A Formal Analysis of Some Properties of Kerberos 5 Using MSR

Frederick Butler, Iliano Cervesato, Aaron D. Jaggard, and Andre Scedrov

Project Goals

- Give precise statement and formal analysis of a real world protocol
 - Find a real world protocol Kerberos 5
 - Pick favorite formalization method MSR
- ◆Identify and formalize protocol goals
- ◆Give proofs of achieved protocol goals
 - Gain experience in reasoning with MSR
- ◆Note any anomalous behavior
 - Suggest possible fixes, test these

Related Kerberos Work

- ◆ Kerberos 4 Bella & Riccobene
 - Gurevich's Abstract State Machine
- ◆Bella & Paulson
 - Inductive approach using theorem prover Isabelle
 - Proofs of authentication and confidentiality
 - Incorporated timestamps and temporal checks
- ◆Kerberos 5 Mitchell, Mitchell, & Stern
 - Analyzed simplified protocol with state exploration tool Murq
 - Attack found, but fixed in full protocol

Related Formal Work

- ◆MultiSet Rewriting (MSR) formalism
 - · Lincoln, Mitchell, Scedrov, Durgin, and Cervesato
 - Extended to Typed MSR by Cervesato
- **◆**Rank functions
 - Defined by Schneider
 - Our proof methods adapted from this idea

Main Results

- ◆Formalized Kerberos 5 at different levels of detail
 - Typed MSR + extensions
- Observed anomalous behavior
 - Recovery from key loss
 - Some properties of Kerberos 4 do not hold for Kerberos 5
- Proofs of properties which do hold here
 - Methods adapted from Schneider
- ◆Interactions with Kerberos working group

Introduction
Kerberos Overview
Two Views of Kerberos 5
Anomalies
Proof Methods

Protocol Goals and History

◆Protocol goals

- Repeatedly authenticate a client to multiple servers
- Minimize use of client's long term key(s)
- Does not guard against DOS attacks
- ◆ Kerberos 4 1989
- ◆Kerberos 5
 - Specified in RFC 1510 (1993)
 - Subsequent revisions by working group
- ◆ A real world protocol
 - Windows 2000 (RFC 1510 + extensions)
 - User login, file access, printing, etc.

Kerberos 5

- Client C wants ticket for end server S
 - Tickets are encrypted unreadable by C
- ◆ C first obtains long term (e.g., 1 day) ticket from a Kerberos Authentication Server K
 - Makes use of C's long term key
- ◆ C then obtains short term (e.g., 5 min.) ticket from a Ticket Granting Server T
 - Based on long term ticket from K
 - C sends this ticket to 5

Protocol Messages

```
Please give me ticket for T
 Ticket for C to give to T
    Ticket from K, one for 5?
     Ticket for C to give to S
               Ticket from T
          Confirmation (optional)
```

Introduction
Kerberos Overview
Two Views of Kerberos 5
Anomalies
Proof Methods

Abstract Formalization

- ◆ Contains core protocol
 - Other formalization refines this one
- Exhibits an anomaly
 - This appears to be structural and not due to omitted detail
- Allows us to prove authentication results

Messages in Abstract Level

Detailed Formalization

- ◆Uses richer message structure
 - Adds some fields for options
 - E.g., anonymous tickets
 - Models encryption type
 - Adds checksums
- **◆**Exhibits anomalies
 - Encryption type option specific to this level
 - Structural anomaly also seen at abstract level
 - Also variations which use added detail

Messages in Detailed Level

```
KOpts, C, T, n_1, e_1
C, {Tflags, k_{CT}, C}<sub>kT</sub>, {k_{CT}, n_1, Tflags, T}e_1'<sub>kC</sub>
{Tflags,k_{CT},C}_{k_T},{C,MD,t}_{k_{CT}},{Topts,C,S,n_2,e_2} \rightarrow C,{Sflags,k_{CS},C}_{k_S},{k_{CS},n_2},{Sflags,S}_{e_2'}_{k_{CT}}
                 SOpts, \{Sflags, k_{CS}, C\}_{k_S}, \{C, MD', t'\}_{k_{CS}}
```

KRB_ERROR,[-|t|t'],t_{err},ErrCode,C,(K|T|S)

K|T|S

Introduction
Kerberos Overview
Two Views of Kerberos 5
Anomalies
Proof Methods

Encryption Type Anomaly

◆Kerberos 5 allows C to specify encryption types that she wants used in K's response

```
C Please give me ticket for Tusing keep (sent unencrypted)
```

```
C Ticket for C to give to T (other info encrypted using etype) K
```

- ◆C's key associated with the etype e_{bad} is k_{bad}
 - Intruder I learns k_{bad}
 - C knows this and attempts to avoid e_{bad}/k_{bad}
 - I can still force k_{bad} to be used
 - How to recover from a lost key

Ticket Anomaly

 $C \leftarrow Ticket for C to give to T$

- ◆ Kerberos 4:
 - Ticket is enclosed in another encryption {Ticket, Other data}_{kc}
- ◆Kerberos 5:
 - Ticket is separate from other encryption
 Ticket, {Other data}_{kc}

Ticket Anomaly

- ◆T grants the client C a ticket for S
- ◆ C has never sent a proper request for a ticket
 - C never has the ticket for T
 - C thinks she has sent a proper request
 - C's view of the world is inaccurate
 - Some properties of Kerberos 4 don't hold here
- Seen in both formalizations
 - Variations possible using added detail
 - Anonymous tickets
- Still can authenticate origin of data

Comments from Kerberos Designers

◆Generally positive response

- Methods helpful
- Encouraged to pursue further
- Should look at protocol extensions

♦ Anomalies

- These scenarios can occur
- Practical concern unclear
- Anonymous ticket variation of interest
 - Status of this option may change
 - Good to highlight possible concerns here

Introduction
Kerberos Overview
Two Views of Kerberos 5
Anomalies
Proof Methods

Rank and Corank

- ◆Inspired by work of Schneider
- ◆ Define functions on MSR facts
 - k-Rank encryptions by k
 - Data origin authentication
 - E-Corank level of protection by keys in E
 - Secrecy

♦Proofs

- State desired property
- Find applicable (co)rank functions
- Determine effect of MSR rules on these functions

An Authentication Theorem

◆If T processes the message

$$\{k_{CT},C\}_{k_T},\{C\}_{k_{CT}},C,S,n_2$$
 then some K sent the message
$$C,\{k_{CT},C\}_{k_T},\{k_{CT},n_1,T\}_{k_C}$$
 and C sent some message
$$\mathbf{X},\{C\}_{k_{CT}},C,S',n'_2$$

- ◆ Authenticate data origin using rank
 - Show ticket $\{k_{CT},C\}_{k_T}$ originates with some K
 - Show authenticator $\{C\}_{k_{CT}}$ originates with C
 - This makes use of a corank argument for confidentiality
- ◆In Kerberos 4, *C must* have sent the ticket and *not* the generic X (Bella & Paulson)

A Second Authentication Theorem

♦ If S processes the message $\{k_{CS},C\}_{k_S},\{C,t\}_{k_{CS}}$ then some T sent the message $C,\{k_{CS},C\}_{k_S},\{k_{CS},n_2,S\}_{k_{CT}}$ and C sent some message $X,\{C,t\}_{k_{CS}}$

Conclusions

- ◆Formalizations of Kerberos 5 at different levels of detail
 - Used MSR + extensions
 - MSR can handle real world protocols
- ◆ Anomalous behavior
 - Stated weakened authentication properties which hold for Kerberos 5
- Proofs of properties which hold here
 - Adapted methods from Schneider
 - Gained additional experience in reasoning with MSR
- ◆Interactions with Kerberos designers

Future Work

- ◆Investigate fixes for anomalies
- Look at additional properties
 - Further authentication, confidentiality
 - Defense against replay attacks
- Continue interaction with Kerberos designers
- ◆ Give additional formalizations
 - Additional structure and functionality
 - Public key extensions
- Explore use of automated tools