A Linear Logical Framework

Presentazione della Tesi di Dottorato

Iliano Cervesato

Dipartimento di Informatica Università di Torino Corso Svizzera, 185 10149 Torino - Italy

iliano@di.unito.it

Questa ricerca è stata sviluppata durante un'estesa visita al Department of Computer Science presso la Carnegie Mellon University

Milano, 6 Febbraio 1996

Overview

- Outline of the problem
 - Effective representation of formal systems
 - Examples of applications
 - State of the art
 - Contributions
- Background
 - Deductive systems
 - Meta-representation
 - The logical framework LF
 - Linear logic
- Technical development
 - The linear logical framework *LLF*
 - Properties
 - Logic programming in *LLF*
- Examples
 - MLR: Mini-ML with references
 - Cut-elimination for linear logic
 - Mahjongg
- Conclusions and future work

The problem

Provide

Effective meta-representations of formal systems

- <u>Formal systems</u>: almost everything of interest in logic and computer science:
 - logics
 - programming languages
 - micro-chips, ...
- Meta-representation: an encoding of aspects of
 - the syntax
 - the semantics
 - the meta-theoryof a formal system
- Effectiveness:
 - amenability to mechanization
 - usability

Example of applications

- Program transformation
- Design of hardware components
- Verification of logical proofs
- Design of programming languages

State of the art

A *logical framework* is a language specially tailored to give effective representations of formal systems

Logics

- Horn clauses (*Prolog*)
- Hereditary Harrop formulas ($\lambda Prolog$)

Type theories

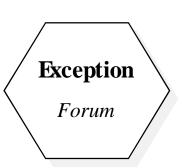
- AUTOMATH languages (AUTOMATH)
- Martin-Löf's type theories (NuPrl, ALF)
- -LF(Elf)
- Calculi of Constructions (Coq, LEGO)

They have been used successfully to encode

- traditional logics and type theories
- pure functional and logic programming languages

They are ineffective for

- logics with complex operations on the context
- programming languages based on a mutable state



No commercial applicability

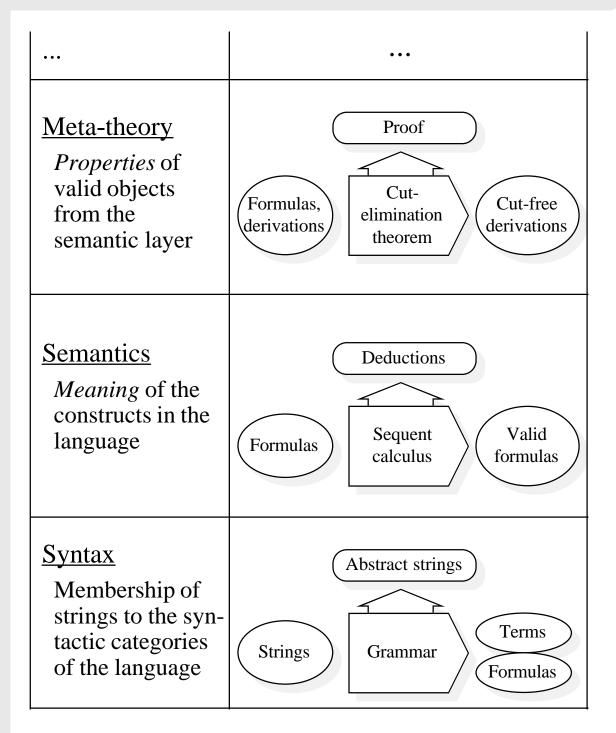
Contribution

The meta-representation formalism *LLF* is an extension of the logical framework *LF* with constructs from linear logic.

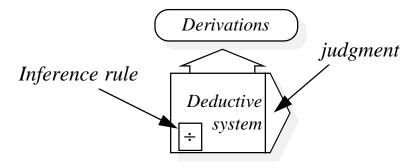
It permits representing and reasoning about:

- imperative programming languages characterized by a mutable store
- logics with a non-monotonic treatment of their context (e.g. linear logic)
- languages with linear binding constructs (linear higher-order abstract syntax)
- problems based on a state that evolves with time (e.g. puzzles and solitaires)

Structure of a formal system

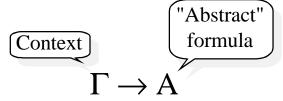


Deductive systems



Judgment

Relation on lower level derivations

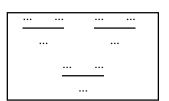


Inference rule

Conditional derivability of judgments

Deductive system

Set of inference rules



Derivation

Evidence of the

Evidence of the derivability of a judgment
$$A \rightarrow A \wedge T$$

$$A \rightarrow A \wedge T$$

$$A \rightarrow A \wedge T$$

$$\wedge$$
 R (Ax, T R)

Anatomy of a deductive system

$$\Gamma \to C$$
 "C is derivable" C

$$\frac{\Gamma \to P}{\Gamma \to C} \qquad \text{"C if } P\text{"} \qquad \qquad P \Rightarrow C$$

$$\frac{\Gamma \to P' \quad \Gamma \to P''}{\Gamma \to C} \quad \text{"C if } P' \text{ and } P'''' \qquad \qquad P' \land P'' \Rightarrow C$$

$$\frac{\Gamma \to P^{c}}{\Gamma \to C} (c) \qquad \text{"C if } \underline{\text{for all }} c, P" \qquad (\forall c. P) \Rightarrow C$$

$$\frac{\Gamma, A \to P}{\Gamma \to C}$$
 "C if whenever A, P" $(A \Rightarrow P) \Rightarrow C$

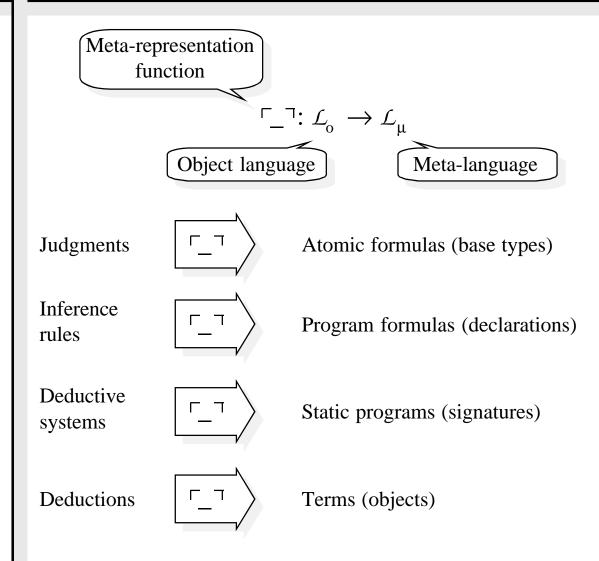
Each rule template corresponds to a *connective* in logic and a *type constructor* in type theory

In type theory, derivations are represented mechanically by considering the object constructor/destructor corresponding to each rule template

Logics are adequate to representing <u>provability</u>

Type theories handle also <u>proofs</u>

Meta- representation



Adequacy theorems

- every object-level judgment/derivation has a distinct representation
- derivable judgments correspond to provable atomic formulas (inhabited types)

Approaches to metarepresentation

Operational aspects of a meta-representation system

- verify the validity of derivations (<u>proof-checking</u>)
- help discovering them (<u>proof-search</u>)

Effective realization of proof-search

- "Theorem provers" (NuPrl, ALF, Coq, Lego, Isabelle)
 - representation and reasoning performed in different languages
 - · results of proof-search are not available for meta-reasoning
 - · support for interactive proof development
 - · applicable to many meta-languages

- <u>Logic programming languages</u> ($\lambda Prolog, Elf, ...$)

- · representation and reasoning languages are the same
- · simple search strategies (e.g. resolution) are hardwired, but more complex methods can be defined
- · if proofs are recorded in terms, they are available for further meta-reasoning
- · no support for interactive proof development
- · not generally applicable

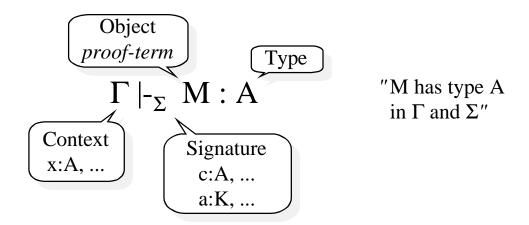
The logical framework *LF*

<u>Kinds</u> $K ::= type \mid \Pi x:A. K$

 $\underline{\text{Prime types}} \qquad \quad \text{P } ::= \text{ a } \mid \text{P M}$

 $\underline{\text{Types}} \qquad \quad A ::= P \mid \Pi x : A_1. A_2.$

Objects $M := x \mid c \mid \lambda x : A. M \mid M_1 M_2$



Principal properties

- Type checking and type synthesis are decidable
- Can be implemented as a logic programming language (*Elf*)
- Proof-terms record the inference rules used in proving the inhabitance of a type

Meta-representation in LF

Judgment J
$$\longrightarrow$$
 Base type $\lceil J \rceil$

Context of J \longrightarrow Assumptions in the context Γ of LF

Inference rule $\frac{...}{J}$ \longrightarrow Declaration $r: \lceil ... \rceil \rightarrow \lceil J \rceil$

Deductive system \longrightarrow Signature Σ

Derivation for J \longrightarrow Canonical inhabitant M of $\lceil J \rceil$ in Γ , Σ

Variables and binding constructs require a special treatment of the level of the syntax:

Higher-order abstract syntax

Adequacy theorems

 $\lceil \neg \rceil$ is a compositional bijection between judgments J and canonical LF base types $\lceil J \rceil$, and between derivations \mathcal{D} of J and canonical objects M such that

is derivable

Linear logic

... refines traditional logic by constraining the number of times an assumption is used in a proof. *Weakening* and *contraction* are ruled out.

This calls for a finer set of connectives:

Connectives							Context
Traditional	T	F	_	^	V	\rightarrow	Unbounded
Multiplicative	1	1	Т	\otimes	60	-0	Split Copy Unbounded
Additive	T	0		&	\oplus		Copy
Exponential			!	•	?		Unbounded

Example of sequent rules:

$$\frac{\Delta_{1} \xrightarrow{ll} B \quad \Delta_{2} \xrightarrow{ll} C}{\Delta_{1}, \Delta_{2} \xrightarrow{ll} B \otimes C} \otimes L \quad \xrightarrow{\Delta \xrightarrow{ll} B} \Delta \xrightarrow{ll} B \otimes C} \& L$$

Controlled forms of *weakening* and *contraction* are made availabe through the use of ! and ?

$$\frac{\Delta \xrightarrow{ll} E}{\Delta ! B \xrightarrow{ll} E} ! W \quad \frac{\Delta ! B ! B \xrightarrow{ll} E}{\Delta ! B \xrightarrow{ll} E} ! C \quad \frac{\Delta ! B \xrightarrow{ll} E}{\Delta ! B \xrightarrow{ll} E} ! D$$

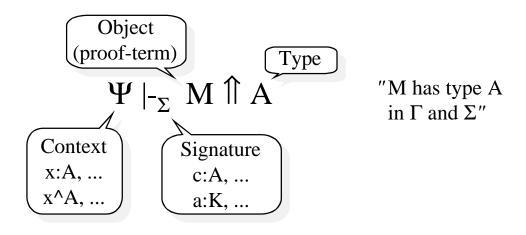
The logical framework LLF

<u>Kinds</u> $K := type \mid \Pi x:A. K$

 $\underline{Prime \ types} \qquad P ::= a \mid P M$

<u>Types</u> $A ::= P \mid T \mid A_1 \& A_2 \mid A_1 - o A_2 \mid \Pi x : A_1 . A_2$

Objects $M := x \mid c \mid <> \mid <M_1, M_2> \mid fst M \mid snd M \mid \lambda x^A. M \mid M_1 \wedge M_2 \mid \lambda x:A. M \mid M_1 M_2$



Connection to linear logic

Properties of *LLF*

• <u>Derivable terms are in η-long form</u>

If $\Psi \mid_{^-\Sigma} U \uparrow V$ is derivable, then Ψ, Σ, U and V are in η -long form

• Church-Rosser property

If $U' \equiv U''$, there exists a term V such that $U' \rightarrow^* V$ and $U'' \rightarrow^* V$

• Unicity of types and kinds

If $\Psi \mid_{^-\Sigma} U \ \ V'$ and $\Psi \mid_{^-\Sigma} U \ \ V''$, then $V' \equiv V''$

• Strong normalization

If $\Psi \mid_{-\Sigma} U \cap V$ is derivable, then U is strongly normalizing

• Decidability of type checking and type synthesis

It can be recursively decided whether there exists a derivation and a term U for the judgment $\Psi \mid_{^-\Sigma} U \uparrow V$

• Convervativity over *LF*

If Ψ , Σ , U and V do not mention linear constructs, then $\Psi \mid_{-\Sigma} U \uparrow V$ is derivable in *LLF* iff $\Psi \mid_{-\Sigma}^{LF} U \uparrow V$ is derivable in *LF*

Logic programming in LLF

Proof-search in *LLF* can be efficiently mechanized.

LLF is adequate for an implementation as a logic programming language

- Goal-directed proof-search (canonical system)
- <u>Uniform proofs</u>
- Resolution
- Non-determinism
 - resource distribution: context management
 - conjunctive: success continuation
 - disjunctive: failure continuation
 - existential: unification

Anatomy of a deductive system (cont'd)

Permanent context Volatile context
$$\Gamma; \Delta \to A$$

The volatile context needs to be handled <u>linearly</u>

Derivations are represented as objects in a <u>linear</u> λ -calculus

 $\frac{\Gamma; \Delta \to P}{\Gamma; \Delta, A \to C} \quad A \otimes P \text{ -o } C \qquad \frac{\Gamma; \Delta, B \to P}{\Gamma; \Delta, A \to C} \quad A \otimes (B \text{ -o } P) \text{ -o } C$

Meta-representation in LLF

Volatile context — Assumptions in the linear part of the context of *LLF*

Derivations — Linear proof-objects

Linear binding constructs are handled by means of <u>linear higher-order abstract syntax</u>

LLF terms must be <u>linearly closed</u>

Linear parameters are treated intuitionistically

MLR: Mini-ML with references

e ::= x | z | s e | ... | lam x. e | e₁ e₂ | ... | c | ref e | !e |
$$<>$$
 | e₁ := e₂ | e₁; e₂ | τ ::= nat | $\tau_1 \times \tau_2$ | $\tau_1 \to \tau_2$ | τ ref | cmd S ::= \cdot | S, c=v

$$\begin{bmatrix}
c_1 = v_1, \dots, c_n = v_n^{\top} = c_1 : cell, \dots c_n : cell, \\
v_1^{\circ} contains c_1^{\top} v_1^{\top}, \dots, h_n^{\circ} contains c_n^{\top} v_n^{\top}
\end{bmatrix}$$

$$K \mid - \mathbf{return} \iff \Rightarrow_{(S',c=v,S'')} a$$
 $K \mid -c := v \Rightarrow_{(S',c=v',S'')} a$

Cut-elimination for linear logic

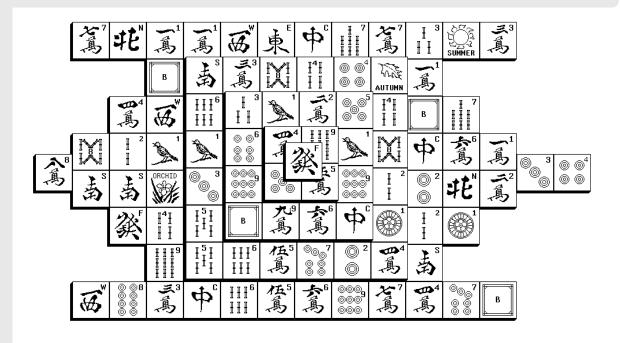
$$A ::= P \mid T \mid A_1 & A_2 \mid A_1 - o A_2 \mid A_1 \Rightarrow A_2 \mid \forall x.A$$

$$\frac{\Gamma; \Delta, A_1 \to A_2}{\Gamma; \Delta \to A_1 \text{ -o } A_2}$$

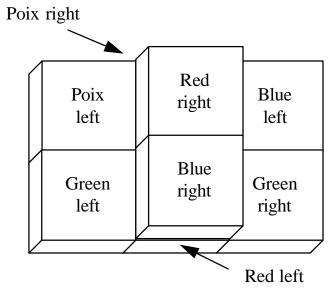
$$\frac{\Gamma; \Delta_1 \to A_1 \quad \Gamma; \Delta_2, A_2 \to C}{\Gamma; \Delta_1, \Delta_2, A_1 \text{-o } A_2 \to C}$$

$$\begin{array}{c|c} \hline \Gamma; \Delta, A_1 \rightarrow A_2 \\ \hline \Gamma; \Delta \rightarrow A_1 \text{ -o } A_2 \end{array} \quad \swarrow \circ \quad \begin{array}{c|c} \hline \Gamma; \Delta_1 \rightarrow A_1 & \Gamma; \Delta_2, A_2 \rightarrow C \\ \hline \Gamma; \Delta_1, \Delta_2, A_1 \text{ -o } A_2 \rightarrow C \end{array}$$

Mahjongg



Mahjongg (Cont'd)



```
green_l <-> green_r
blue_l <-> blue_r
red_l <-> red_r
poix_r <-> poix_l
```

Related work

• λ<u>Prolog</u>

- representation of provability, but not of proofs
- no treatment of linearity

• <u>Elf</u>

- representation of provability and proofs
- no treatment of linearity

• Lolli, Lygon, LO

– limited representation of linear provability

• Forum

 representation of linear provability, but not of linear proofs

• The general logic *LU*

- polyhedric formalism: one uses the aspects he/she needs
- no direct support for meta-representation

• Other approaches to handling state

- monads
- uniqueness types
- extended DCGs

Future work

- Implementation
 - interpreter
 - compiler
 - programming environment
 - · user interface (cfr. Elf's Emacs mode)
 - · schema checking
- Extensive library of examples
- Pure type system for *LLF*
- Definition of linear quantifiers and linear dependent types
- Long term
 - internal support for representing concurrent computations
 - treatment of I/O
 - human-oriented proof generation

Conclusions

The linear logical framework *LLF* extends the type theory of *LF* with constructs from linear logic.

- it permits representing and reasoning about:
 - · imperative programming languages characterized by a mutable store
 - · logics with a non-monotonic treatment of their context (e.g. linear logic)
 - · languages with linear binding constructs (linear higher-order abstract syntax)
 - problems based on a state that evolves with time (e.g. puzzles and solitaires)
- − is a first example of a linear type theory
- applies a proof-theoretic approach to the design of a linear logic programming language
- stands as a starting point for the study of *linear* quantifiers and *linear dependent types*