On Matching Concurrent Traces

Iliano Cervesato Frank Pfenning Jorge Luis Sacchini Carsten Schürmann Robert J. Simmons

July 1, 2012

- ► A concurrent trace is a sequence of computational steps where independent steps can be permuted
- Computational traces define a model for concurrent and distributed computations
- We analyze the matching problem on concurrent traces

Long-term objectives

- Develop a logical framework to reason about concurrent traces
- Unification and matching are prerequisites
- This work: matching on concurrent traces, defined by multiset rewriting system, with one variable standing for an unknown trace

Multiset Rewriting Systems

A multiset rewriting system is a set of rules of the form

$$r: \tilde{a} \rightarrow \tilde{b}$$

where \tilde{a} and \tilde{b} are multisets of elements of S (support set)

- Rules represent state transformations
- A state is a set of pairs of the form x : a where x is a unique name, and $a \in S$
- Applying a rule is represented by

$$R \vdash s \xrightarrow{t} s'$$

$$R, r : \tilde{a} \to \tilde{b} \vdash s, \tilde{x} : \tilde{a} \xrightarrow{r(\tilde{x}, \tilde{y})} s, \tilde{y} : \tilde{b}$$

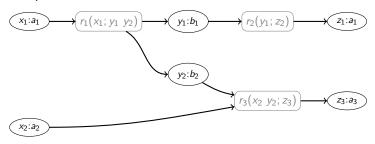
▶ A trace is a sequence of computational steps

$$t ::= \cdot \mid r(\tilde{x}, \tilde{y}) \mid t_1; t_2$$

Multistep computation

$$R \vdash s \stackrel{t}{\Longrightarrow} s'$$

Example



$$x_1 : a_1, x_2 : a_2 \xrightarrow{r_1(x_1, y_1 \ y_2) : r_2(y_1, z_1) : r_3(y_2 \ x_2, z_2)} z_1 : a_1, z_3 : a_3$$

▶ Independent steps can be permuted

▶ Pre- and post-conditions:

$$\begin{cases} \bullet(\cdot) &= \cdot \\ \bullet r(\tilde{x}; \tilde{y}) &= \tilde{x} : \tilde{a} \\ \bullet(\vec{t_1}; \vec{t_2}) &= \bullet \vec{t_1} \cup (\bullet \vec{t_2} \setminus \vec{t_1} \bullet) \end{cases}$$

$$\begin{cases} (\cdot) \bullet &= \cdot \\ r(\tilde{x}; \tilde{y}) \bullet &= \tilde{y} : \tilde{b} \\ (\vec{t_1}; \vec{t_2}) \bullet &= (\vec{t_1} \bullet \setminus \bullet \vec{t_2}) \cup \vec{t_2} \bullet \end{cases}$$

Trace independence

$$t_1 \parallel t_2 \iff \bullet t_1 \cap t_2 \bullet = t_1 \bullet \cap \bullet t_2 = \emptyset$$

▶ Trace equality: t = t'

$$R \vdash s \stackrel{t}{\Longrightarrow} s' \iff R \vdash s \stackrel{t'}{\Longrightarrow} s'$$

► Equations

$$egin{aligned} (ec{t_1};ec{t_2});ec{t_3} &= ec{t_1};(ec{t_2};ec{t_3}) \ &ec{t};ec{t} &= ec{t} \ &ec{t_1};ec{t_2} &= ec{t_2};ec{t_1} \end{aligned}$$
 if $ec{t_1} \parallel ec{t_2}$

- Trace equality is given by the binding structure
- Internal bindings can be renamed

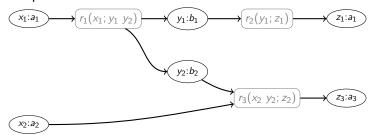
$$p(x;y);q(y;z) = p(x;y');q(y';z)$$

but

$$p(x; y); q(y; z) \neq p(x'; y); q(y; z')$$

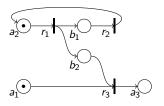
▶ A renaming is legal if it is the identity for $\bullet t$ and $t \bullet$

Example

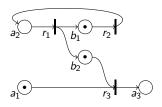


$$r_1(x_1, y_1, y_2); r_2(y_1, z_1); r_3(y_2, x_2, z_2)$$

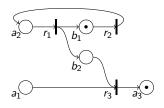
= $r_1(x_1, y_1, y_2); r_3(y_2, x_2, z_3); r_2(y_1, z_1)$



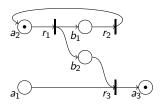
$$s = x_1:a_1, x_2:a_2$$



$$s = x_1:a_1, x_2:a_2 \xrightarrow{r_1(x_2, y_1 \ y_2)} x_1:a_1, y_1:b_1, y_2:b_2$$

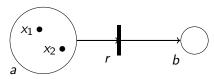


$$s = x_1:a_1, x_2:a_2 \xrightarrow{r_1(x_2, y_1 \ y_2)} x_1:a_1, y_1:b_1, y_2:b_2$$
$$\xrightarrow{r_3(x_1 \ y_2, z_3)} y_1:b_1, y_2:b_2, z_3:a_3$$



$$s = x_1:a_1, x_2:a_2 \xrightarrow{r_1(x_2, y_1 \ y_2)} x_1:a_1, y_1:b_1, y_2:b_2$$
$$\xrightarrow{r_3(x_1 \ y_2, z_3)} y_1:b_1, y_2:b_2, z_3:a_3$$
$$\xrightarrow{r_2(y_1, z_2)} z_2:a_2, z_3:a_3$$

Tokens are named in our representation



$$x_1:a, x_2:a \xrightarrow{r(x_1,y)} y:b, x_2:a$$

 $x_1:a, x_2:a \xrightarrow{r(x_2,y)} x_1:a, y:b$

Equations over traces

Trace variables

$$t ::= \cdot \mid r(\tilde{x}; \tilde{y}) \mid t_1; t_2 \mid X(\tilde{x}; \tilde{y})$$

- \triangleright \tilde{x} and \tilde{y} represent the input and output interface of X
- lacktriangleq X can be instantiated with a trace t such that ullet t = ilde x and tullet = ilde y
- ► An equation is given by a pair of traces containing variables

$$\vec{t_1} \stackrel{?}{=} \vec{t_2}$$

Given

$$t_1\stackrel{?}{=} t_2$$
 with t_2 ground Find a substitution $heta=X_1\leftarrow t_1,\dots,X_n\leftarrow t_n$ such that $t_1[heta]=t_2$

Given

$$t_1\stackrel{?}{=} t_2$$
 with t_2 ground Find a substitution $\theta=X_1\leftarrow t_1,\ldots,X_n\leftarrow t_n$ such that

$$t_1[\theta]=t_2$$

Matching is inherently non-deterministic: the following problem encodes multiset matching

$$X(\cdot;\cdot); Y(\cdot;\cdot) \stackrel{?}{=} c_1(\cdot;\cdot); \ldots; c_n(\cdot;\cdot)$$

Partition $\{c_1, \ldots, c_n\}$ in two sets X and Y.

Matching is decidable:

$$t_1; X(\tilde{x}, \tilde{y}); t'_1 \stackrel{?}{=} t_2$$

 $X(\tilde{x}, \tilde{y})$ must be instantiated with a subtrace of t_2

In a problem

$$t_1^1; X_1(\tilde{x_1}, \tilde{y_1}); t_2^1; \dots X_n(\tilde{x_n}, \tilde{y_n}); t_n^1 \stackrel{?}{=} t_2$$

we can try all possible combinations of subtraces of t_2

Matching is decidable:

$$t_1; X(\tilde{x}, \tilde{y}); t'_1 \stackrel{?}{=} t_2$$

 $X(\tilde{x}, \tilde{y})$ must be instantiated with a subtrace of t_2

In a problem

$$t_1^1; X_1(\tilde{x_1}, \tilde{y_1}); t_2^1; \dots X_n(\tilde{x_n}, \tilde{y_n}); t_n^1 \stackrel{?}{=} t_2$$

we can try all possible combinations of subtraces of t_2

Expensive

▶ We consider 1-variable matching

$$t_1; X(\tilde{x_1}, \tilde{y_1}); t_1' \stackrel{?}{=} t_2$$

where t_1 , t_1' and t_2 are ground

▶ We consider 1-variable matching

$$t_1; X(\tilde{x_1}, \tilde{y_1}); t_1' \stackrel{?}{=} t_2$$

where t_1 , t_1' and t_2 are ground

Reduces search space

► Match individual computation steps until we are left with the logic variable

$$t_1; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_1$$

► Match individual computation steps until we are left with the logic variable

$$t_1; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} p(\tilde{x}; \tilde{y}); u_2$$

Match individual computation steps until we are left with the logic variable

$$p(\tilde{x}; \tilde{y}); t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} p(\tilde{x}; \tilde{y}); u_2$$

► Match individual computation steps until we are left with the logic variable

$$t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_2$$

► Match individual computation steps until we are left with the logic variable

$$t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_2$$

 \vdots
 $X(\tilde{x_1}; \tilde{y_1}); t_4 \stackrel{?}{=} u_3$

Match individual computation steps until we are left with the logic variable

$$t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_2$$

 \vdots
 $X(\tilde{x_1}; \tilde{y_1}); t_4 \stackrel{?}{=} u_4; \rho'(\tilde{x_2}; \tilde{y_2})$

Match individual computation steps until we are left with the logic variable

$$t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_2$$

 \vdots
 $X(\tilde{x_1}; \tilde{y_1}); t_5; p'(\tilde{x_2}; \tilde{y_2}) \stackrel{?}{=} u_4; p'(\tilde{x_2}; \tilde{y_2})$

► Match individual computation steps until we are left with the logic variable

$$t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_2$$

 \vdots
 $X(\tilde{x_1}; \tilde{y_1}); t_5 \stackrel{?}{=} u_4$

Match individual computation steps until we are left with the logic variable

$$t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_2$$

$$\vdots$$

$$X(\tilde{x_1}; \tilde{y_1}); t_5 \stackrel{?}{=} u_4$$

$$\vdots$$

$$X(\tilde{x_1}; \tilde{y_1}) \stackrel{?}{=} u_5$$

Match individual computation steps until we are left with the logic variable

$$t_3; X(\tilde{x_1}; \tilde{y_1}); t_2 \stackrel{?}{=} u_2$$

$$\vdots$$

$$X(\tilde{x_1}; \tilde{y_1}); t_5 \stackrel{?}{=} u_4$$

$$\vdots$$

$$X(\tilde{x_1}; \tilde{y_1}) \stackrel{?}{=} u_5$$

Solution:
$$X \leftarrow u_5$$

Algorithm

- 1. $p(\tilde{x}; \tilde{y}); \vec{t_1} \stackrel{?}{=} p(\tilde{x}; \tilde{y}'); \vec{t_2}:$ If \tilde{y}'/\tilde{y} is legal for $p(\tilde{x}; \tilde{y}); \vec{t_1}$, then solve $[\tilde{y}'/\tilde{y}]\vec{t_1} \stackrel{?}{=} \vec{t_2}$, otherwise fail.
- 2. $\vec{t_1}$; $p(\tilde{x}; \tilde{y}) \stackrel{?}{=} \vec{t_2}$; $p(\tilde{x}'; \tilde{y})$: If \tilde{x}'/\tilde{x} is legal for $\vec{t_1}$; $p(\tilde{x}; \tilde{y})$, then solve $[\tilde{x}'/\tilde{x}]\vec{t_1} \stackrel{?}{=} \vec{t_2}$, otherwise fail.
- 3. $X(\tilde{x}; \tilde{y}) \stackrel{?}{=} t_2$: Simply return the solution $X \leftarrow t_2$.

Invariant: in $t_1 \stackrel{?}{=} t_2$, $\bullet t_1 = \bullet t_2$ and $t_1 \bullet = t_2 \bullet$



Example

Match failure:

$$p(x_1; y_1 \ y_2); X(y_1 \ y_2; z_1 \ z_2) \stackrel{?}{=} p(x_1; y_1' \ z_2); q(y_1'; z_1)$$

Matching fails because there is no legal renaming between

$$y_1 \ y_2 \longrightarrow y_1' \ z_2$$

Correctness of the algorithm

Soundness

Given a matching problem $\vec{t_1}$; $X(\tilde{x}; \tilde{y})$; $\vec{t_1'} \stackrel{?}{=} \vec{t_2}$, if the matching algorithm reports a solution $X \leftarrow \vec{t}$, then there is a legal renaming ρ such that $\rho \vec{t_1}$; \vec{t} ; $\rho \vec{t_1'} = \vec{t_2}$.

Proof

By induction on the size of the trace.

Correctness of the algorithm

Completeness

Given a matching problem $\vec{t_1}$; $X(\tilde{x}; \tilde{y})$; $\vec{t_1} \stackrel{?}{=} \vec{t_2}$, if there is a trace \vec{t} such that $\vec{t_1}$; \vec{t} ; $\vec{t_1} = \vec{t_2}$, then the matching algorithm will report the solution $X \leftarrow \rho \vec{t}$ for some renaming ρ .

Proof

By induction on the size of the trace.

Extensions

- Extend matching to CLF
 - Affine and persistent functions
 - Dependent types
 - ► This work: propositional linear fragment of CLF
- Current results
 - 1-var matching for larger fragments CLF
 - ▶ 1-var unification for simply-typed fragment of CLF:

$$t_1; X_1; t_1' \stackrel{?}{=} t_2; X_2; t_2'$$

Conclusions

- ► We presented an algorithm for 1-var matching on concurrent traces based on multiset rewrite systems
- These results have been extended to larger systems (fragments of CLF)
- Future work
 - ▶ Same variable on both sides: $X[x \ y, \cdot] \stackrel{?}{=} X[y \ x, \cdot]$
 - n-var unification
- Long-term objectives
 - Reason about concurrent traces

Conclusions

- ► We presented an algorithm for 1-var matching on concurrent traces based on multiset rewrite systems
- These results have been extended to larger systems (fragments of CLF)
- Future work
 - ▶ Same variable on both sides: $X[x \ y, \cdot] \stackrel{?}{=} X[y \ x, \cdot]$
 - n-var unification
- Long-term objectives
 - Reason about concurrent traces

Thank you!

