb(p, e1, e2, w’) holds by the definition of w’'.
Otherwise, we should be able to conclude that there is an event e € F such that (e, e) € w’, (e,e2) € w'
and either e € [¢) or e € (q] for some property ¢ € P, with ]p, q[ or p = ¢, but in that case, (e1,e) € w
and (e, es) € w contradicting the assumption that nb(p, ey, es, w) holds. Therefore, conditions (i—iv)

of Definition 2.4 are satisfied w.r.t. w’; hence w’ = p(e1,e2), and thus w | $p(ey, ea).

(=) We proceed by contradiction. Clearly, if e; ¢ [p) or es ¢ (p], then we cannot obtain w' |=
p(e1, e2) in any state of knowledge w’. Analogously, if (e2,e1) € w, then (es,e;) belongs to every
extension of w, forbidding in this way condition (:7) of EDefinition 2.4 to be satisfied. Finally, if
nb(p, e1, e2, w) does not hold, (i.e. there is an event e € E such that (e1,¢e) € w, (e,e3) € w and e € [g)
or e € (q] for some property ¢ € P with |p,q[V p= q), then, by Lemma 2.11, the same condition would
apply to every extension w’ as well, thus nb(p, e1, es, w') would not hold in any extension w’ of w and

pler, e2) &€ SMVI(w). .

3 A Logic Programming Implementation of GMEC

In this section, we present an abstract implementation of GMEC in the language of hereditary Harrop
formulae and prove its soundness and completeness with respect to the GMEC semantics presented
in Section 2. In Section 3.1, we recall the definition of hereditary Harrop formulae (HH-formulae for
short) and their operational semantics as a logic programming language. In Section 3.2, we define an
encoding of GMEC-structures, orderings and GMEC-formulae as HH-formulae. We also give a first
naive program modeling the validity relation for GMEC formulae. Section 3.3 proves the soundness
and completeness of this program with respect to the notion of GMEC-model. Finally, in Section
3.4, we present an optimized (semi-naive) implementation of GMEC and prove its soundness and
completeness.
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3.1 Hereditary Harrop formulae

So far, the implementation language for EC has almost always been the language of Horn clauses
augmented with negation-as-failure [13], which constitutes the core of the logic programming language
Prolog. This traditional Prolog implementation can be easily extended to cover the propositional
connectives. Moreover, we showed in [1] that a restriction of the purely modal extension of EC can
be conveniently encoded in this language by taking advantage of Lemmas 2.13 and 2.14. However,
when mixing arbitrarily propositional connectives and modalities, as in GMEC, a direct encoding in
Prolog appears unsatisfactory. The resulting program is in fact either highly non-declarative (for the
necessary presence of a large number of assert and retract statements), or extremely complex (as
we experienced in [3]). In conclusion, Prolog is not adequate for a declarative description of GMEC.
In particular, it makes quite difficult to prove the fundamental soundness and completeness properties.

For the implementation of GMEC, we chose the language of first-order hereditary Harrop formulae
[15] augmented with negation-as-failure. Extensions of this language, with or without negation-as-
failure, have been used as the underlying logic of many logic programming languages successfully
proposed in the last ten years, including Miller’s AProlog [14], Gabbay’s N-Prolog [7], Pfenning’s EIf
[18] and Hodas and Miller’s Lolli [10].

Hereditary Harrop formulae extend Horn clauses by allowing the presence of implication and univer-
sal quantification in goal formulae. The former feature will give us a declarative means of temporarily
augmenting the program with new facts and performing in this manner a form of hypothetical reas-
oning. Universal quantification in goals provides a powerful tool for data and program abstraction: it
allows, for instance, a purely declarative definition of abstract data types and modules. We will not
take advantage of this last feature.

We will now describe the syntax and the operational semantics of hereditary Harrop formulae. We
assume the reader to be familiar with Prolog [13].

The language of hereditary Harrop formulae is a subset of intuitionistic first-order predicate logic.
Formulae in this language are functionally subdivided in program formulae and goal formulae depending
on whether they can appear as program clauses or they can only be used in queries. We use the syntactic
variables D and G respectively to refer to these formulae. Program and goal formulae are mutually
defined according to the following formal grammar, where A ranges over atomic formulae:

D == A | T | DiAnDy | G—> A | VeD (Program formulae)
G = A | T | GitANGy | D—>G | Ve.G
| L | GiV G | Jz.G (Goal formulae)

Syntactically, hereditary Harrop formulae differ from Horn clauses only for the admissibility of implic-
ation and universal quantification in goal formulae (items 4 and 5 in the definition of G): as soon as
we get rid of these productions, we obtain a language that is equivalent to Horn clauses. In order to
represent negation-as-failure, we augment the definition of goal formulae with expressions of the form
not G. A hereditary Harrop clause is a closed program formula of the form VZ.(G — A), where Vi
represents a possibly empty sequence of universal quantifications; A and G are called the head and the
body of the clause, respectively. A closed formula of the form V#.A is called a fact and is considered as
a clause with an empty body (i.e. VZ.(T — A)). Any program formula can be transformed into a set
of clauses. In the following, we will use the terms D-formula and GG-formula as synonyms of program
formula and goal formula, respectively.

We will describe the semantics of hereditary Harrop formulae with negation-as-failure by means of
two judgments called positive and negative sequents and denoted P =—> G and P == G, respectively,
where P is a set of D-formulae and G' a G-formula. Negative sequents are needed for defining negation-
as-failure. In both cases, P and G are called the program and the goal of the sequent respectively. If ¢
is a clause and P is a program, we abbreviate P U {c} as P, c. As we said, any program is equivalent,
modulo elementary logical manipulations, to a program consisting uniquely of clauses. We write P¢
for the clausal form of the program P.
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Hereditary Harrop formulae constitute the biggest sublanguage of first-order logic that is complete
with respect to uniform proofs [15]. Uniform provability views logical connectives in goal formulae
as search directives for the construction of derivations and clauses as partial definitions of atomic
formulae. The goal part of a sequent is decomposed up to the level of atomic formulae, and only then
the program part is accessed in order to retrieve a clause defining this atom. The computation fails
when trying to solve undefined instances of atomic formulae.

The non-deterministic search for a proof of the goal G from the program P corresponds to the
construction of a derivation for the positive sequent P = G according to the rules to be defined
below. Every derivation tree for P = G built in this manner constitutes a proof of G from P.
Therefore, G is provable from P if there exists a proof-tree for the positive sequent P — .

Conversely, G is not provable from P if there is no proof-tree for P = G In terms of (uniform)
proof search, non-provability can come in two flavors: either every attempt of building a derivation
for P = G generates a sequent P’ =—> G’ to which no rule is applicable, or an infinite tree can be
obtained by the application of the derivation rules, and in this case the search does not terminate. In
the first case, we say that this sequent is finitely non-provable. In the second case, we say that the
sequent is divergent.

When trying to find a proof for a negated goal not GG from the program P, we want to show that
there is no proof of G from P, i.e. that P = G is non provable. Tt will become evident from the
examples below that, in general, diverging sequents cannot be finitely recognized. Therefore, we are
reduced to showing that P =—> @ is finitely non-provable. The (failed) proof-trees constructed during
a search for a proof of P = G are not accessible for this purpose. Instead, we internalize them and
model finite non-provability by means of negative sequents, P == G in this case. Again, a derivation
tree for P =~ G constitutes a proof of this sequent.

The derivability rules for positive and negative sequents have dual definitions. Moreover, the proof-
search semantics of negated goals makes them mutually recursive. The complete definition is given in
Figure 3.2. The rules that do not apply to Horn clauses are outlined. Notice that the rules exist—and
atom— are non standard since some of the involved parameters (the term ¢ and the clause VZ.(G — A’)
respectively) are subject to extensional universal quantification. Therefore, exist— can be viewed as
a rule with an infinite number of premisses (Harland has shown in [8] that it is sufficient to consider
a finite set of representations). Similarly atom— is better seen as a rule with a variable number of
premisses depending on the number of matching clauses.

Let us now give some examples that better illustrate the distinction among provable, finitely non-
provable and diverging sequents. These notions apply also to negative sequents and are defined simil-
arly to the positive case.

e Let Py = {a,a — b}. The clausal form of Py is P{ ={T — a,a — b}. The sequent P; = b
is provable by applying in sequence the rules atom+, atom+ and true4. However, Py == b
fails after two applications of atom— (therefore it is finitely non-provable). On the other hand,
P1 = c fails immediately while P; =% ¢ succeeds by rule atom-—.

e Let Py = {a — a}. Then both Py = a and Py =%~ a diverge by infinite applications of the
rules atom+ and atom-—, respectively. It is easy to notice that these sequents do not have any
derivations since each step reproduces the original sequent. However, a simple loop-detection
mechanism is not sufficient in most cases. Consider for instance a first-order variant of this
example: Pj = {Vz.(a(f(z)) — a(z)}. Then, the sequents P4 = a(v) and P} == a(v) diverge
in the same manner, but at each stage the sequent to be proved is different. As a less trivial
example, consider a non-terminating program that computes the decimal expansion of .

e Finally, let Ps = {a,a — a}. Clearly Ps = a is derivable. Notice that this sequent has infinitely
many proofs, as well as a diverging derivation. On the other hand, P3 =~ a is not derivable
since, after applying rule atom—, there is no way to proceed with the branch corresponding to
a. Notice however that the resulting (failed) proof-tree is infinite.
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— true+
P=T
P = G4 P = Gy P,D =G
and+ ————————— impl+
P = G1 N Gy P=—=D —= G
P =G P =G
—— e o ] ———— or+:
P = GV Gy P= GV Gs
P = [t/x]CG P = [c¢/x]CG
——— exist+ ——  forall4*
P = F2.G P = Ve.&G
VE(G — A)eP® A=A P=G"
atom+
P=A
PG
naf 4
P = notG
false—
P =
P = Gy P =Gy P,D=£G ,
PGV Gy PD G T
P q&> G 4 P q&> Gy 4
P =~ Gy A Gy ' P = Gy A Gy :
t 7
{For each term ¢} w exist— M forall—*
P == .G P == Ve
P G’
{For each clause VZ.(G — A’) € P¢ with A’7 = A} i atom—
P A
P=dG .
P == not G -
* ¢ does not occur in P or in G.

Figure 3.2: Sequent derivation rules for hereditary Harrop formulae with negation-as-failure

We will now state the duality between positive and negative sequents. First, since we defined
negative sequents with the aim of formalizing finite non-provability, it should not be possible that both
the positive and the negative sequents involving the same program and goal are provable. Harland has
proved the following result for a similar rule system [8, 9].

Property 3.1 (Consistency of positive and negative sequents)
For given program P and goal G, either P —> G or P == G is not derivable. [ ]

This property can be sharpened by considering finite non-provability. We have indeed that a positive
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sequent is finitely non-provable iff the corresponding negative sequent is derivable. The dual property
obtained by flipping the adjectives positive and negative holds as well.

Property 3.2 (Duality of positive and negative sequents over finite derivations)

Let P and G be a program and a goal respectively. Then:

o P — G 1is finitely non-provable iff P == G is provable;
e P == G is finitely non-provable iff P —> G is provable. ]

We will take advantage of this result as follows. Let p(P, ) be a property of a given program P
and a goal G. Assume that we are able to prove that p(P,G) iff P = G is derivable. Then, if we
know that P = G has finite derivations only, we obtain as an immediate consequence that —=p(P, G)
iff P = not (G is derivable.

Whenever the problem at hand is characterized by finite derivations, negation-as-failure behaves as
classical negation. The presence of this operator does not turn the logic of HH-formulae into a classical
formalism, not even in this case. Indeed, implication still maintains its original intuitionistic flavor, as
supported by the operational reading of this connective. In particular, the G-formula 1 — G is not
equivalent to not D V G

We conclude this section by defining a concrete syntax for the language of hereditary Harrop
formulae. We use identifiers beginning with lower case letters (e.g., must, before, .. .) for constants and
symbols beginning with uppercase letters for implicitly quantified variables (e.g., Ei, P, ...). We write
terms and atoms in curried form (e.g., (before Ei Et) for the binary predicate before applied to the
variables Ei and Et). The unary operator not is reserved to represent negation-as-failure when used
in a goal formula (it will be convenient to overload it in Section 3.2 to model object level negation in a
term position). The constants true and fail are reserved for the logical symbols T and L respectively.
We represent the logical operators A, V and — as the infix symbols , (comma), ; (semicolon) and =>
respectively, and the quantifiers V. and 3z. as forall[X] and exist[X] respectively. In a program
position, we represent — as :- with the antecedent and the consequent reversed. We follow the
usually accepted convention to drop the leading universal quantifiers when representing a clause (and
in general a D-formula) in the concrete syntax.

3.2 Encoding of GMEC as hereditary Harrop formulae

The aim of this section is twofold. We will first give a precise encoding of GMEC into the language of
hereditary Harrop formulae. Then we will show a naive implementation of GMEC and give an informal
overview of its features. The soundness and completeness of this encoding will be proved in the next
section. Section 3.4 analyzes a more refined version of this implementation.

We define a family of representation functions " -7 that relate the mathematical entities we have
been using in Section 2 to the terms of the logic programming language we have chosen for the
implementation. Specifically, we will need to encode GMEC-structures, the associated orderings,
and the GMEC-language. In the remainder of this section, we will refer to the GMEC-structure
M= (Ea P, [>’ <]J ]aD

In order to represent H, we need to give an encoding of the entities that constitute it. For this
purpose, we first specify the functions "= ™ and "- " that give the concrete syntax of individual events
and properties, respectively. We explicitly assume that these functions are injective, i.e. that every
event e in F (property p in P) has a representation that is different from that of all other events (resp.
properties). Moreover, we want T and " F to give distinct representations to events and properties.
The exact definition of these functions is problem-specific.

The injectivity of the representation functions on events and properties enables us to utilize the
respective inverse functions, .-.g and .- .p, whenever they are defined. Notice indeed that (. and t.p
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% —————--- Equality
X = X. (1)
Y mm—————— Transitive closure of knowledge states
before E1 E2 :- (2) | before E1 E2 :- (3)
beforeFact E1 E2. beforeFact E1 E, before E E2.
Y mm——————— Propositional formulae
holds (period Ei P Et) :- (4) | holds (not X) :- (6)
happens Ei, initiates Ei P, not (holds X).
happens Et, terminates Et P, holds (and X Y) :- )
before Ei Et, holds X, holds Y.
not (broken Ei P Et).
. holds (or X Y) :- (8)
broken Ei P Et :- (5) holds X; holds Y.
happens E,
before Ei E, before E Et,
(initiates E Q ; terminates E Q),
(exclusive P Q; P = Q).
Y% mm—————— Modal formulae
holds (must X) :- (9) | holds (may X) :- (1
holds X, holds X.
not (failsmust X). holds (may X) :- (12)
failsmust X :- (10) happens E1, happens E2,
happens E1, happens E2, not (before E1 E2),
not (before E1 E2), not (before E2 E1),
not (before E2 E1), beforeFact E1 E2 =>
beforeFact E1 E2 => holds (may X).
not (holds (must X)).

Figure 3.3: GMEC: a naive implementation of GMEC.

cannot be defined for all terms ¢. As a matter of convenience, we take the liberty of writing ill-formed
expressions of the form (£.g € F for a generic ¢, assigning them the truth value false whenever ¢ is not
in the range of " 7.

The next step consists in defining the translation maps for [-), (:] and ]-,-[. We represent these
relations by means of the binary predicates initiates, terminates and exclusive, respectively. The
traditional formulations of EC give an explicit representation to the occurrences of events. We utilize
the unary predicate happens for this purpose. The corresponding representation functions are defined
as follows:

. r[-)“I = {initiates e P ieeE,peP andec p)};
. r<~]"T = {terminates e P eeE,peP andec (rl};
. r]-,-[’“X = {exclusive wF P . p,qe P and I, al};

o "B = [happens ¢ :¢c E}.

At this point, we define the representation of the GMEC-structure # by taking the union of the
representations of its constituent entities:

rH_IS — I'E'IH U r[.>'|I U r<.:|'|T U I']’[‘LX

In Section 2, we assumed that the ordering information of a GMEC problem was specified by means
of strict orders in W. When integrating GMEC into practical applications, e.g. [3], this assumption
turns out to be inadequate since, in general, the host system will simply pass the raw ordering data to
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the GMEC module as they are recorded. Therefore, we choose to represent this kind of information
as our knowledge states and to reconstruct the corresponding strict ordering as needed. We assume
the information source to be reliable, and thus the raw ordering information constitutes a quasi-order
in O. We use the binary predicate beforeFact to represent the atomic ordered pairs contained in a
quasi-order 0 € O. The function ™- " relates a knowledge state to its concrete syntax. Tt is defined as
follows:

00 = {beforeFact o1 P ey P (e1,€e2) € o}.

The last entity we need to represent is the GMEC-language of #. We encode the formulae in Ly as
terms in the language of hereditary Harrop formulae. Specifically, we use the ternary function symbol
period to represent atomic formulae and the constants not, and, or, must and may, with the obvious
arities, as the concrete syntax of the logical symbols of GMEC: =, A, V| O and <, respectively. The
representation function ™" for GMEC-formulae is specified by the following recursive definition, based
on the structure of the formula in £y being represented:

o pler,ea) = period "e;"E PP ey P
. o = ot "k

° rSp1 A 802-|L — and rsol-lL FSOQ—IL

o o1 Vot = or e oot

. Tl = must "t

. "ot = may "t

Notice that we have overloaded the symbol not. However, its position dictates its use: within a term,
it represents the negation of L4, and at the predicate level it stands as the negation-as-failure operator.
In order to simplify the notation, we will write the previously defined translation maps as ", whenever
the omitted subscript is easily deducible from the context.

Figure 3.3 shows an implementation of GMEC in the language of HH-formulae. We call this program
the naive implementation of GMEC, and refer to it as GMEC. Clause (1) models object level equality.
Clauses (2) and (3) define the predicate before that reconstructs the transitive closure of the ordering
information currently stored in the program. The remaining clauses show the actual implementation of
GMEC. We use the unary predicate holds to represent the validity of a GMEC-formula with respect
to the GMEC-structure and the knowledge state represented in the program. Said in a different way,
we aim at representing the judgment Zg; 0t |= ¢ by means of the relation GMEC,"H","0" = holds "¢

Clauses (4) and (5) implement the definition of modal valuation of the standard GMEC-model
given in Definition 2.4; the latter clause corresponds to the negation of the meta-predicate nb. These
clauses coincide with the standard Prolog axiomatization of EC [12]. Clauses (6-8) map the object-level
propositional connectives to the corresponding meta-level operators.

Clauses (9-10) define holds for O-moded GMEC-formulae. They implement directly the statement
of the remark following Lemma 2.12. In order to check that the formula Oy holds in the current state
of knowledge, first we check ¢ locally and then we ascertained that there is no future knowledge state
where Oy does not hold. Clause (10) attempts to find a counterexample to this requirement, i.e. a
proper extension of the current world (i.e. a state of knowledge that orders two currently unrelated
events ey and ey) where O fails to hold. No such knowledge state must exist for the body of clause
(9) to hold. Notice the essential use of implication in the goal position in these cases.

The remaining clauses deal with GMEC-formulae having < as their main connective in a similar
manner. Note that the implementation of holds for GMEC-formulae involving modalities requires
the exhaustive exploration of all extensions of the current knowledge state. This approach is clearly
expensive, and for this reason we qualify GMEC as the nazve implementation of GMEC. An enhanced
program for GMEC that takes these properties into account is analyzed in detail in section 3.4.
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In section 3.1, we described hereditary Harrop formulae as an extension to Horn clauses permit-
ting the use of implication and universal quantification in goal positions. Being the latter connective
available, it is tempting replace clauses (9-10) by

holds (must X) :- (%)
holds X,
forall[E1, E2]
(happens E1, happens E2,
not (before E1 E2),
not (before E2 E1),
beforeFact E1 E2 => holds (must X)).

implementing in this way the statement of lemma 2.12 directly, instead of taking the complicated
detours dictated by the subsequent remark. Unfortunately, this clause is not a faithful transcription
of the lemma. The bug originates from the confusion between two forms of universal quantification.

When a universal goal of the form Vz.G(z) is encountered, it is reduced to the goal G(c), where
¢ is a new constant. Solving this goal requires to work abstractly with the generic individual ¢ only.
Therefore, if this goal succeeds, G(t) holds for every term ¢. This form of universal quantification is
called intensional. Tn our setting, solving the body of clause (*) requires to invent two new events,
say e} and e}, and use them to solve the embedded goal. However, e}, e ¢ E, therefore the subgoals
happens "ej” and happens "e}” will never succeed.

This is obviously not the behavior that we have in mind. We would rather want the variables E1
and E2 to be instantiated to all events in F in turn. Abstracting away from our problem, we may
model this situation by means of the formula V& € S. G(z), where S is some (recursive) set. This form
of universal quantification is called extensional. This quantifier cannot be represented within plain
hereditary Harrop formulae. However, the presence of classical negation (modeled to some extent by
negation-as-failure) allows to recover it as soon as we manage to represent the relation z € S by a
predicate (as in our example). Then, we rewrite the previous formula as —=3z. (x € S A =G(z)). This
formula is in turn equivalent to

(Vz. (€ S A =G(2)) = p)) = 7,

where p’ is a new atomic formula. Notice that the quantifier is now in a program position; therefore, it
will not be solved intensionally. As soon as we substitute logical negation (—) with negation-as-failure
(not), we obtain a formula that is acceptable in our framework. These are precisely the steps that
led to the displayed formulation of clauses (9-10), where fails must is used as the accessory atomic
formula.

3.3 Soundness and Completeness Results

In this section, we show that GMEC is a faithful implementation of the semantics given in Section 2.2 for
GMEC. This statement is formalized in the soundness and completeness theorem (Theorem 3.10) that
concludes the section. This result is accomplished in a number of steps: we present here only the most
important ones; their proofs, together with auxiliary lemmas, can be found in the Appendix. First
we need to prove that before is a sound and complete implementation of the transitive closure over
knowledge states, then we show that the implementation of atomic formulae is sound and complete,
and finally we will be able to freely mix boolean connectives and modal operators.

We begin with a lemma about the properties of before. When only ordering information is con-
cerned, we do not need to refer to the representation of the underlying GMEC-structure, but only
implicitly to the representation of events. First, we show that the HH-formula before "e;” "ey” is
provable precisely when (e1,e5) is in the transitive closure of the current knowledge state. Moreover,
the goal before "e1” "es finitely fails exactly when (eq, e2) is not in the transitive closure of the current
knowledge state.
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The second part of this lemma will be of extreme importance when dealing with negative sequents
since before is the only predicate, besides holds, that has a recursive definition, and therefore that
could diverge.

Lemma 3.5 (Soundness and completeness of before with respect to transitive closure)
Let H = (E, P, [1), (], ]'+]) be a GMEC-structure and o a state of knowledge, then for any
er,e1 € K
a. GMEC, 0" —> before "e1” "es” iff  (e1,e2) € ot
b. GMEC, 0" = not (before "e;” "es”)  iff (e1,e2) € oF.

On the basis of this result, we address the problem of proving that the clauses for atomic GMEC-
formulae implement the semantics of MVIs. We start by proving a lemma that states that the predicate
broken behaves like the negation of the meta-predicates nb.

Lemma 3.6 (Correspondence between broken and nb)
Let H = (E, P, [}, (], I';]) be a GMEC-structure and o a state of knowledge, then

a. GMEC,"H","0" —> broken "e;" "p" Tey” iff —mb(p,er,ea,0") holds in H;
b. GMEC,"H","0" = not (broken "e;” "p' "es") iff nb(p,e1,e2,0") holds in H.

At this point, we have all the tools we need to prove that the implementation of holds on bare
atomic formulae behaves isomorphically to the satisfiability relation on these formulae. Therefore,
GMEC provides an effective implementation of MVIs.

Theorem 3.7 (GMEC computes MVIs)
Let H = (E, P, [}, (], I';]) be a GMEC-structure and o a state of knowledge, then

a. GMEC,"H","0" =—> holds (period "ei’ "p’ "es") iff  pler,ea) € MVI(oT);
b. GMEC,"H","0" —> not (holds (period "e;” "p" "es)) iff pler,e2) & MVI(ot).

We conclude this section by stating its main result, namely, soundness and completeness of GMEC
with respect to the GMEC-frame semantics.

Theorem 3.10 (Soundness and completeness of GMEC with respect to the GMEC-frame semantics)
Let H = (E, P, [), {], ]'+[) be a GMEC-structure, o a state of knowledge and ¢ and GMEC-

formula, then
a. GMEC,"H","0" = holds "¢’ iff ot
b. GMEC,"H","0" = not (holds "¢") iff ot £ ¢.

3.4 A Semi-Naive Implementation of GMEC

Theorem 3.10 establishes a strong connection between the GMEC semantics and the hereditary Harrop
program GMEC displayed in Figure 3.3, providing in this way a computational flavor to the Generalized
Modal Event Calculus presented in Section 2. Although this is a valuable theoretical property, it looses
most of its practical appeal as soon as we give a close look at the treatment of the modal operators in
GMEC. Indeed, checking the validity of a goal having O as its main connective (clauses (9) and (10))
triggers the exploration of all the states of knowledge reachable from the current ordering information
(unless failure occurs). The situation is not better in the case of &-moded formulae (clauses (11-12)):
“only” an arbitrarily large subset of the extension of the current state of knowledge must be examined.
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Y% ——————— Equality

X = X. "
Y mm—————— Transitive closure of knowledge states
before E1 E2 :- (2') | before E1 E2 :- (3"
beforefact E1 E2. beforefact E1 E, before E E2.
Y mm——————— Propositional formulae
holds (period Ei P Et) :- (4") (initiates E Q; terminates E @),
happens Ei, initiates Ei P, (exclusive P Q; P = Q).
happens Ft, terminates Et P, holds (not X) :- D)
before Ei Et, not (holds X).
not (broken Ei P Et).
. , holds (and X Y) :- "
broken Ei P Et :- (5") holds X, holds Y.
happens E, ,
before Ei E, before E Et, holds (or X Y) :- (89

holds X; holds Y.

Figure 3.4: GMEC+, a semi-naive implementation of GMEC (part I).

It is easy to figure out that the cardinality of the set of extensions of a given state of knowledge is in
general exponential in the number of events.

In this section, we solve these problems, up to a certain extent, by providing an alternative im-
plementation for the GMEC semantics. We foresay that we cannot completely avoid the exhaustive
exploration of the set of possible future knowledge states. However, the resulting decision procedure
will be search-free in a number of cases that are likely to occur in real applications (this is the case,
for instance, of the beverage system).

The key idea behind our enhanced implementation of GMEC is to take into account the meta-
properties of our framework for the modal event calculus. First, we exploit the intrinsic properties of
GMEC. In particular, Lemmas 2.13 and 2.14 suggest a local method for checking the validity of atomic
formulae preceded by a single occurrence of a modal operator. Remember that the definition of the
functions DMV I(-) and OMVI(-) relies on formulae of this form. Being able to compute the value of
these functions locally is clearly of crucial importance for practical applications. Second, we can take
advantage of the equivalences that hold in GMEC (Property 2.7). Although they occasionally permit
to eliminate occurrences of a modal operator, we will mainly use these equivalences as rewriting rules
to push the modalities as close to the atomic formulae as possible, with the goal of using Lemmas 2.13
and 2.14 whenever possible. Alternatively, we could have used the equivalences of Corollary 2.7 to
precompile a GMEC-formula into a form on which these lemmas can be applied directly.

This technique cannot be applied systematically. In particular, we know from Section 2.2 that
formulae of the form O(¢’ V ¢”), and dually O(¢” A @), cannot be reduced. Moreover, the formulae
O0Op and $Ogp are reducible only for particular ¢s. In these cases, and only in these cases, the actual
exploration of the extensions of the current knowledge state cannot be avoided.

On the basis of these considerations, we will now describe a second (semi-naive) implementation
of GMEC in the language of hereditary Harrop formulae. The enhanced program, that we call GMEC+,
shares with GMEC the encoding presented in Section 3.2 for the various entities at hand. Moreover,
for the sake of simplicity, we use the same names as in Figure 3.3 for predicates performing the same
functionalities. This program is presented in Figures 3.4-3.5. Clauses (1’-8’) in Figure 3.4 do not
undergo any change.

The top part of Figure 3.5 illustrates the definition of holds for O-moded GMEC-formulae Og. In
order to apply the previous observations, we need to look at the main connective of ¢. Clauses (9') and
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Y% =——————— Must-formulae
holds (must (period Ei P Et)) :- (9) | failsmustor X Y :- (14")
happens Ei, initiates Ei P, happens E1, happens E2,
happens Et, terminates Et P, not (before E1 E2),
before Ei Et, not (before E2 E1),
not (skeBroken Ei P Et). beforeFact E1 E2 =>
skeBroken Ei P Et :- (10" not (hold (must (or X ¥))).
happens E, holds (must (must X)) :- (15"
not (E = Ei), not (E = Et), holds (must X).
not (before E Ei), holds (must (may (must (may X)))) :- 16"
not (before Et E), holds (must (may X)).
(initiates E Q; terminates E Q),
(exclusive P Q; P = Q). holds (must (may X)) :- Qa7
holds (may X),
- ’
holds (must (not X)) : (11" not (failsmustmay X).
holds (not (may X)).
, fails mustmay X :- 18"
holds (must (and X Y)) :- (127 happens E1, happens E2,
holds (and (must X) (must Y)). not (before E1 E2),
holds (must (or X Y)) :- 13" not (before E2 E1),
holds (or X Y), beforeFact E1 E2 =>
not (failsmustor X Y). not (hold (must (may X))).
Ymmm—————— May-formulae
holds (may (period Ei P Et)) :- (19') | holds (may (or X Y)) :- (23"
happens Ei, initiates Ei P, holds (or (may X) (may Y)).
happens Et, term?nates Et P, holds (may (may X)) :- (24")
not (before Et Ei),
holds (may X).
not (broken Ei P Et).
, holds (may (must (may (must X)))) :- (25"
holds (may (not X)) := (200 holds (may (must X)).
holds (not (must X)).
) holds (may (must X)) :- (26"
holds (may (and X Y)) :- (219 holds (must X).
holds (and X Y).
) holds (may (must X)) :- 27"
holds (may (and X Y)) :- (227) happens E1, happens E2,
happens E1, happens E2, not (before E1 E2),
not (before E1 E2), not (before E2 E1),
E°; (b:f”eEszglz; beforeFact E1 E2 =>
eforeFact - holds (may (must X)).
holds (may (and X Y)).

Figure 3.5: GMEC+, a semi-naive implementation of GMEC (part IT).

(10") deal with the case where ¢ is atomic by implementing the statement of Lemma 2.13, with (10)
corresponding to the negation of the meta-predicate nsb. Clauses (11’-12, 15’-16") implement some of
the reductions described by property 2.7. The other clauses deal with the remaining patterns for ¢ by
means of the brute-force approach derived from the remark following Lemma 2.12. They are instances
of clauses (9-10) of GMEC. Notice that clause (17') subsumes clause (16’). Therefore, the latter ought
to be given precedence over the former.

The lower part of Figure 3.5 shows the treatment of GMEC-formulae having < as their main
connective. The underlying idea is similar to the previous case. Notice that clause (26) subsumes
clause (25').

We have extensively investigated in [1, 3] two axiomatic variants of the Event Calculus based
on clauses (9'-10") and (19’, 5') respectively. These calculi, called respectively the Skeptical Fvent
Calculus (SKEC) and the Credulous Event Calculus (CREC), now emerge as a by-product of the
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broader notion of Generalized Modal Event Calculus.

We want now to prove that GMEC+ is a faithful implementation of the GMEC semantics presented
in Section 2.2. In order to achieve this goal, we need to process GMEC+ through the same steps applied
to GMEC in Section 3.3. Fortunately we can borrow from that Section Lemmas 3.3, 3.4, 3.5, 3.6 and
Theorem 3.7 since on the one hand the clauses of GMEC involved in these statements are present also in
GMEC+, and on the other hand, they are not subject to interferences from the new clauses. This claim,
which validity can be easily checked, will save us a lot of work.

Our first endeavor will be to prove that the predicate skeBroken behaves like the negation of the
meta-predicate nsh. The statement and the proof of this result recall Lemma 3.6, according to which
broken is a sound and complete implementation of nb.

Lemma 3.11 (Correspondence between skeBroken and nsb)
Let H = (E, P, [}, (], I';]) be a GMEC-structure and o a state of knowledge, then

a. GMEC+,"H","0" —> skeBroken "e;” p" "eq” iff  —msb(p,eq,ea,0m) holds in H;
b. GMEC+ "H","0" = not (skeBroken "e;” p" "es") iff nsb(p,er,eq,0") holds in H.

We will now prove that holds applied to the encoding of atomic formulae preceded by one oc-
currence of a modal operator behaves isomorphically to the satisfiability relation for these formulae.
Therefore, GMEC+ provides an effective implementation of MVIs (by Theorem 3.7), necessary MVIs
and possible MVIs.

We first consider O-moded atomic formulae and make explicit their relation to necessary MVIs.
The proof of this statement relies on the previous lemma.

Theorem 3.12 (GMEC+ computes necessary MVlIs)
Let H = (E, P, [}, (], I';]) be a GMEC-structure and o a state of knowledge, then

a. GMEC+,"H","0" —> holds (must (period "e;” "p" "e3™)) iff  pler,es) € AMVI(o%);
b. GMEC+,"H","0" —> not (holds (must (period "e;” p" "es™))) iff pler,e2) € OMVI(oT).

A similar result holds for possible MVIs, formalized as the function GCMVI(:). Indeed, holds
constitutes a decision procedure for the validity relation for G-moded atomic formulae.

Theorem 3.13 (GMEC+ computes possible M VIs)
LetH = (E, P, [), (], ]';[) be a GMEC-structure and o a state of knowledge, then

a. GMEC+,"H","0" =—> holds (may (period "ei’ "p" "e2")) iff  pler,es) € OMVI(o"h);
b. GMEC+,"H","0" —> not (holds (may (period "ei” "p" "e2™)) ff pler,e2) € OMVI(ot).
Finally, we can prove that a formula is valid in the GMEC semantics if and only if the goal obtained

by encoding it and plugging it as the argument of holds is derivable in GMEC+. Moreover, a goal of this
form has only finite derivations, therefore holds captures also the unsatisfiability of a GMEC-formula.

Theorem 3.14 (Soundness and completeness of GMEC+ with respect to the GMEC-frame semantics)
Let H = (E, P, [-), (], ];'[) be a GMEC-structure, o a state of knowledge and ¢ and GMEC-

formula, then
a. GMEC+,"H","0" = holds "y’ iff ot E ¢
b. GMEC+ "M, 70" = not (holds "¢") iff ot F ¢.
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4 Conclusions and further developments

This paper proposed and formally analyzed GMEC, a modal extension of EC to compute current, ne-
cessary and possible MVIs in a context where the ordering of events is relative, partial and incremental.
Unlike previous modal extensions of EC (e.g., MEC [1]), GMEC supports free mixing of boolean con-
nectives and modal operators. The paper presented two sound and complete implementations of GMEC
as logic programs in the language of hereditary Harrop formulae.

Maybe more important than the results themselves is the method we adopted to achieve them.
First, we provided a precise semantic formalization in order to capture the intuitions underlying EC.
In this way, we could prove properties of EC (and subsequentially of GMEC) rather than claim them.
Second, we used a proof-theoretic approach for proving the faithfulness of our implementations with
respect to the behavior of GMEC, as expressed by the semantics.

We are developing this work in several directions. On the one hand, we are considering the possibil-
ity of dealing with more complex specifications of the ordering information such as non-committed data
(e.g. disjunctive orderings) and possibly inconsistent orderings. On the other hand, we are comparing
GMEC with classical modal logics such as Sobocinski’s K1.1 which is characterized by the class of all
finite partial orderings, i.e. by the class of finite frames whose accessibility relation is reflexive, trans-
itive and antisymmetric [11]. We actually proved the following theorem that allows us to strenghten
the result of Theorem 2.6

Theorem 4.1 (GMEC and K1.1)
Each thesis of K1.1 s a valid formula of GMEC.

Since an axiom system for K1.1 can be obtained by adding to the axiom system for S4 the axiom
O(0(¢ — O¢) = ¢) — ¢, in view of Theorem 2.6, to prove Theorem 4.1 we only need to show that
such an additional axiom is a valid formula of GMEC. The proof is quite straigthforward, and thus
omitted.

Theorem 4.1 allows us to immediately derive a number of interesting properties of GMEC-models.
For instance, the validity of the McKinsey formula in GMEC-models (that we explicitly proved in
Section 2) is a consequence of Theorem 4.1. In particular, it allows us to establish the following

equivalences among GMEC formulae:

Corollary 4.2 (Further equivalent GMEC-formulae)
Let ¢ be a GMEC formula. Then, for every knowledge state w € W,

o whEDOCOy iff w OO
e wEOOOCY ff wlEOOp [ |

Pairing Corollaries 2.7 and 4.2, we can conclude that each GMEC-formula ¢ is logically equivalent
to a GMEC-formula of one of the following forms: 1, Oy, O, OOy, $COY, where the outermost
logical symbol of ¢ is not a modal operator. We are currently revising the semi-naive implementation
of GMEC to further improve its performance by exploiting the equivalences of Corollary 4.2.
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A Proofs and Auxiliary Lemmas from Section 3

Lemma 3.3 (Soundness and completeness of = w.r.t. equality for events)
Let H=(E, P, [}, {], I';]) be a GMEC-structure, e1,e2 € E and o a state of knowledge. Then
a. GMEC,"H","0" = "e1" = "e2” is derivable iff e =eo;
b. GMEC,"H","o" = not ("e1” = "e2") is derivable iff el #ea.

Proof.
a. (=) Being the goal "e1” = "e2” atomic, the last rule applied must have been atom+ with clause (1) and
substitution o = {X +— "e;”", X — "e2"}. This substitution is well-formed iff "e;” = "ex”. Therefore, we

have that e; = ey by the injectivity of the representation function ™ ™.

(<) If e1 = €2, a derivation of GMEC,"H","0" = "e;" = "ey” is obtained by application of rules atom-
and true-.

b. (=) By the uniform provability property, the last inference rule applied is nat4. Therefore, the sequent
GMEC,"H","0" == "e1" = ez is provable. By property 3.1, the sequent GMEC, H","0" = "e1" = "e2" has no
derivation. Finally, by (a), e1 # es.

(<=) If e1 # ez, we have that "e;” # "e;” since " - E s injective. Therefore, rule atom— succeeds with
no premisses for the sequent GMEC,"H","0" =5 "e1" = "e2”. Therefore, by rule naf4, GMEC,"H","0" =
not ("e;’ = "ey") is derivable. [ |

Lemma 3.4 (Soundness and completeness of = w.r.t. equality for properties)

Let H = (E, P, [}, {], ]-,;[) be a GMEC-structure, pr1,p> € P and o a state of knowledge. Then

a. GMEC,"H","0o" = "p1" = "p2" is derivable iff  p1=po;
b. GMEC,"H","0" = not ("p1" = "p27) is derivable f  p1 #pe.

Proof.

Similar to the proof of previous lemma. |

Lemma 3.5 (Soundness and completeness of before w.r.t. transitive closure)
Let H=(E, P, [), (-], ]';') be a GMEC-structure and o a state of knowledge, then for any e1,e2 € E

a. GMEC,"H","o" = before "e1" "ey" is derivable iff (e1,€2) € ot
b. GMEC, H","0" = not (before "e;" "e2") is derivable iff (e1,e2) & ot.

Proof.

For the sake of exemplification, we provide a rigorous proof of this simple statement. T'he proofs given in
the rest of the section will be more sketchy. However, it should be clear to the reader how to rewrite them in
a similar style. Indeed, in order to limit the length of these proofs, we will mainly focus on the critical steps,
that correspond to the applications of rules atom+4 and atom . The application of the remaining rules will
often be maintained implicit in the informal arguments used to chain critical rules.

Throughout this and many of the subsequent inductive proofs, we will rely on the following strict schema.
The cases of the induction are treated in dedicated paragraphs headed with an identifying label. Within each
paragraph, the proof is organized in a series of lines consisting of three zones. On the left, we have a counter
used for referencing. The central field contains a formal relation that is claimed to hold. The right part of
each line provides a justification of this claim. Each step is in general justified with respect to the previous line
(to the statement of the theorem in the case of the first line). Occasionally, the justification will refer to one
or more non-immediate predecessors of the current line. In these cases, we take advantage of the counter. In
certain occasions, we will have to follow alternative courses in the proof, and each should be proved in order
for the overall proof to be correct. We use bullets () to identify the first line of each alternative, and indent
the subsequent lines.
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(=) We proceed by induction on the structure of a derivation tree for the positive sequent GMEC, "H","0" =
before "e;" "ez”. Since before "e;” "ez” is atomic, the last rule applied must have been atom-+. The
only program formulas that match this atom are clauses (2) and (3). Therefore, the proof can proceed
in two ways:

[1] GMEC,"H","0" = before "e;" "e3” assumption

[2] e GMEC,"H","0" = beforeFact "e;” "ez” by rule atom+ on [1] and clause (2),

[3] (beforeFact "e;" "ex’) € 0" by rule atom+ on [2] and since no rule for
beforeFact is defined in GMEC or "H",

(4] (e1,e2) €0 by definition of "+ ™,

[5] (e1,e2) € 0t by definition of transitive closure;

[6] e GMEC,"H","0" = beforeFact "e;” "¢’, by rule atom+ on [1] and clause (3), for some

before "e’ ey’ event e,

[7] GMEC, "H","0" = beforeFact "e;” "e” by rule and+ on [6] (left branch),

(8] (beforeFact "e1” "e”) € 0" by rule atom+ on [7] and since no rule for
beforeFact is defined in GMEC or "H",

[9] (e1,€) €0 by definition of ™ ™,

[10] GMEC,"H","0"’ = before "e" "e3” by rule and+ on [6] (right branch),

[11] (e e2) €0t by induction hypothesis on [10],

[12]  (e1,e2) €0t by definition of transitive closure on [9, 11].

! !

(&) Let 0 = €] ...e], with e] = e1 and e; = e2 be a sequence of events such that, for i = 1...1 — 1,
(€7, €:41) € 0, proving in this way that (e1,e3) € ot. We conduce the proof by induction on the length !

of this sequence.

Case l = 1:
[1] (e1,e2) €0 assumption
[2] (beforeFact "e1” "e2™) € 0" by definition of -,
[3] GMEC,"H", 0" —> beforeFact "e;" ey’ by rules true+ and atom+,
[4] GMEC,"H","0o" = before "e1” "e2” by rules atom+ on [3] and clause (2).

Case I > 1: Then o = e1,¢...ez with (e1,€) € 0 and (e,e2) € 0. Thus

[1] (e1,€) €0 and (e,e2) € ot assumption
[2] (e1,e) €0 conjunct from [1],
[3] (beforeFact "e1” €’) € 0" by definition of "- ™,
[4] GMEC,"H,"0" = beforeFact "e;” "¢’ by rules true+4 and atom+,
[5] (e,ez) €07 conjunct from [1],
[6] GMEC,"H',"0' = before "¢ "ez” by induction hypothesis,
[7] GMEC,"H","o" = beforeFact "e;" "¢, by rule and+ on [4, 6],
before "e’ ey’
[8] GMEC,"H","0" => before "e;" "e3” by rule atom+ on [7] and clause (2).

(=) The last rule applied in a derivation of GMEC,"H","o” = not (before "e;" "e2”) must have been
naf+4. Therefore, the negative sequent GMEC,"H","0" =% before "e;” "e;” has a derivation. Now, by
property 3.1, the sequent GMEC, "H", 0" = before "e;” "e;” is not derivable. Thus, by (a), (e1,e2) € ot.
(<) By property 3.2, it is enough to show that, whenever (e1,e2) € oT, the sequent GMEC, H", 0" =
before "e;” ey’ is finitely non-provable. We show a stronger property, i.e. that the search for a proof of
a sequent of this form must terminate (either with success, as in (a), or with failure).

Assume ab absurdum that the sequent GMEC,"H","0” = before "e1" "e2" has an infinite derivation. Being
the goal atomic, this sequent must result from the application of rule atom+ to either clause (2) or clause
(3), which define before. Being the former a fact in program GMEC, we must discard this alternative:
the derivation would otherwise terminate after one application of rule true4. Therefore, rule atom-
has been used on clause (?) and the sequent GMEC,"H","0" = beforeFact "e;" "é1", before "é;" "es”
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for some event é1 € E. By an application of rule and+, we reduce this sequent to GMEC, H","0" —
beforeFact "e;” "é;"and GMEC,"H","0" = before "é;" "ez". By definition of'_-jo7 the former corresponds
to (e1,€1) € o. The latter is a reinstantiation of our original problem.

By iterating this reasoning pattern ad infiniturn, we conclude that the recursive clause (3) must have
been applied infinitely many time for the original sequent to have an infinite derivation. In particular,
the sequents GMEC,"H","0" = beforeFact "€;" "€;41 " are derivable for an infinite sequence of events
{é:}icw (with éy = e1). Thus (&;,é;41) € o for all i € w. At this point, we must remember that E is
finite. Therefore, there are two distinct indices z, 7 with 7 < j such that é; = é;. Then, by definition of
transitive closure, we have that (&;,é;) € oT, but this violates the irreflexivity of ot. |

Lemma 3.6 (Correspondence belween broken and nb)

Let H = (E, P, [}, (], ],;[) be a GMEC-structure and o a state of knowledge, then

GMEC, "H","0" = broken "e;” "p’ ez iff  —nb(p,er,ez,0) holds in H;
GMEC, "H","0” = not (broken "e;” p" "ex”) iff  nb(p,e1,e2,0m) holds in H.

Proof.

a.

(=) Assume that the sequent GMEC,"H',"0” == broken "e;’ "p" "e;” is derivable. By rule atom+ on
clause (5) and a number of applications of rule and+, we are left with the sequents below. For the sake
of conciseness, we display the proof in a tabular form: the left column displays the derived sequents,
the corresponding meta-mathematical property is shown in the central column, and the right column
contains a justification of this correspondence.

GMEC,"H","0" = happens "e” ecF by definition of "E",
GMEC,"H","0" = before "e;" "¢” (e1,€) € ot by lemma 3.5,
GMEC,"H","0" = before "e" ey’ (e,e2) € oF by lemma 3.5,
GMEC,"H","0" = initiates "e¢" ¢'; (e € [q) by definition of T-)"
terminates e "¢’ Ve € {q]) and of (],
GMEC,"H","0" = exclusive p' "¢'; (e €lp,q[ by definition of 7-,["
=g Vp=gq) and lemma 3.4.

We need to take the conjunction of the items in the central column in order to obtain a statement
equivalent to GMEC, H","0" = broken "e;" p’ "ex™:

(e1,6) €0F A (e,e2) €0F A (e€la) Vee(d) A(palVve=a)
We now abstract over the event e and the property ¢ and obtain the formula
de € B.3g€ P.((er,e) €0F A(e,e2) €0F A(e€la) Vee(d) A (palvp=a)

that is equivalent, after some logical manipulations, to nb(p, e1, ez,0%).

(<) Assume now that —nb(p,e1,ez,0m) is valid in H, i.e. that

Je € E.((er,e) €0t A (e,e2) €0T Adge P((e€lg) Vee(d) A(paVe=a)).
Let €’ and ¢’ be such e and g respectively. Then, by instantiation, we obtain:
(ere’) €0 A(eea) €0 A (e €ld) Ve el A pdlvp=4d)

Each conjunct, plus the fact that ¢’ € E, can be immediately rewritten as a valid sequent. We use
conventions similar to the ones adopted in the first part of this proof.

e ek GMEC, "H","0” = happens "¢” by definition of "E",
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e, e') € ot GMEC,"H","0" = before "e1” e by lemma 3.5,

(
(

e es) €0t GMEC, "H","0” = before "' ey’ by lemma 3.5,

(e' € [q) GMEC,"H","0" = initiates "¢ q'; by definition of T-)”
Ve e (q]) terminates e’ ¢’ and of (-],

(¢ €lpual GHEC, ', 0" = exclusive " 7' by defaition of [
Vp=q) =g and lemma 3.4.

We have proved in this way every goal in the body of clause (5). Thus, by a number of applications of
rule and+ and an application of rule atom--, the head of this clause is valid, i.e.
GMEC,"H","0" = broken "e;" "p’ "ex".

(=) By property 3.1 and (a).

(<) By rule naf+ and property 3.2, we are reduced to proving that GMEC,"H","0" = broken "e1” p" "e2”
has only (possibly failed) finite derivations. Assume ab absurdurn that there is an infinite derivation of this
sequent. The last inference rules applied in this derivation must be atom-+ and and+. Therefore, one
of the atomic formulas in the body of rule (5) must have an infinite derivation. Clearly, only predicates
having a recursive definition are candidate. The only predicate having this property is before, but by
lemma 3.5 this sequent has finite derivations only. |

Theorem 3.7 (GMEC computes MVIs)

Let H=(E, P, [), (-], I';'[) be a GMEC-structure and o a state of knowledge, then

GMEC, "H","0" = holds (period "e:” p’ "e2") iff  pler,e2) € [\4V1(o+);
GMEC, "H","0" = not (holds (period "e;" p' "e2") iff  pler,ex) € MV I(ot).

Proof.

a.

(=) Assume that GMEC,"H","0” = holds (period "e;” "p" "e2™). We prove that, under this hypothesis,
(p(e1,e2),0") € vy; the thesis will follow by the definitions of validity and of the function MV I(.).

By applying rule atom+ on clause (4), and then rule and+, we get reduced to proving the following
relations, where, as in the proof of lemma 3.6, the left and central columns stand in an if-and-only-if
relation justified by the right column.

GMEC,"H","0" = happens "e;" e1 €K by definition of "E",
GMEC,"H","0" = initiates "e1’ p" e1 € [p) by definition of T-)7
GMEC,"H","0" = happens "e;" ex €F by definition of "E",
GMEC,"H","0" = terminates "e;” p’ ez € (p] by definition of (-],
GMEC,"H","0" = before "e;" "ey” (e1,e2) € of by lemma 3.5,
GMEC,"H","0" = not (broken "e;” p" "e2”) nb(p, e1,€2,07) by lemma 3.6.

Now, it suffices to notice that the second, fourth, fifth and sixth relation on the right-hand side cor-
respond respectively to the conditions (¢), (#2), (¢#i¢) and (iv) of the definition of evaluation. Therefore
(pler, e2),0%) € vy, thus Ip; 0t |= p(er,e2) and finally p(er,ez) € MVI(o").
(<) Assume that p(e1,ez) € MV I(oT). Therefore, by definition, (p(e1,ez2),0") € vy, i.e.

e1 €[p) A ez €(p] A (e1,e2) € o A nb(p,er,e2,07).

Fach conjunct and the fact that e, e2 € £ can be related to sequent derivations by reversing the previous

construction:

e1 € F GMEC,"H","0" = happens "e; " by definition of "E",
e1 € [p) GMEC,"H","0" = initiates "e;" p" by definition of T-)7,
ex EH GMEC,"H","0" = happens "e3” by definition of "E",

29



ez € (p] GMEC,"H","0" = terminates "e;” p’ by definition of (-],
(e1,e2) € oF GMEC,"H","0" = before "e;" "e3” by lemma 3.5,
nb(p, e1,e2,07) GMEC,"H","0" = not (broken "e:” p’ "e2”) by lemma 3.6.

Therefore, we have derivations for all the atomic formulas in the body of clause 4. By some applications
of rule and+ and then of rule atom+, we produce a derivation for the sequent
GMEC,"H","0" = holds (period "e;" "p' "e2")
b. (=) By property 3.1 and (a).
(<) As in the proof of lemma 3.6, it suffices to prove that the sequent:

GMEC,"H","0" = holds (period "e;” p" "e3")

has only (possibly failed) finite derivations. The last inference rule applied during the search for a proof
of this sequent must be atom+ on clause (4). Therefore, it has an infinite derivation if and only if an
atomic subgoal in the body of this clause has an infinite derivation. However, by lemmas 3.5 and 3.6,
and the definition of "H", every such subgoal is finitely provable or unprovable. |

Lemma 3.8 (Soundness of GMEC w.r.t. the GMEC-frame semantics)

Let H = (E, P, [), (], I'[) be a GMEC-structure, o a state of knowledge and ¢ and GMEC-formula,
then

a. if GMEC,"H',"0"== holds "¢", then ZIu;0T = ¢;
b. if GMEC,"H',"0" =%~ holds "¢", then ZIx;o% # .

Proof.

Since the definition of the predicate holds contains recursive calls in the context of negation-as-failure
(clauses (6), (9) and (10)), the statements (a) and (b) depend on each other. Therefore, we need to use a proof
technique somewhat more elaborated than in the case of the previous results.

Indeed we will prove the two statements simultaneously by mutual induction. The inductive argument is
on the ordered pair consisting of the number of connectives in the formula ¢ and height of the derivation trees
for the sequents

a. GMEC,"H","0" = holds "¢ and

b. GMEC,"H","0" == holds "¢
Technically, this corresponds to a nested induction over the structure of ¢ and on the structure of the two
sequent derivations.

For the sake of readability, we use singly framed labels to denote the proof cases for (a) and double frames
for the proof cases for (b).

¢ =pler,ea) | and |[p = pler, e2)
The result follows by theorem 3.7.

[1] GMEC,"H,"0" = not (holds "¢'") by rule atom+ on clause (6),
[2] GMEC,"H,"o" =~ holds """ by rule naf4,
8] Zu; ot B o by induction hypothesis (b),
[4] Zw;ot = -y by definition of |=.

’
[1] GMEC,"H,"0” =% not (holds "' by rule atom— on clause (6),
[2] GMEC,"H,"0" == holds "¢ by rule naf—,
8] Zw;ot = ¢ by induction hypothesis (a),
[4] Zw; ot B - by the consistency of |=.
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[1] GMEC,"H,"0" == holds "¢'", holds "p'" by rules atom+ on clause (7),

[2] GMEC,"H","o” = holds """ by rule and+ on [1],

B8] Zwu;ot = ¢ by induction hypothesis (a),

[4] GMEC,"H","0" = holds """ by rule and+ on [1],

[5] Zu;ot = " by induction hypothesis (a),

[6] Zu;ot = ¢ A" by definition of |= on [3, 5].

p=¢" Ay

[1] GMEC,"H","0" =% holds "¢'", holds "p'"” by rules atom— on clause (7),

[2] e GMEC,"H","0" =% holds """ by rule and—; on [1],

[3] Tysot £ by induction hypothesis (b),

[4] e GMEC,"H","0" =%~ holds """ by rule and » on [1],

[5] Ty 0t B " by induction hypothesis (b),

[6] Zwasot £ o A" by the consistency of |= on [3, 5].

o Ve

[1] GMEC,"H,"0" = holds "¢'"; holds "p'"” by rules atom+ on clause (8),

[2] e GMEC,"H","0" = holds "¢" by rule or+1 on [1],

[3] Ty ot |= ¢ by induction hypothesis (a),

[4] e GMEC,"H","0" = holds """ by rule or+4» on [1],

[5] Ty ot = " by induction hypothesis (a),

6] Zw; ot = Ve by definition of |= on [3, 5].

o=0" Ve

[1] GMEC,"H","o” =% holds "»'"; holds "p'" by rules atom— on clause (8),

[2] GMEC,"H","0” =% holds """ by rule or— on [1],

8] Zwu;ot £ ¢ by induction hypothesis (b),

[4] GMEC,"H","0” =% holds """ by rule or— on [1],

[5] Zw; ot # " by induction hypothesis (b),

6] Zwu;ot B ¢ V" by the consistency of |= on [3, 5].

p =0y’

[1] GMEC,"H","0o" = holds "p"", by rule atom+ on clause (9),
not (failsmust ')

[2] GMEC,"H","0" = holds """ by rule and+ on [1],

B8] Zwu; ot = ¢ by induction hypothesis (a),

[4] GMEC,"H","0" = not (failsmust "¢'") by rule and+ on [1],

[5] GMEC,"H,"0" =% fails must "' by rules naf+4,

[6] GMEC,"H","0" =~ happens ¢, by rule atom— on clause (10); since the variables
happens t3, E1 and E2 are implicitly quantified in front of the
not (before t1 t2), clause, this relation should hold for all terms #;
not (before t, 1), and t,

beforeFact &1 &2
=>not (holds (must "¢'"))

[7] e GMEC,"H","0" == happens {; by rule and—; on [6],
(8] di.g B by rule atom and definition of "E",
[9] e GMEC,"H","0" =% happens i, by rules and— and and— on [6],
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[10] g E by rule atom— and definition of "E",
[11] e GMEC,"H","0" == not (before ; ) by rules and , and and ; on [6],
[12] GMEC,"H","0" = before {1 t2 by rules naf |
[13]  (t1at2s) € ot by lemma 3.5,
[14] e GMEC,"H","0" =~ not (before &t &) by rules and— and and— on [6],
[15] GMEC,"H","0" = before f{ i3 by rules naf—,
[16]  (t2stis) € 07T by lemma 3.5,
[17] e GMEC,"H","0" =% beforeFact { 2 by rule and—; on [6],
=>not (holds (must "©'"))
[18]  GMEC,"H","0 T (ut14,t24)" by rule impl— and the definition of " ™7,
=~ not (holds (must '—gol_'))
[19]  GMEC,"H","0 1 (ct1at22)" by rule naf—
= holds (must "¢’
[20]  Zwu;{o1 (L1st2)} = Oy by induction hypothesis (a), since {o T
(ct1,t22)}T is a proper extension of o,
[21] Vit (b€ FE by taking the disjunction of [, 10, 13, 16, 20],
V. g B
Vo (tr1site) € oF
Vo (daatis) € ot
Vo Iy {ot (s, )} = O¢')
[22] -3, tz. (L€ FE by logical equivalences,

ANt EHR
A (cbrsybol) & ot
A (t2nitis) g 0o
A Iy {ot (tisten)}t £ O¢')
23] —Fer,e2 € B ((er,62) € oF by definition of - "7,
A (e2,e1) & ot
AN Ty, {o 0 (617 e2)}+ |¢ Dﬂol)

[24] Tw; 0t |= Oy’ by combining [3] and [23] and lemma 2.12.
¢ =0y
[1] GMEC,"H", 0" =% holds """, by rule atom— on clause (9),
not (failsmust ')
[2] e GMEC,"H","0" =% holds """ by rule and—; on [1]
[3] Ty ot H# by induction hypothesis (b),
[4] o GMEC,"H","0" =% not (fails must "¢'") by rule and ; on [1]
[5] GMEC, "H","0" = failsmust "' by rule naf—,
[6] GMEC, "H","0” = happens ¢, by rule atom+ on clause (10), for some term ¢,
happens ¢, and t,

not (before t1 t2),
not (before t; t1),
beforeFact &, i,

=>not (holds (must "p'"))

[7] GMEC, "H","0" = happens 1 by rule and+ on [6],
(8] ti ="e;" with e; € E by definition of "E",
[9] GMEC, "H","0" = happens {2 by rule and+ on [6],
[10] t2 ="ex” with e; € F by definition of "E",
[11] GMEC,"H","0o" = not (before "e1” "e2™) by rule and+ on [6],
[12]  (e1,ezx) g ot by lemma 3.5,

[13] GMEC,"H,"o” = not (before "es” "e1”) by rule and+ on [6],
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[14]  (e2,e1) goF by lemma 3.5,

[15] GMEC,"H","0" = beforeFact "e1” "ez” by rule and+ on [6],
=>not (holds (must "©'"))

[16] GMEC,"H","0 1 (€1, e2)’ by rule impl4 and the definition of " ™,

= not (holds (must "p’"))
[17]  GMEC,"H""o 1 (e1,€e2)’ by rule naf+,

=~ holds (must "p'7)
[18]  Zy;{o 1 (e1,e2)} | O’ by induction hypothesis (b), since {o 1

(ct1,t22)}T is a proper extension of o,

[19]  Fei,e2 € E. ((e1,e2) g ot by taking the conjunction of [8, 10, 12, 14, 18],

A (ez er) ot .
A T {o 1 (e1,e2)}T £ D¢')

[20] Zsw; ot £ Oy by Lemma 2.12 on [3, 19].

[1] e GMEC,"H","0" = holds """ by rules atom+ on clause (11),

[2] Tysot = ¢ by induction hypothesis (a),

[3] e GMEC,"H","0" = happens {;, by rule atom+ on clause (12), for some term &,
happens t,, and 3,

not (before t; &),

not (before t; t1),

beforeFact & i¢»
=>holds (may """

[4] GMEC, "H","0" = happens {1 by rule and+ on [3],

[5] t;1 ="e;" with e; € F by definition of "E",

[6] GMEC, "H","0" = happens t by rule and+ on [3],

[7] to ="es" with ex € F by definition of "F",

[8] GMEC, "H","0" = not (before "e;" "e2") by rule and+ on [3],

[9] (e1,e2) g ot by lemma 3.5,

[10] GMEC, H,"0" =—> not (before "ex" "e;”) by rule and+ on [3],

[11]  (e2,e1) & ot by lemma 3.5,

[12] GMEC,"H","0" = beforeFact "e;” "ez” by rule and+ on [3],

=>holds (may "'
[13] GMEC,"H","o T (e1,€2)" by rule impl+ and the definition of ™",
= holds (may "¢’
[14]  Zw; {01 (e1,e2)}T |= O¢’ by induction hypothesis (b), since {o T
(ct1o,t22)}T is a proper extension of o,

[15]  Jei,es € BE. ((e1,e2) g ot by taking the conjunction of [5, 7, 9, 11, 14],

A (ez,er) € ot

N Tifot enel}t E o¢)

[16] Tw; 0t = Oy by lemma 2.12 on [2, 15].

[1] GMEC,"H","o” == holds """ by rules atom on clause (11),

2] Zwu;ot B ¢ by induction hypothesis (b),

[3] GMEC,"H","0" =~ happens t1, by rule atom on clause (12); since the variables
happens ¢, E1 and E2 are implicitly quantified in front of the
not (before t; ¢»), clause, this relation should hold for all terms ¢,
not (before t» t1), and ¢2,

beforeFact &, i,
=>holds (may """
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[4] e GMEC,"H","0" =~ happens & by rule and—: on [3],

[5] diag B by rule atom and definition of "£",

[6] e GMEC,"H","0" =% happens i, by rules and— and and— on [3],

[7] dos g B by rule atom and definition of "E",

[8] e GMEC,"H,"0" == not (before t1 t2) by rules and— and and— on [3],

[9] GMEC, "H","0" = before t; I3 by rules naf |

[10]  (t1s.t20) € OF by lemma 3.5,

[11] e GMEC,"H","0" =~ not (before {3 &) by rules and 2 and and 1 on [3],

[12] GMEC,"H","0" = before { i3 by rules naft—,

[13]  (d2st1s) € 0T by lemma 3.5,

[14] e GMEC, H","0" =~ beforeFact & & by rule and > on [3],

=>holds (may '

[15]  GMEC,"H","0 1 (ct1at24)" by rule impl— and the definition of ™.,
=4 holds (must "p'")

[16]  Zw;{ot (1o, ta)}t |# O¢' by induction hypothesis (b), since {o 1

(ct1,t22)}T is a proper extension of o,

[17] Vi, t2. (b€ E by taking the disjunction of [5, 7, 10, 13, 16],

V g E

V (l_tlJ7 LtQJ) € O+
Vo (donitis) € oF

\% IH; {O T (._tlJ, |.th)}+ |¢ OQD’)
[1 8] -t b (._tlJ (= by logical equivalences,
AN U, €EFE

A (t1atas) € 0T
A (taat1s) € 0T
A Iy {ot (tis )} = O9)
[19] —Jei,e2 € E. ((e1,e2) & ot
A (ez,e1) € ot
AN Iui{ot(er,e2)}t = Op)
[20] Tw; o0t B O’

by definition of - "%,

by combining [2] and [19] and lemma 2.12. H

Lemma 3.9 (Completeness of GMEC w.r.t. the GMEC-frame semantics)

Let H = (E, P, [), (], I'+[) be a GMEC-structure, o a state of knowledge and ¢ and GMEC-formula,
then

a. if Iu;ot |= @, then
b. if Iw;0t B o, then

GMEC,"H","0" = holds "¢
GMEC,"H","0" == holds "¢".

Proof.

As in the previous lemma, we need to cope with the two statements simultaneously. Therefore, we proceed
by a nested mutual induction on the structure of the formula ¢ and the cardinality of Ezt(o%).

We rely on essentially the same conventions as in the proof of lemma 3.8. The two proofs are essentially

dual.

¢ =pler,e2) | and || ¢ = p(e1,e2)

The desired result follows by theorem 3.7.

1] Iy ot 2 @’ by definition of |=,

by induction hypothesis (b),

3

[
[2
[
[4

GMEC, "H","0" = not (holds ')
GMEC, "H,"0” == holds ™"

]
] GMEC,"H", 0" =% holds "'
]
]
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by rule naf+,
by rule atom+ on clause (6).



[1] Zw;o* = ¢
[2] GMEC,"H,"0" = holds """
[3] GMEC,"H","0" =% not (holds "¢'")
[4] GMEC,"H","0" =~ holds ™"
o= S"l A 90“
[1] Zwusot = @ and Tyjot = o
2] Zu;ot = ¢
[3] GMEC,"H","0" == holds """
[4] I‘H;0+ |= 90“
[5] GMEC,"H","0" = holds "p'"
[6] GMEC,"H","o" = holds "p'", holds "p'"
[7] GMEC,"H,"o” = holds "' A ¢'"
o= (‘0/ A <P”
(1] Zu;ot B ¢ or Iyjot ¢
[2] o Tw;ot B ¢
[3] GMEC, "H","0" =% holds """
[4] GMEC, "H™,"0” == holds "¢'", holds """
[5] o Iysot B &
[6]  GMEC,"H","0o" =% holds """
[7]  GMEC,"H,"0” =% holds "'", holds "'
[8] GMEC,"H","0" =% holds "p’' A @'
o= S"l V. (,0“
(1] Zwusot = @' or Iy ot = ¢
[2] o Zwu;0t E ¢
[3] GMEC, "H","0" = holds """
[4] GMEC, "H,"0" = holds "¢'"; holds '""
[5] ®Zw;0t |= "
[6] GMEC, "H","0" = holds "
[7] GMEC, "H,"0" == holds "'"; holds """
[8] GMEC,"H,"0” == holds "' V ¢'"
o= S0/ Vv (‘0//
[1] Zw;ot £ @ and Ty;ot |# ¢
[2] Twiot B ¢
[3] GMEC,"H, 0" =% holds "'
(4] Zu;ot B ¢"
[5] GMEC,"H,"0" =% holds """
[6] GMEC,"H","0" =% holds "'"; holds "'
[7] GMEC,"H,"0" =% holds "¢’ V '
p = D(pl
(11 Zy;ot | O
(2] Twsot E ¢
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by the consistency of |=,

by induction hypothesis (a),
by rule naf ,

by rule atom— on clause (6).

by definition of |=,

conjunct in [1]

by induction hypothesis (a),
conjunct in [1]

by induction hypothesis (a),
by rule and+ on [3, 5],

by rule atom+ on clause (7).

by the consistency of |=,
subcase of [1]

by induction hypothesis (b),
by rule and—,

subcase of [1]

by induction hypothesis (b),
by rule and—;,

by rules atom

by definition of |=,

subcase of [1]

by induction hypothesis (a),
by rule or+,

subcase of [1]

by induction hypothesis (a),
by rule or+»,

by rules atom+ on [4, 7] and clause (8).

by the consistency of |=,
conjunct in [1]

by induction hypothesis (b),
conjunct in [1]

by induction hypothesis (b),
by rule or— on [3, 5],

by rule atom on clause (8).

assumption
by Lemma 2.12 on [1],

on [4, 7] and clause (7).



=

GMEC, "H","0" = holds "'

[4 —Jei,e2 € E. ((e1,e2) g o™
A (ez,e1) € ot
AN Tg{ot (e, e2)}t | O¢')
[6] -3t t2. (b1.€E
AN an€ E
A (t1atas) € 0T
A (bzaitis) € 0T
A T {0 (st} B Op)
[6] Vi, t2. (L€ FE
V g E
Vo (trite) € oF
Vo (dastis) € o
V. Tifot (i)} O)
(7] eudi.gE
(8] GMEC, "H","0" =~ happens
[9] et g E
[10] GMEC,"H","0" == happens i,
[11] o (t1st20) € 0F
[12] GMEC,"H,"0" = before {1 i
[13] GMEC,"H","0" =~ not (before & t2)
[]4] 0 (n_tzJ, LtlJ) € ot
[15] GMEC,"H,"0” = before 3 t;
[16] GMEC,"H,"0" =%~ not (before #> t1)
[17] o Ty {o 1 (st} = Oy
[18]  GMEC,"H","0 1 (ct14t22)"
= holds (must "¢'?)
[19]  GMEC,"H","0 T (ut14,t24)"
=% not (holds (must "))
[20] GMEC, H,"0” == beforeFact {1 t2
=>not (holds (must "p'"))
[21] GMEC,"H","0" == happens 1,
happens {3,
not (before t; t2),
not (before t; t1),
beforeFact & &
=>not (holds (must "p'"))
[22] GMEC,"H","0" =%~ fails must "'
[23] GMEC,"H","o" = not (failsmust "p'")
[24] GMEC,"H,"0” = holds D¢’
¢ = 0¢'
[1]  Zusot £ o or
Jer,e2 € E. ((e1,e2) g ot
A (e2,e1) ot

(2]

A Tui{o 1 (er,e2)}t | O9)
o Lot B ¢
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by induction hypothesis (a),
by Lemma 2.12 on [1],

by definition of 7 ¥

by logical equivalences

subcase of [6]

by rule atom— and definition of "£",
subcase of [6]
by rule atom
subcase of [6]
by lemma 3.5,

and definition of "E7,

by rules naf—,
subcase of [6]
by lemma 3.5,
by rules naf—,
subcase of [6]
by (a),

(t15,:t2)}Y is a proper extension of o,

induction hypothesis since

fo 1t
by rule naf-—,

by rule impl and the definition of "7,

by rules and ; and and ; on [8, 10, 13, 16, 20],

by rule atom— on clause (10); this relation
should hold for all terms ¢1 and ts since the vari-
ables E1 and E2 are implicitly quantified in front
of the clause,

by rules nat+4,
by rules and+ on [3, 23] and atom+ on clause

(9).

by Lemma 2.12,

subcase of [1]



GMEC, "H", 0" =% holds "'
GMEC, "H™,"0” =% holds "¢'",
not (failsmust ')

=

by induction hypothesis (b),

I

by rule and—,

[5] o Fer,e2 € E. ((e1,e2) & ot subcase of [1]
A (ez,er) € ot
A Dot (enea)lt 1 O0)
(6] e1 € F conjunct in [5]
[7] GMEC, "H","0" = happens "e1” by definition of "E",
[8] es €F conjunct in [5]
[9] GMEC, "H","0" = happens "ey" by definition of "E",
[10] (e1,e2) go conjunct in [5]
[11] GMEC,"H,"0” = not (before "e;” "ez") by lemma 3.5,
[12] (e2,€e1) & ot conjunct in [5]
[13] GMEC,"H,"0" = not (before "ex" "e;”) by lemma 3.5,
[14]  Zu;{o 1 (e1,e2)}T B O’ conjunct in [5]
[15] GMEC,"H""0 1 (e1,€e2)’ by induction hypothesis (b),, since {o 1
=~ holds (must "p'7) (ct1,t22) )T is a proper extension of o
[16] GMEC,"H","0 1 (e1,e2)’ by rule naf4,
= not (holds (must "©'"))
[17] GMEC,"H","o" = beforeFact "e;” "ey” by rule impl+ and the definition of ™ ©,
=>not (holds (must '_go'_'))

[18] GMEC,"H","o” = happens "e1, by rule and+ on [7, 9, 11, 13, 17],

happens es”,

not (before "e;” "ex),

not (before "e;” "e1 "),

beforeFact "e;” "ex”

=>not (holds (must "¢'"))
[19] GMEC,"H","0" = fails must " by rule atom+ on clause (10), with E1 and E2
instantiated to "e;” and "e:” respectively,

[20] GMEC,"H","0" =% not (fails must "¢'") by rule naf ,
[21] GMEC,"H","0" =% holds """, by rule and—,

not (failsmust ')
[22] GMEC,"H","0" =%~ holds Dy’

[1] Zwusot = or
der, ez € K. ((61,62) & ot
A (ez,e1) € ot
N Trifol (enen}t E O¢)

!

by rules atom— on [4, 21] and clause (9).

by lemma 2.12,

e Iy;0t = o

[2] subcase of [1]
[3] GMEC, "H","0" = holds "¢"

(4]

(5]

by induction hypothesis (a),
GMEC, "H","0" = holds Oy
e Jer,ex €E. ((e1,e2) go™
A (ez,e1) got
A Tiifot(en e}t = 00

by rule atom+ on clause (11),

subcase of [1]

e1 € E conjunct in [5]
by definition of "E",
conjunct in [5]

es € F

GMEC, "H", 0"
10] (61,62) & ot

]

7] GMEC, "H","0" = happens "e;"
]
]

= happens "e;”

by definition of "E",

conjunct in [5]



[11] GMEC,"H","o" = not (before "e1” "e2™)
[12]  (ez,e1) g ot
[13] GMEC,"H,"0" = not (before "e2” "e1”)
4] Tuifot (enen)}t k= 00
[15]  GMEC,"H","0 1 (e1,€2)”
= holds (may """
[16] GMEC,"H","0" —> beforeFact "e1” "ex”
=>holds (may "¢
[17]  GMEC,"H","0" = happens "e;",
happens ‘ez’
not (before "e;” "ex’),
not (before "ex” "e1 ),
beforeFact "e;" "es”
=>holds (may """
[18] GMEC,"H,"0" == holds "¢
=0y
1] Dot B O
(2] T;ot | ¢
[3] GMEC,"H", 0" =% holds "'
[4] —Jer,e2 € E. ((e1,€2) & ot
A (ez,e1) got
A Dot (en,ea)}t E O9)
[6] -3t t2. (b1.€E
AN das€EFE
A (dratas) € ot
A (t2at1s) € 0T
A Iy {ot (tis, 2} = O)
[6] Vit (b€ FE
Vo odg B
Vo (i, tes) €0t
Vo (dasutis) € 0T
Vo Iy {o 1 (dis e} OY)
[7] euigE
[8] GMEC, "H","0” =~ happens t;
9] e g E
[10] GMEC,"H","0” == happens {2
[11] o (t1st20) € 0F
[12] GMEC,"H,"o” = before ; t2
[13] GMEC,"H,"0” =%~ not (before # t)
[14] o (t2s.t12) € OF
[15] GMEC,"H","0" = before {3 &1
[16] GMEC,"H,"0" =%~ not (before #> t1)
[17] o T {o 1 (dutad} B 00
[18]  GMEC,"H","0 1 (ct14,t24)"
=~ holds (must "p'")
[19] GMEC,"H,"0” == beforeFact  t2

=>holds (may "p'")
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by lemma 3.5,

conjunct in [5]

by lemma 3.5,

conjunct in [5]

by induction hypothesis (a),
(ct1,t22)}T is a proper extension of o,

by rule impl4 and the definition of " ™,

since {o T

by rule atom+ on [7, 9, 11, 13, 16] and clause
(12), with "e1” and "e2” substituted for the vari-

ables E1 and E2 respectively,

by rules atom+ on clause (12).

assumption

by lemma 2.12 on [1],

by induction hypothesis (b),
by lemma 2.12 on [1],

by definition of - "%,

by logical equivalences,

subcase of [6]
by rule atom— and definition of "E",
subcase of [6]

by rule atom— and definition of "E",
subcase of [6]

by lemma 3.5,

by rules naf—,

subcase of [6]

by lemma 3.5,

by rules naf—,

subcase of [6]

by induction hypothesis
(b1, itan) 3t
by rule impl

since {o 1

(b);
is a proper extension of o,

and the definition of ™+,



[20] GMEC,"H","0" =~ happens t1, by rules and—; and and—; on [8, 10, 13, 16, 19];
happens ¢, this is provable for all terms ¢; and ¢,
not (before t; t3),
not (before t; &),
beforeFact &1 &2
=>holds (may """
[21] GMEC,"H","0” == holds "O¢'” by rule atom on clauses (11) and (12) for [3]
and [20] respectively. ]

Theorem 3.10 (Soundness and completeness of GMEC w.r.t. the GMEC-frame semantics)

Let H = (E, P, [), (], 1'+[) be a GMEC-structure, o a state of knowledge and ¢ and GMEC-formula,
then

a. GMEC,"H","0" = holds "¢’ iff  Tw;ot =
b. GMEC,"H","o" == mnot (holds "»") iff ZTwu;oT £ ¢.
Proof.
By rules naf4 and naf—, the second statement can be rewritten as
b’. GMEC,"H',"0" =% holds "' iff Iu;ot H .

It suffices now to apply lemmas 3.8 and 3.9 to the two directions of (a) and (b') to prove the theorem. [ |

Lemma 3.11 (Correspondence between skeBroken and nsb)
Let H = (E, P, [}, (], ]-,;[) be a GMEC-structure and o a state of knowledge, then
a. GMEC+ "H,"0" —> skeBroken "e;” p" "ey” iff  —nsb(p,er,ez,0m) holds in H;
b. GMEC+ "H,"0” = not (skeBroken "e1” p" "e2") iff  nsb(p,e1, ez, 0m) holds in H.
Proof.
We proceed as in the proof of lemma 3.6.

a. (=) By unfolding clause (5'), we obtain the following relations.

GMEC+,"H","0" = happens e" ec by definition of "E",
GMEC+,"H","0" = not (e’ = "e1?) eFer by lemma 3.3,
GMEC+,"H","0" = not ("¢’ = "e2") e # e by lemma 3.3,
GMEC+,"H","0" = not (before e "e1") (e,e1) g ot by lemma 3.5,
GMEC+,"H","0" = not (before "ex" "e") (e2,€) g ot by lemma 3.5,
GMEC+,"H","0" = initiates "¢" "¢’ (e € [q) by definition of T-)"
terminates "¢’ "q’ Ve € {q]) and of (],
GMEC+,"H","0" = exclusive p" ¢’; (e €lp,ql by definition of 7., ["
=g’ Vp=gq) and lemma 3.4.

By taking the conjunction of the formulas displayed in the central column, we have:

e#er AeFea Aleer) o Afeae) ot A((e€la) Vee(d) A(palve=a)
By abstracting over e and g, we obtain

de€eE.dgeP. e#er

AN eFer

A (eer) got

A (ez,e) got

A ((e€lg) Veeld) A (paVp=q)

39



that is equivalent, after some logical manipulations, to nsb(p, e1, €2, o+).

(<) Similarly to the situation encountered in the proof of lemma 3.6, this direction of the proof follows
by simply reversing the reasoning pattern just used. We omit it.

b. (<) By property 3.1 and (a).

(=) This direction follows by property 3.2 since the only calls in clause (10') that invoke recursive
definitions involve the predicate before, that has only finite derivations, by lemma 3.5. |

Theorem 3.12 (GMEC+ computes necessary MVIs)
Let H = (E, P, [}, {], ]:,;[) be a GMEC-structure and o a state of knowledge, then

a. GMEC+,"H","0" = holds (must (period "e;” "p" "e2™)) iff  pler,ex) € AMVI(o7);
b. GMEC+,"H","0" = not (holds (must (period "e;” 'p' "e2™)) iff  p(er,e2) & EUMV[(O"').

Proof.
We proceed as in the proof of theorem 3.7.

a. (=) Assume that GMEC+,"H","0" = holds (must (period "e1” "p" "e2")) is derivable. We will prove that
e1 € [p), e2 € {p], (e1,e2) € ot and nsb(p, e1,e2,07) are entailed by this hypothesis. The thesis will
follow by lemma 2.13.

By unfolding clause (9') we obtain the following relations:

GMEC+,"H","0" = happens "e1” e1 €L by definition of "E",
GMEC+,"H","0" = initiates "e;” p’ e1 € [p) by definition of T-)7,
GMEC+,"H","0" = happens e, es €F by definition of "E",
GMEC+,"H","0" —> terminates "ex" p’ ez € (p] by definition of (-],
GMEC+,"H","0" = before "e;" "ex” (e1,€2) € ot by lemma 3.5,
GMEC+,"H","0" = not (skeBroken "e;” p" "ex”) nb(p, e1,e2,0t) by lemma 3.11.

The central column contains all the hypotheses needed for the application of lemma 2.13.
(<) As in the proof of theorem 3.7, this direction follows by simply reversing the reasoning pattern just
used. We omit it.

b. (<) By property 3.1 and (a).

(=) By the definition of " and lemmas 3.5 and 3.11, clause (9') cannot start a diverging derivation.
The desired result follows from property 3.2. |

Theorem 3.13 (GMEC+ computes possible MV1s)
Let H=(E, P, [}, (], ];[) be a GMEC-structure and o a state of knowledge, then

a. GMEC+,"H","0" = holds (may (period "e1” p" "e2™)) iff  pler,e2) € OMVI(ot);
b. GMEC+,"H","0" = not (holds (may (period "e:” p" "e2™))) iff p(e1,e2) & <>]WV[(0+).

Proof.
Similar to the proofs of theorems 3.7 and 3.12. |

Theorem 3.14 (Soundness and completeness of GMEC+ w.r.t. the GMEC-frame semantics)

Let H = (E, P, [), (], 1'+[) be a GMEC-structure, o a state of knowledge and ¢ and GMEC-formula,
then
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a. GMEC+ "H","0" = holds "¢
b. GMEC+ "H","0" = not (holds "¢")

Proof.

As in theorem 3.10, (a) and (b) must be proved simultaneously in each direction. We will only sketch the
proof for the forward direction (=). The present discussion together with the detailed proof of the analogous
case treated as lemma 3.9 should suffice to the intrepid reader to reconstruct this long proof in its entirety.

The forward direction of the proof requires the techniques exploited in the proof of lemma 3.8, with the
only difference that we need to distinguish finer proof cases for the modal formulas. More precisely, whenever
the main connective of a formula is modal, we must consider the main connective of its immediate subformula.

For the sake of conciseness, we will perform the proof only for cases where the main connective is O.
Again, we leave the rest of the proof to the valiant reader (the cases for < are similar, and whenever the main

if
uf

Ty; 0t = o
Ty 0t H .

connective is non-modal, the analogous cases in the proof of lemma 3.8 apply unchanged).

We are performing a mutual nested induction on the structure of the formula ¢ and of the derivations for

the sequents

a. GMEC+ "H","0" = holds "¢

b'. GMEC+,"H","0" = holds "¢

and

Again, we use single frames to label proof cases for (a), and double frames for proof cases for (').

‘go = Op(er, e2) ‘ and

= Dp(el,ez) ‘

The result follows by theorem 3.12.

[1] GMECH"H",0"

= holds (not (may "'"))

2
3

5
6

[1] GMECH"H", 0"

In;ot = =0p
Iy;ot = O-p

[2] GMEC+ "H,"0" = not (holds "C¢")
[3] GMEC+ "H,"0"=A holds Oy
[4] Iy 0t # O
[5]
[6]

’

!

=~ holds (not (may ')

2

W

5
6

[2] GMEC+ "H","0" =4 not (holds "Op™)
[3] GMEC+ "H","0" = holds "C¢""
[4] Zwu;0t | O

[5] Znsot | —0¢

(6] Zp;ot B 0=

‘go =0(¢" A ") ‘ and

‘@ZD(QOI A 90“)‘

Similarly to the previous case, clause (12') is used to push the modality inside the formula. Then the
technique seen in the proof of lemma 3.8 for the cases concerning conjunction is applied. Finally, we

by

by
by
by
by
by

by

by
by
by
by
by

rule atom+ on clause (11'),

rule atom+ on clause (6'),
rule naf4,

induction hypothesis (b),
definition of |=,

property 2.7.

rule atom— on clause (11'),
rule atom— on clause (6'),
rule naf |

induction hypothesis (a),

the consistency of |=,

property 2.7.

appeal to property 2.7 to restore ¢ by pushing O out as its main connective.

‘go =0(¢' vV ¢") ‘ and

0= D(wl v 90“) ‘

Take verbatim the proof cases for O from the proof of lemma 3.8 changing simply the reference to clause
(9) and (10) to references to clauses (13') and (14') respectively. Clearly the structure of the subformula

¢’ V " needs not to be expanded.
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[1] GMEC+ "H,"0"= holds (must "¢'") by rule atom+ on clause (15'),
2] Zu; ot = Oy’ by induction hypothesis (a),

[3] Zw;ot = OOy by property 2.7.

[1] GMEC+ "H,"0"=4 holds (must "¢’ by rule atom on clause (15'),
[2] Zw;ot £ Oy by induction hypothesis (b),

8] Zu; ot B OO by property 2.7.

e =00’

Both clauses (17') and (16’) can have been used by rule atom+ as the last derivation step. In the first
case, we simply need to transpose the corresponding proof case for O from the proof of lemma 3.8. The
second case applies only if ¢ = OCOOP”. We have the following derivation:

[1] GMEC+ "H","0" by rule atom+ on clause (16'),
—> holds (must (may '—go'_') )

2] Zu; ot = 00" by induction hypothesis (a),

B8] Zw; ot = 0000 by property 2.7.

e =00y

We must again distinguish two cases, based on the structure of ¢'. If this formula is not of the form
0O¢", we behave as in the corresponding proof case for O-moded formulas in the proof of lemma 3.8.

Otherwise, the last rule applied must be atom— on clauses (17') and (16’). The branch concerning the
first clause is handled again as the second proof case for O from the proof of lemma 3.8. The branch
referring to the second clause is instead handled as follows:

[1] GMEC+ "H", 0" subcase generated by clause (16')
=~ holds (must (may ')
[2] Tw;ot | O0p" by induction hypothesis (b),
[38] Zw;ot £ O0OO” by property 2.7. [ |
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