
Concurrent Logic Programming
Met and Unmet Promises

Iliano Cervesato and Edmund S.L Lam

We are grateful to Paul Fodor for agreeing to give
this talk in our absence

Logic Programming …

… the quintessential declarative paradigm

 Declarative? Promises to
 promote human-friendly description of a problem

» as opposed to hardware-oriented encoding of solution

» aka abstraction

 simplify reasoning
» Strengthens assurance, security, performance

1

After 50 years …

 Making it easier to write programs?
 Definitely, in some domains

» Datalog renaissance of the last 5 years
» CLP, tabling, …

 By and large, (really) hard to write large programs
» Extra-logical constructs, flat name space, …

 Simplifying reasoning?
 Largely unmet promise

… logic programming is a fringe paradigm

2

A new challenge

Concurrent and distributed applications

 Popping up everywhere
 Mobile apps, Internet-of-things, cloud applications

 Really hard to get right
 Communication challenges

» Consistent messaging, available sender/receiver, …

» … across multiple communicating programs

 Synchronization challenges
» Deadlock, live locks, unwanted race conditions, …

 APIs available to novice programmers …
3

… a great opportunity for LP

 No competition from traditional paradigms
 (yet)

 Simple, abstract logical specifications of
communication and synchronization
 Forward-chaining AKA logic-based rewriting

 Nascent reasoning and assurance support
 Straight from proof theory

4

Writing a distributed application …

Node-centric way

• 1 program for each device

• Peephole view of messaging

• No support to handle
messaging/synchronization
– Programmer on his/her own

• Error-prone and costly

How most distributed software
is written

System-centric way

• A single program

• Bird eye’s view of messaging

• Centralized analysis

• Automatically compiled to
code that runs on each device

• Simple, fast, abstract

…
(opportunity knocking)

5

Comingle

A language for mobile distributed applications

 Not your usual multiset rewriting language …
 Implements a fragment of first-order linear logic

» with locations, strong typing, multiset comprehensions
» interfaces with local computation (Android SDK)

 Forward-chaining semantics (high-level)
 Distributed stack-based machines (low-level)

 Implementation for Android devices and i386

 A dozen applications
 A day each to implement, some by undergrads

6

Opportunities

 Other logic-based forays
 Meld: language for programming shared-memory

multicore systems

 Netlog: language for P2P applications

 Yedalog: Datalog for the cloud

 What is missing
 Scale

 Assurance

7

Reasoning about concurrent apps

Several promising logic-based techniques

 Session types
 Statically catch messaging errors and deadlocks
 Logical foundation of process algebra

 Coinductive methods
 Concurrent programs don’t return a result

» Progress through interaction
» Termination is unimportant

 Bridge to process algebraic methods
» (Bi)-simulation, refinement, equivalence

8

Take-home message

 Mobile, concurrent, distributed applications
are in need of a good programming model

 Logic programming can be that model
 System-centric programming

 Untapped reasoning potential

 First initial attempts are promising

9

