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fMRI
• 3D images of 

hemodynamic activations 
in the brain

• assumed to be correlated 
with local neural activations

• ~10,000 spatial features 
(voxels, analogous to 
pixels)

• Temporal component

• ~10-100 trials
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fMRI Data Analysis

• Descriptive

• Locations of activations correlated with a cognitive 
phenomenon

• Most common paradigm used

• Predictive

• Prediction of the cognitive phenomenon underlying brain 
activations

• Classification of cognitive tasks, prediction of levels of 
stimulus presence (EBC competition)

4



Motivation: Subject-
Level

• For predictive analysis, analysis is done separately for 
individual subjects

• Problem: lack of training examples, can potentially 
improve performance by incorporating data from other 
subjects

• Simple solution: pool the data for all the subjects together

• Problem: for some subjects, might not be reasonable to 
pool data (e.g. subjects with different conditions)

• Problem: inter-subject variability is ignored
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Inter-Subject Variability

• Human brains have similar 
functional structures, but there 
are differences in shapes and 
volumes (different feature spaces 
for different human subjects)

• Normalization to a common 
space is possible, but can result 
in the distortion of the data

• Even after normalization, the 
activations are also governed by 
personal experience, and 
affected by environment

Thirion et al. (2006)
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Motivation: Study-Level

• fMRI studies are expensive; it is desirable to incorporate 
data from existing similar studies

• Problem: problems from the subject-level

• Problem: variability due to different experimental conditions 
(e.g. the use of different stimuli, different magnetic field 
strength)

• Problem: which studies are similar
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Motivation: 
Generalization

• How much commonality 
exists across different 
individuals with respect to a 
particular cognitive task

• Influence how much can be 
shared across different 
individuals (or groups) 

• Example: sharing for 
classification of picture vs 
sentence might be easy, but 
sharing for classification of 
orientation of visual stimuli 
using V1/V2 voxels might be 
hard

Kamitani and Tong
Nature Neuroscience, 2005
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Thesis
Machine learning and statistical techniques to

• Combine data from multiple subjects and studies

• Improve predictive performance (compared to separate 
analyses for individual subjects and studies)

• Distinguish common patterns of activations versus 
subject-specific or study-specific patterns of activations

Framework of choice is Bayesian statistics, in particular 
hierarchical Bayesian modeling

• Offer a principled way to account for uncertainties and 
the different levels of data generation involved
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Related Work in fMRI
• Classification

• Pooled data from multiple subjects (Wang et al. (2004), 
Davatzikos et al. (2005), Mourao-Miranda et al. (2006))

• Group analysis: multiple subjects in a specific study

• Focus: descriptive, increase in sensitivity for detection of 
activations

• Mixed-effects model (Woods (1996), Holmes and Friston 
(1998), Beckmann et al. (2003))

• Hierarchical Bayes model (Friston et al. (2002))
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Related Work in ML/
Statistics

• Multitask learning/inductive transfer

• Caruana (1997)

• Generative setting: Rosenstein et al. (2005), Roy and 
Kaelbling (2007)
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Preliminary Work

• Combining data from multiple subjects in a given study

• Extension of the Gaussian Naive Bayes classifier

• The use of hierarchical Bayes modeling

• Designed for data after feature space normalization

• Simplify the problem, even though not ideal
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Gaussian Naive Bayes 
(GNB)

• Bayesian classifier: pick the class with maximum class 
posterior probability (proportional to product of class prior 
and class-conditional probability of the data)

• Naive Bayes: independence of features conditional on the 
class

• Gaussian Naive Bayes: for each feature j, the class-
conditional distribution is Gaussian

P(y|C) =
J

∏
j=1

P(y j|C)
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c = argmax
ck

P(C = ck|y) ∝ argmax
ck

P(C = ck)p(y|C = ck)

y j|C = ck ∼N (θ(k)
j ,(σ(k)

j )2)



GNB, Learning

θ̂(k)
s j =

1
ns

ns

∑
i=1

y(k)
s ji

(σ̂(k)
s j )2 =

1
ns−1

ns

∑
i=1

(y(k)
s ji − θ̂(k)

s j )2

s: subject
j: feature
i: instance
k: class
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Use maximum likelihood (sample mean and sample variance)

For pooled data, aggregate the data over all the subjects
(estimates will be the same for all subjects)
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µ, τ

θ1 θ2 · · · θs

ys1 ys2 · · · ysns

· · · θS

Hierarchical Normal 
Model

For each class and each feature



Hierarchical Normal 
Model

• The tool to extend the Gaussian Naive 
Bayes classifier to handle multiple 
subjects

• Gelman et al. (2005), also used in 
Friston et al. (2002) for group analysis 
(aim: hypothesis testing)

• Modeling Gaussian data for different 
but related groups; the means for each 
group has a common Gaussian 
distribution

• Generative model:
ysi ∼N (θs,σ2)
θs ∼N (µ,τ2)
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s: group (subject)
i: instance

µ τ

θ

y

σ

ns
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Hierarchical GNB
(HGNB)

• Use the hierarchical normal model as a class-conditional 
generative model for each feature, as a way to integrate 
data from multiple subjects

• Assume data has been normalized to a common space

• Same variance for all subjects

• Estimate variance separately, taking the median of sample 
variances for all the subjects
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MAP, Empirical Bayes

When the number of examples is small, HGNB behaves like GNB on pooled data
When the number of examples is large, HGNB behaves like GNB on the individual subject’s data

µMP=
1
S

S

∑
s=1

ys·

τ2
MP=

1
S−1

S

∑
s=1

(ys·−µMP)2
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θs =
ns
σ2 ys· + 1

τ2
MP

µMP

ns
σ2 + 1

τ2
MP

MP: point estimate
s: subject

maximum of the 
posterior of θs 

conditional on the data 
and the 

hyperparameters

estimates that 
(approximately) maximize 

the marginal likelihood 
(the probability of data 
given hyperparameters) µ, τ

θ1 θ2 · · · θs

ys1 ys2 · · · ysns

· · · θS
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It is not true that the plus is above the star.



Datasets
Starplus

• Classification of the types of first stimuli (picture or 
sentence) given a window of fMRI data

• Spatial normalization: use average of voxels in each region 
of interest (ROI)

• Feature selection: use ROI for visual cortex

• 16 features (each time point is a feature)

• 20 trials per class per subject

• 13 subjects
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Datasets
Twocategories

• Classification of the category of word (tools or 
dwellings) given a window of fMRI data

• Spatial normalization: use transformation to a common 
brain template (MNI template)

• Feature selection: 300 voxels ranked using Fisher’s LDA

• 300 features (averaged over time)

• 42 trials per class per subject

• 6 subjects
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Experiment
• Iterate over the subjects, designating the current one as the 

test subject

• 2-fold cross-validation, varying the number of training 
examples used from the test subject for each class; fold 
randomly chosen (repeated several times)

• GNB indiv: GNB learned using data from the test subject 
only

• GNB pooled: GNB learned using data from the test subject 
and the other subjects (assuming no inter-subject variability)

• HGNB using data from the test subject and the other 
subjects
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Classification Accuracies, 
Starplus
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Classification Accuracies, 
Twocategories
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HGNB Recap

• Classifier to combine data across multiple subjects in a 
study

• Improvement in predictive performance over separate analyses and 
pooling data

• Assume that each cognitive task to predict generates similar 
brain activations on all the subjects

• Show that hierarchical Bayes modeling can model inter-
subject variability
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Proposed Work
• Goals that have not been addressed by HGNB: 

1. sharing across studies, or both subjects and studies

2. determining groups to share

3. determining cross-subject/study commonality of particular cognitive 
tasks (related to generalisability)

4. dealing with the distortion caused by normalization

• Work proposed to address the above goals:

• Variations on HGNB

• Latent structure in data

• Accounting for normalization
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Variations on HGNB

• Goals (1st and 2nd)

• sharing across studies, or both subjects and studies

• determining groups to share

• Variation/extension of the HGNB classifier
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Sharing 

• Across studies: use the hierarchical normal model to model 
cross-study variations

• Across subjects and studies:

• Add another level of the hierarchy (study -> subject -> 
data or subject -> study -> data)

• Independent models for subjects and studies
ys(m)i∼N ( f (θs,ξm),σ2)

θs∼N (µ,τ2)
ξm∼N (α,β2)
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Determining Groups to 
Share

• More reasonable to share across some subjects than others 
(e.g. subjects with similar clinical conditions)

• Also across some studies than others (not as useful to 
share data from a study on the visual system and data from 
a language study)

• Automatically determine grouping

• Clustering, mixture model

• Dirichlet process mixture model
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ysi∼N (θs,σ2)

θs∼N (µ(k),(τ(k))2)
k∼Multinomial(π1, · · · ,πK)

s: subject
i: instance
k: class

ysi∼N (θs,σ2)
θs∼N (µs,τ2)
µs∼G
G∼DP(α,G0)



Latent structure in data

• Goal (3rd): determining cross-subject/study commonality of 
particular cognitive tasks (related to generalisability)

• Assume there are latent factors underlying the data, with a 
lot fewer factors than voxels

• Determine commonality by looking at the shared latent 
factors

• If the information for a certain cognitive task is shareable among a 
certain group of subjects and/or studies, there will be common 
factors for the elements of the group

• Dimensionality reduction, sparsity
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Sparse Factor 
Regression

• West (2003)

• Similar to (probabilistic) factor analysis or PCA, with a 
regression component

• k factors, (k << p), k determined in advance

• Sparsity assumption on the factor loading matrix B

• For testing, assume the corresponding y to be missing data

xi=Bλi +νi

yi=θ′λi + εi

xi: i-th instance of data (px1)
yi: i-th response (scalar)
λi: factor for i-th instance (kx1)
B: data factor loading (pxk)
θ: response factor loading (1xk)
νi: data noise for i-th instance
εi: response noise for i-th instance
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Sparse Factor 
Regression for fMRI

• The images share a common factor loading matrix B (even 
for different subjects and studies)

• θ indicates which factors are relevant for prediction (can 
add sparsity prior for θ)

• Allow θ to be different for different subjects and different 
studies

• Shareability is determined by how many non-zero elements 
of θ are shared

• How many factors to use? May use the Indian buffet process 
(Griffiths and Ghahramani, (2006)) as a prior, which can also 
facilitate sparsity of factors
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Topics
• Can think of latent factors in terms of topics in a topic 

model (e.g. Latent Dirichlet Allocation (LDA), Blei et al. 
(2003))

• LDA:

• A document is a mixture of topics

• A topic specifies a distribution over words

• LDA for fMRI data:

• A brain activation image is a mixture of latent factors

• A latent factor specifies a distribution over voxel 
activations
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LDA for fMRI Data

• Sparsity: each latent factor determines the distribution for 
only a subset of the voxels

• Because each image is a mixture of latent factors, 
shareability is determined by the number of predictive 
latent factors shared

• Details need to be worked out
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Accounting for 
Normalization

• Goal (4th): dealing with the distortion caused by 
normalization

• Incorporate the uncertainties introduced by normalization 
in the prediction or analysis

• Approach:

• probabilistic voxel correspondence
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Probabilistic voxel 
correspondence

• Probabilistic model for normalization

• Model the correspondence among voxels across different 
brains

• Use a probabilistic atlas as a prior

• Available from the International Consortium for Brain Mapping 
(ICBM)

• Incorporate information about the brain structure (available 
from structural images)

• A lot still needs to be investigated
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Schedule

• December 2007: variations on HGNB and latent structure 
in fMRI data

• variations on HGNB

• sparse factor regression

• formulate topic model for fMRI

• December 2008: accounting for normalization

• probabilistic voxel correspondence
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