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Abstract

In the context of predictive fMRI data analysis, in particular classification-based analysis, the analysis
is usually done separately for a particular subject in a specific study, or by combining data across subjects
and studies after normalization to a common template by assuming that there are no inter-subject and
inter-study variations. These approaches are suboptimal for a number of reasons. Based on findings
in the cognitive neuroscience field, there is a reason to believe that data from other subjects and from
different but similar studies exhibit similar patterns of activations, implying that there is some potential
for leveraging data from other subjects. However, each subject’s brain might still exhibit some variations
in the activations compared to other subjects’ brains, based on factors such as differences in anatomy,
experience, or environment. Furthermore, current normalization techniques might blur and distort the
data, causing some loss of information.

I propose to investigate and develop principled Bayesian methods to tackle these problems, and by
doing so, enable combining data across domains and domain types, of which subjects and studies are
instances. One goal is to improve predictive performance when compared with predictive analysis of each
domain and domain type separately, especially in cases where there is a lot of commonality of activations
across different domains and domain types. Another goal is to figure out the extent of commonality of
various cognitive phenomena across domains and domain types.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique to capture brain activations
with a relatively high spatial resolution, in the order of several cubic millimeters. fMRI presents an oppor-
tunity to advance our understanding in how the brain works, but it also presents a challenge as to how
to extract the information present in the data. It has been shown (reviewed in section 3.1) that machine
learning techniques, in particular classification methods, can answer this challenge.

Despite the success, there are fundamental limitations of existing machine learning approaches when
used to analyze fMRI data. In a typical fMRI study, there are in most cases more than one subject, each
subject having a unique brain in terms of shape and size. In other words, the feature space is different
for different subjects. This problem can be alleviated by registering all the subjects’ brain to a common
space. However, the uncertainty introduced by the registration is often ignored. Furthermore, it might still
be the case that the patterns of activations for the same cognitive process might be different for different
subjects because of the influence of factors such as each subject’s unique experience and differences in
the brain’s vascular density for different subjects. As such, currently machine learning techniques are often
applied independently for each individual subject, or they are applied to normalized data for all the subjects
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without properly accounting for the uncertainty introduced by the normalization process and the inter-
subject variations still present in the data.

In more than a few cases, there have been more than one fMRI study done to study a common cognitive
aspect. For instance, there have been a couple of fMRI experiments done in our group to study semantic
representations in the brain, with one study using words as the stimuli while pictures were used in the
other study. In some cases, a research group runs the same study multiple times; an example is a study
described in Wei et al. (2004), in which the fMRI activations corresponding to the auditory 2-back task were
captured over eight sessions, with at least 3 weeks of time in between sessions. In other cases, several
different research groups run similar studies, for instance a study described in Casey et al. (1998), in which
an fMRI study on spatial working memory was done at four different institutions. Intuitively, there is some
information common across these studies, mixed with variations introduced by, among others, different
experimental conditions and different stimulus types. Current machine learning approaches are not flexible
enough to handle these variations, so they are usually applied independently for each individual study,
even for studies with the same subjects.

I have now mentioned about sharing data across subjects and studies. For this proposal, subjects and
studies are examples of what I call domain types, while subject and study instances form the actual domains.
I define a domain as a generator of data instances associated with a particular distribution. The type of
the domain or the domain type is simply a way to categorize domains. Different domains are associated
with different distributions. So for instance, an individual subject in an fMRI study can be considered as a
distinct domain, since different subjects are assumed to have different generative distributions.

With that consideration, the main thesis of this proposal is

It is possible to invent machine learning and statistical techniques that can combine data from multiple
domains and domain types to improve predictive performance and such that common patterns of

activations can be distinguished from domain-specific or domain-type-specific patterns of activations.

In other words, despite the challenges outlined above, I believe that we can develop methods that can
account for data from multiple domains and domain types. These methods will be measured by their ability
to make optimal predictions of some quantity of interest (e.g. class in classification) when presented with
previously unobserved data, conditioned on the data that have been observed. In addition, the methods
can also reveal common patterns vs patterns that are specific to specific domains or domain types. I will
develop these methods in the course of the thesis work through the framework of Bayesian statistics, which
affords us the ability to incorporate prior knowledge and deal with predictive inference in a principled
probabilistic way.

What would be the benefits of being able to combine data across multiple domains in the case of fMRI
data? fMRI data is high-dimensional but very few training examples relative to the number of dimensions,
a not-so-ideal combination from the perspective of machine learning theory. By combining data across
multiple domains, one benefit is that we can increase the number of training examples available, which
can then improve the performance of these machine learning techniques. Another benefit would be the
ability to extract components shared across one or several domains and distinguish them from components
specific to particular instances of one or more domains. This is beneficial from the cognitive neuroscience
perspective, because these methods can cognitive neuroscientists to integrate data from multiple subjects
and studies so that common mechanisms for specific cognitive activities are revealed. By validating on their
predictive performance, we can ascertain that these mechanisms can generalize to new instances, verifying
that they are reliable and reproducible. Furthermore, the techniques that I will investigate can also be
viewed as ways to do inductive transfer in the presence of complex task structures. Hence, the proposed
work has the potential to advance the techniques for machine learning in general and transfer learning in
particular.

In section 2, I give a brief overview of fMRI. Related work is reviewed in section 3. Section 4 describes
some preliminary results in which the Gaussian Naı̈ve Bayes is extended to incorporate inter-subject vari-
ations when combining data across subjects. Section 5 outlines the proposed work for the thesis. In section
6, I give the proposed schedule for undertaking the thesis work.
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2 fMRI Overview

fMRI utilizes a strong magnetic field to detect fine-grained changes in the magnetic properties of the brain.
In particular, fMRI is designed to take advantages of the changes in the magnetic properties of oxyhe-
moglobin and deoxyhemoglobin during neural activations compared to when neural activations are ab-
sent. Oxyhemoglobin (hemoglobin when it is carrying oxygen) is diamagnetic, while deoxyhemoglobin
(hemoglobin when it is not carrying oxygen) is paramagnetic. At resting state, in the absence of any neural
activations, there is a specific proportion between oxyhemoglobin and deoxyhemoglobin. When a neuron
or a group of neurons activate, they elicit glucose consumption and supply of oxygen-carrying blood to the
area around the activations. However, the amount of the oxygen consumed is less than the amount of the
oxygen supplied, leading to a change in the proportion of oxyhemoglobin and deoxyhemoglobin compared
to the proportion in the resting state. This causes a change in the magnetic properties around the location
of neural activations, which is then captured by the fMRI scanner as a blood-oxygenation-level-dependent
(BOLD) signal. For more on the relationship between neural activities and the BOLD signal, see Logothetis
et al. (2001).

The BOLD signal is temporally blurred compared to the neural activations: neural activations lasting
in the order of a few hundred milliseconds can give rise to a response in the BOLD signal in the order
of a few (10-15) seconds. On the other hand, a relatively high spatial accuracy can be obtained in fMRI.
Current state of the art fMRI scanners can capture data with a spatial resolution of 3 × 3 × 3 mm3 for a
volume element (called voxel), containing a population of several thousands of neurons. The resulting data
is typically corrupted with noise from various sources. Some of this noise can be removed through some
preprocessing steps, but some amount of noise will remain even in the preprocessed data.

Just like there are variations in weights and heights across the population, there are variations caused
by the differences in brain volumes across different individuals. This gives rise to different feature spaces
for different human subjects. Methods are available to map fMRI data from different brains into a common
brain template. However, these methods might introduce distortions in the data, caused by the necessary
inter/extrapolations from the original voxels to the voxels in the common brain template. Furthermore, the
BOLD signal also depends highly on the density of the blood vessels, and there might be differences in the
vascular density at a specific location in different brains. Lastly, even though, there are common functional
localities across different brains, we also need to consider that different people encounter different life
experiences. It is not yet known how these different experiences reflect in the patterns of activations for
a specific cognitive phenomenon, for instance, how the patterns of activations representing the semantic
category food differ in native English speakers vs English-as-second-language speakers. These are some
of the main challenges that need to be addressed in order to be able to effectively extract information from
fMRI data across subjects in various settings.

3 Related Work

Now I will review works related to the thesis proposed here. I will break down these works into works
in classification of fMRI data, approaches for group analysis in fMRI, approaches for multitask learning
or inductive transfer, and a Bayesian approach to obtain a extract lower-dimensional factors out of high-
dimensional data.

3.1 Classification of fMRI Data

Classification of fMRI data refers to the problem of classifying mental states using fMRI data. There have
been quite a few publications regarding the application of classification for the analysis of fMRI data. I will
not exhaustively cover every work that has been published and will instead focus on those works that have
dealt with combining data across subjects in some sense. In this regard, Wang et al. (2004) combined data
for a sentence-picture matching study across subjects by first normalizing the data into region-of-interest
(ROI) supervoxels, i.e. the average of the voxels in the corresponding ROI, and pooling the data for all the
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subjects and use them as training examples for a single Gaussian Naı̈ve Bayes (GNB) classifier. In section
4, I will compare their method with an extension of the GNB classifier that is designed to account for inter-
subject variability when using data from multiple subjects. In the context of classifying whether subjects
were lying or not, Davatzikos et al. (2005) also pooled data from multiple subjects after normalization to
a standard brain template (the Montreal Neurological Institute or MNI template), which in turn became
the training examples of a support vector machine with a Gaussian kernel. The pooling was also done by
Mourão-Miranda et al. (2006), which considered the effects of temporal compression and space selection on
single-subject and multi-subject classification of fMRI data using the linear support vector machine.

While there are a few publications that consider combining data across subjects, there has not been
any publications regarding combining data across studies. In our group, there have been (unpublished)
investigations of how well naı̈ve pooling across studies works for fMRI datasets studying semantic cat-
egories (with different stimulus types for different studies) after normalization into the MNI template. In
some cases, better-than-random classification accuracies can be obtained. This indicates that indeed sharing
across studies is possible, and a principled way to do that will contribute significantly to the field.

As noted in Haynes and Rees (2006) and Norman et al. (2006), the ability to find out spatial mappings
across subjects that are tuned to the needs of classification algorithm is important for the advance of the
field. However, at this point, no methods providing that ability has been proposed.

3.2 Group Analysis in fMRI

In conventional fMRI data analysis, analysis over multiple subjects is called group analysis. The main focus
is to obtain reliable population inference by accounting for variations across subjects. In the frequentist lit-
erature, this can be done using mixed-effects models, first suggested by Woods (1996). A mixed-effect model
consists of some fixed effects and some random effects. The fixed effects represent some quantities for the
whole population, while the random effects represent variations from the population-level quantities. The
random effects are usually modeled as Gaussian with mean zero and variance components that need to
be estimated. A widely used method to obtain estimates for mixed-effects models is the summary statis-
tics method (Holmes and Friston (1998), generalized in Beckmann et al. (2003)). Instead of estimating all
the effects simultaneously using the maximum likelihood principle, the summary statistics method breaks
down the process by first estimating the subject-specific effects and then use these estimates to obtain the
population effects. Penny et al. (2003) showed that the summary statistics approach yields the same re-
sults as the maximum likelihood approach without requiring as much computational resources. Another
way to estimate parameters of a mixed-effects model is the restricted maximum likelihood (ReML) method
(Harville (1977)), which was advocated by Worsley et al. (2002) as giving less biased variance estimates than
maximum likelihood. Friston et al. (2002a) formulated group analysis within the framework of hierarchical
Bayes modeling and used the parametric empirical Bayes method proposed in Friston et al. (2002b) to obtain
fixed-effects and random-effects estimates. The use of the Bayesian procedure was tied in with the desire
to obtain maps of posterior probabilities of activations. Lazar et al. (2002) surveyed other methods from the
field of meta analysis—the field concerned with combining information from a group of studies—that can
be applicable in the context of fMRI data analysis to pool information over multiple subjects.

Note that the main focus of the works outlined above is to obtain more reliable activations in the context
of univariate hypothesis testing. Hence, the objective is inherently different from the predictive objective
underlying the proposed thesis. Despite this difference, ideas used in the above works can be incorporated
into some of the methods that I propose to investigate, especially those involving modeling across subjects.

3.3 Multitask Learning/Inductive Transfer

In the context of multitask learning (Caruana (1997)), domains defined in this proposal are equivalent to
tasks. Hence, machine learning techniques that work for data across domains can also be viewed as tech-
niques for multitask learning or inductive transfer. There have been a few methods proposed to do mul-
titask learning in the probabilistic or Bayesian setting. Bakker and Heskes (2003) discussed probabilistic
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ways to differentiate task similarities in the context of multitask learning using neural networks. Yu et al.
(2005) proposed a way to learn Gaussian processes from multiple related tasks by specifying a common
multivariate Gaussian prior instantiations of related tasks taking the form of functions. Zhang et al. (2006)
used a probabilistic model based on independent components analysis (Hyvärinen et al. (2001)) to model
interactions between tasks. Rosenstein et al. (2005) extended the naı̈ve Bayes model for multinomial data
using a hierarchical Bayes model and apply it to meeting acceptance data. Marx et al. (2005) extended the
logistic regression model for predicting a new task by using a Gaussian prior on the logistic regression
coefficients across tasks and learning the parameters for this prior for the new task by using maximum like-
lihood over the coefficients for the related tasks. Xue et al. (2007) considered connecting logistic regression
coefficients across related tasks, and enabling task clustering using the Dirichlet process mixture model.
The Dirichlet process mixture model was also used by Roy and Kaelbling (2007) to enable clustering across
tasks in a naı̈ve Bayes model. A direct analogue in the Bayesian statistics field for classification across mul-
tiple tasks is the hierarchical logistic regression (see for instance chapter 16 of Gelman et al. (2003)), which
uses hierarchical models to couple logistic regression coefficients across related groups of data.

From the above, we see that there are a few methods for considering clustering among tasks. Some
of the ideas might be potentially valuable for the analysis of fMRI data, but it remains to seen whether
such ideas are applicable when tasks are organized into domain type structure, such as those considered
in this proposal. Also, one thing that the above methods have in common is the assumption of a common
feature space across tasks. As mentioned in section 3.1, when doing predictive analysis (e.g. classification)
of fMRI data, it might be desirable to deal directly with data with differing feature spaces without having
to normalize them to a common space.

3.4 Sparse Bayesian Factor Regression

Factor analysis assumes that the set of variables in the data can be grouped into a smaller set of factors.
Each original variable provides some contribution to each factor, quantified by what is called the factor
loading matrix. West (2003) takes this idea and, adopting the Bayesian viewpoint, extends it for regression
problems for high-dimensional data. To deal with the high dimensionality of the data, he adopts a prior that
inherently assumes that the factor loading matrix is sparse, i.e. only a small number of variables contribute
to each factor. The model (with extensions) has been applied to gene expression data (see, for instance,
Carvalho et al. (2005) and Lucas et al. (2006)), and it has the potential for the predictive analysis of fMRI
data analysis by breaking down joint contribution of voxels into factors.

The model proposed by West (2003) requires the specification of the number of factors in advance. Grif-
fiths and Ghahramani (2006) propose a prior, called the Indian buffet process prio,r to model the possibility
of infinite number of factors in the style of the Dirichlet process prior. With this prior, the number of factors
need not be specified in advance but can adapt to the data.

One assumption of these models is that it deals with data coming from one single domain and domain
type. That means in the context of fMRI it can be applied to a single subject in a single study only. It
would be desirable to be able to extend the model to handle multiple domains and domain types with
the capability to distinguish domain-specific and domain-type-specific factors vs factors common across
several or all domains and/or domain types, and I will discuss ideas to do this in Section 5. Also, both
models require Markov Chain Monte Carlo sampling, requiring a significant amount of computation time
for data as complex as fMRI data.

4 Preliminary Work

Here I describe the work extending the Gaussian Naı̈ve Bayes (GNB) classifier so that data from multi-
ple subjects can be shared while accounting for the inter-subject variations that might exist. Section 4.1
describes the GNB classifier along with a couple of training procedures for the GNB classifier proposed
previously. In Section 4.2, the hierarchical normal model, which is the basis for the proposed classifier, is
described. I describe the proposed classifier—called the hierarchical Gaussian Naı̈ve Bayes classifier—in
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Section 4.3. Section 4.4 describes the experiments done using the GNB classifier and the variants of the
hierarchical GNB classifier, including a description on the two datasets used for the experiments. Finally,
in Section 4.7, I discuss the implications of the results of the experiments.

4.1 Gaussian Naı̈ve Bayes Classifier

The Bayes classifier chooses the class c among K classes (ck)1≤k≤K which maximizes the posterior proba-
bility of the class given the data y:

c = arg max
ck

P (C = ck|y) ∝ arg max
ck

P (C = ck)p(y|C = ck).

The data y is assumed to be a vector of length n composed of features yj , 1 ≤ j ≤ n. The Naı̈ve Bayes
classifier makes the additional assumption that the class-conditional probability for each feature j is inde-
pendent. In other words,

p(y|C = ck) =
n∏

j=1

p(yj |C = ck).

If, in addition to the above, we have the assumption that for each feature j,

p(yj |C = ck) = N (yj |θ(k)
j , (σ(k)

j )2),

i.e. if we assume that the class-conditional density for each feature j with respect to class k is a Gaussian
with mean θ

(k)
j and variance (σ(k)

j )2, we have what is called the Gaussian Naı̈ve Bayes (GNB) classifier
(Mitchell et al. (2004)).

In a typical application of the GNB classifier, the classifier is trained by obtaining estimates θ̂
(k)
j and

(σ̂(k)
j )2 for each feature j from the training data. Now, I will describe two maximum-likelihood methods

for learning estimates for the parameters of the GNB classifier that have been previously proposed in the
context of classification of fMRI data.

Individual Method (Mitchell et al. (2004)) This method estimates parameters separately for each human
subject. That is, for each class k, feature j, and subject s,

θ̂
(k)
sj =

1
ns

ns∑
i=1

y
(k)
sji

(σ̂(k)
sj )2 =

1
ns − 1

ns∑
i=1

(y(k)
sji − θ̂

(k)
sj )2.

Note that there is no incorporation of information from the other subjects’ data. When there is only one
training example, in order to avoid degenerate situations, I use 0.001 as the variance estimate. The classifier
learned using this method will be called GNB-indiv.

Pooled Method (Wang et al. (2004)) This method assumes that all the data comes from one subject, or
equivalently, that there exists no variations across subjects after normalization of the data to a common
template. That is, for each class k, feature j, and for all subjects,
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θ̂
(k)
j =

1
n

S∑
s=1

ns∑
i=1

y
(k)
sji

(σ̂(k)
j )2 =

1
n− 1

S∑
s=1

ns∑
i=1

(y(k)
sji − θ̂

(k)
sj )2,

where n =
∑S

s=1 ns. The estimates are the same for all subjects, and inherently, the method ignores
possible variations across subjects. The classifier learned using this method will be called GNB-pooled.

4.2 Hierarchical Normal Model

The hierarchical normal model is a hierarchical Bayes model used to model interrelated Gaussian data. The
general form of the model with two levels of hierarchy is as follows.

Let there be S groups in the data. In the context of fMRI, these groups will be equivalent to domains
as defined previously, with a focus on subjects as the domains. Let ysi be the i-th instance of the data from
group s. In fMRI context, ysi is the data from trial i for the sth subject. The generation of data from group s
is modeled as

ysi ∼ N (θs, σ
2),

assuming a common variance σ2 across all the groups, and a group-specific mean θs. Furthermore, we
assume that θs for each group is generated as

θs ∼ N (µ, τ2).

In other words, the distribution of the θs’s is Gaussian with mean µ and variance τ2.
Next, I consider two different assumptions about whether σ is known or unknown, while the rest of the

parameters are unknown.

4.2.1 Known σ

The unknown parameters are θ, µ, and τ . With σ2
s′ = σ2

ns
, the joint posterior of the unknown parameters is

p(θ, µ, τ |y) ∝ p(µ, τ)p(θ|µ, τ)p(y|θ)

∝ p(µ, τ)
S∏

s=1

N (θs|µ, τ2)
S∏

s=1

N (ys·|θs, σ
2
s′). (1)

I use the uniform prior for (µ, τ), i.e. p(µ, τ) ∝ 1.

4.2.2 Unknown σ

Now the unknown parameters include σ. Using uniform prior for (µ, log σ, τ), we have the joint posterior
of the unknown parameter as

p(θ, µ, σ, τ |y) ∝ σ−2
S∏

s=1

N (θs|µ, τ2)
S∏

s=1

ns∏
i=1

N (ysi|θs, σ
2). (2)
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4.3 Hierarchical Gaussian Naı̈ve Bayes Classifier

Now I am going to incorporate the formulation given in Section 4.2 in the estimation of parameters for
the Gaussian Naı̈ve Bayes classifier. I will call the modified classifier the hierarchical Gaussian Naı̈ve Bayes
classifier. Note that this is different from the hierarchical Na ”ive Bayes classifier mentioned in McCallum
et al. (1998), which deals with classes arranged in a hierarchy, but similar to the hierarchical Naı̈ve Bayes
classifier mentioned in Rosenstein et al. (2005), with the difference being that in Rosenstein et al. (2005), the
classifier deals with multinomial data while the classifier described here deals with continuous Gaussian
data. To avoid the notation from becoming cluttered, in this section, dependencies of the parameters and
the hyperparameters on the class and feature are not stated explicitly but implied.

I will first give an overview of methods of parameter estimation in the context of hierarchical models.
Then I will present variants of the hierarchical Gaussian Naı̈ve Bayes classifier based on the combination
of the assumption on the variance and the estimation method used. The algorithms will be summarized in
Table 1 at the end of the section.

4.3.1 Maximum-A-Posteriori (MAP) Estimation

In the maximum-a-posteriori (MAP) estimation approach we obtain point estimates of the parameters that
maximize the posterior distribution of the parameters. Below I will describe two approaches to account
for the contribution of the hyperparameters Φ for the estimation of the useful parameters Θ in a general
hierarchical model setting. In the context of the model described in Section 4.2, Θ = {θ, σ} and Φ = {µ, τ}.

Parametric Empirical Bayes (MAP-PEB) The quantity of interest in this discussion is the estimator of Θ
that maximizes the marginal posterior p(Θ|y). In the MAP-PEB approach, we approximate the marginal
posterior by the conditional posterior p(Θ|Φ, y). We need to select the value of Φ to be used in the condi-
tional posterior. In this paper, I choose Φ that maximizes the marginal likelihood p(y|Φ). This particular
selection is called the type II maximum likelihood prior selection Berger (1985). It is equivalent to maximiz-
ing the marginal posterior p(Φ|y) when the hyperprior p(Φ) is uniform. Notice that Φ is estimated from
the data, and so the approach in general is called the empirical Bayes approach. It is called the parametric
empirical Bayes approach because the prior for Θ, p(Θ|Φ) has a parametric form.

Direct Maximization of the Marginal Posterior (MAP-direct) One drawback of the MAP-PEB approach
is that it does not take into account the distribution of the hyperparameters Φ. This can especially be
problematic if the marginal posterior of Φ, p(Φ|y) is spread out, which means that Φ itself contains some
uncertainty. We can avoid this problem by working with p(Θ|y) directly. So in contrast with the previous
approach, we now would like to obtain Θ that maximizes p(Θ|y).

4.3.2 Known σ

In this subsection, I am assuming that σ is known, but in reality, it also needs to be estimated. The following
estimator for σ2 will be used:

σ2 = median(Ss) where Ss =
1

ns − 1

ns∑
i=1

(ysi − ys·)
2. (3)

MAP-PEB Given the joint posterior in equation (1), we have that the conditional posterior for the θs’s are
independent and distributed as (see also Section 5.4 of Gelman et al. (2003))

θs|µ, τ, y ∼ N (θ̂s, Vs), (4)

where
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θ̂s =
1

σ2
s′

ys· +
1
τ2 µ

1
σ2

s′
+ 1

τ2

and Vs =
1

1
σ2

s′
+ 1

τ2

.

Also, the marginal likelihood p(y|µ, τ) can be expressed in terms of the group means ys·:

ys·|µ, τ ∼ N (µ, σ2
s′ + τ2).

When maximizing the marginal likelihood with respect to µ, we obtain the following estimator for µ at
the maximum:

µMP =
∑S

s=1 ys·/(σ2
s′ + τ2)∑S

s=1 1/(σ2
s′ + τ2)

.

On the other hand, when maximizing the marginal likelihood with respect to τ , we obtain the following
relationship:

S∑
s=1

(
− τ

σ2
s′ + τ2

+
τ(ys· − µ)2

(σ2
s′ + τ2)2

)
= 0.

It is not clear whether it is possible to obtain a closed form expression for the marginal-likelihood-
maximizing τMP in this case. However, if we make the assumption that σ2

s′ is small, and if we choose
estimators that are unbiased, we can make the following approximations for µMP and τ2

MP:

µMP =
1
S

S∑
s=1

ys· (5)

τ2
MP =

1
S − 1

S∑
s=1

(ys· − µMP)2. (6)

In other words, we take µMP as the sample mean of the group means, and τ2
MP as the unbiased sample

variance of the group means. Since the conditional posterior given in equation (4) is normal, the estimator
for θs that maximizes the conditional posterior is given by

θs =
1

σ2
s′

ys· +
1

τ2
MP

µMP

1
σ2

s′
+ 1

τ2
MP

. (7)

MAP-direct In this approach, we maximize the marginal posterior p(θ|y) directly. It turns out that

log p(θ|y) = C − S − 3
2

log

(
1
S

S∑
s=1

θ2
s − (

1
S

S∑
s=1

θs)2
)

− 1
2σ2

S∑
s=1

ns∑
i=1

(ysi − θs)2,

where C is a constant that does not depend on θ. Maximizing log p(θ|y) with respect to θs, we obtain the
following expression for θs at the maximum:

θs =
ns

σ2 ys· +
(S−3)/S

1
S

PS
s=1 θ2

s−( 1
S

PS
s=1 θs)2

θ·

ns

σ2 + (S−3)/S
1
S

PS
s=1 θ2

s−( 1
S

PS
s=1 θs)2

, (8)
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where θ· is the sample mean of the θs’s. There is a self-dependency on θ, so an iterative method has to
be used to obtain the estimate.

4.3.3 Unknown σ

Now instead of assuming σ known and using the estimator in equation (3), I consider the case when σ is
assumed unknown and its estimation is incorporated into the model.

MAP-PEB Based on the joint posterior given in equation (2), we have that the conditional posterior for
the θs’s is given by

θs|µ, σ, τ, y ∼ N (θ̂s, Vθs
),

where

θ̂s =
1
τ2 µ + ns

σ2 ys·
1
τ2 + ns

σ2

and Vθs
=

1
1
τ2 + ns

σ2

.

The conditional posterior for σ is given by

σ2|θ, µ, τ, y ∼ Inv-χ2(n, σ̂2),

where σ̂2 = 1
n

∑S
s=1

∑ns

i=1(ysi − θs)2.
I use the estimators for µMP and τMP given in equations (5) and (6). Using these estimators and getting

the modes of the conditional posterior distributions for θ and σ, I obtain the following estimators for θ and
σ, with n =

∑S
s=1 ns:

θs =
1

τ2
MP

µMP + ns

σ2 ys·
1

τ2
MP

+ ns

σ2

(9)

σ2 =
1

n + 2

S∑
s=1

ns∑
i=1

(ysi − θs)2. (10)

Note that there are mutual dependencies between the expressions for θs and σ2, so I resort to a coordi-
nate ascent method.

MAP-direct In this case, we maximize the marginal posterior p(θ, σ2|y) directly. It turns out that

log p(θ, σ2|y) = C +−n + 2
2

log σ2

− S − 3
2

log

(
1
S

S∑
s=1

θ2
s − (

1
S

S∑
s=1

θs)2
)

− 1
2σ2

S∑
s=1

ns∑
i=1

(ysi − θs)2.

Maximizing with respect to θs, we obtain at the maximum

θs =
ns

σ2 ys· +
(S−3)/S

1
S

PS
s=1 θ2

s−( 1
S

PS
s=1 θs)2

θ·

ns

σ2 + (S−3)/S
1
S

PS
s=1 θ2

s−( 1
S

PS
s=1 θs)2

, (11)
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and maximizing with respect to σ2, we obtain at the maximum

σ2 =
1

n + 2

S∑
s=1

ns∑
i=1

(ysi − θs)2. (12)

Again, there are mutual dependencies between θs and σ2, so I again resort to a coordinate ascent
method.

1. For MAP-PEB, calculate µMP and τMP using equations (5) and (6) respectively.

2. When assuming known variance, calculate σ2 using equation (3).

3. Calculate θs (and σ2 when assuming unknown variance) using the respective estimator(s):

• Known-variance MAP-PEB: use equation (7).

• Known-variance MAP-direct: use equation (8) iteratively.

• Unknown-variance MAP-PEB: use equations (9) and (10) iteratively.

• Unknown-variance MAP-direct: use equations (11) and (12) iteratively.

4. Use θs and σ2 as the parameters of the corresponding class and feature of the GNB classifier.

Table 1: Algorithm for learning a hierarchical GNB classifier

4.4 Experiments

For the experiments, I use two real-world fMRI datasets. The datasets are described below.

4.5 Datasets

4.5.1 Starplus Dataset (Reichle et al. (2000))

In the starplus study, in each trial each subject looked at a pairing of a sentence and a picture and had to
decide whether the sentence described the picture. Data from 13 subjects are used for this paper. There
were 40 trials for each subject. In half of the trials, the picture was presented before the sentence, and in the
other half, the sentence was presented before the picture. Only a subset of the brain, selected based on the
expected activated areas, was captured. The data is divided into 24 anatomically defined regions of interest
(ROIs). Standard preprocessing for fMRI data were applied to the data. The data was normalized to the
ROI space by averaging the voxels for each ROI. The data was normalized to have mean 0 and variance 1
both across all the time points during each trial and across the voxels at a given time point.

For the classification task, there is an example from each trial, each example containing 16 images corre-
sponding to the first stimulus from the ROI representing the calcarine sulcus. Hence, the number of features
selected is 16, each feature corresponding to the averaged activation at the calcarine sulcus ROI at a specific
time point. The task is to classify each example into whether a sentence or picture was presented during the
acquisition of that example. For each subject, the data from each class is randomly divided into two folds
with equal number of trials (20 for each fold, with 10 trials for each class in each fold), and cross-validation
is performed on the folds with different numbers of training examples from the training fold. For methods
that incorporate data from the other subjects, all the data from the other subjects are used along with the
training fold. 10 repetitions are performed, each with a random choice of fold assignments. The averages
and standard deviations of the cross-validation accuracies across all subjects are reported in Section 4.6.
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Figure 1: Starplus dataset, classification accuracies vs number of training examples for the variants of the
known-variance hierarchical GNB and the two reference methods (GNB-indiv and GNB-pooled).

4.5.2 Twocategories Dataset (Pereira et al. (2006))

In this study, words from categories “tools” and “dwellings” were presented to each subject. The subjects
had to think about the properties of each word and decide which category each word belongs to. Data
from 6 subjects are used for this paper. 14 words were used in the study, 7 for each category. A word was
presented during a trial, and each word was presented 6 times, so there are 42 examples for each category.
The whole brain was captured. Standard preprocessing for fMRI was applied to the data. The data from
each subject was then normalized to the MNI space Evans et al. (1993). Furthermore, for each trial and each
voxel, only the average of time points 5 to 8 is used. The data was normalized to have mean 0 and variance
1 across the voxels for each trial.

The classification task is to classify the category of the word (“tools” or “dwellings”) that the subject
viewed in each trial. 300 voxels are chosen based on the Fisher’s median separability criterion Saito and
Coifman (1995); hence, the number of features in the data is 300 (the number 300 is chosen arbitrarily). For
each subject, the data for each class is randomly split into two folds with equal number of trials (21 for
each fold and each class), and cross-validation is performed on the folds with different numbers of training
examples from the training fold. For methods that incorporate data from the other subjects, all the data from
the other subjects is used along with the training group. 5 repetitions are performed, each with a random
choice of fold/group members. The averages and standard deviations of the cross-validation accuracies
across all subjects are reported in Section 4.6.

4.6 Results

4.6.1 Known σ

Figures 1 and 2 show the classification accuracies of the GNB classifiers trained with the methods described
in Section 4.1, along with those of the hierarchical GNB classifiers trained with the MAP-PEB and MAP-
direct methods assuming known σ, for the two datasets described in Section 4.5. For GNB-indiv, the ac-
curacy is low when the number of training examples is small, and it increases as the number of training
examples increases. This is expected since with a small number of training examples from the test subject
and not being able to leverage data from the other subjects, the classifier cannot make a good prediction
of the test data. GNB-pooled, on the other hand, is able to leverage data from the other subjects when the
number of training examples is small, giving a better classification accuracy than GNB-indiv. However, as
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Figure 2: Twocategories dataset, classification accuracies and their standard errors vs number of training
examples for the variants of the known-variance hierarchical GNB and the two reference methods.

the number of training examples for the test subject grows, the effect of the other subjects’ data still dom-
inates in such a way that the improvement in classification is diminished; in particular, for the starplus
dataset, we see that GNB-pooled does not show any improvements as the number of training examples
from the test subject grows because the data is dominated by that of the other twelve subjects.

On the other hand, the two variants of the hierarchical GNB classifier are able to leverage the other sub-
jects’ data when the number of training examples from the test subject is small, yielding better classification
accuracies than GNB-indiv, and also reduce the contribution of the other subjects’ data when that number
increases, yielding better accuracies than GNB-pooled. In particular, note that when the number of training
examples is large, the accuracies of the hierarchical GNB classifier match those of GNB-indiv. We also see
that the accuracies of the two variants are not significantly different. There is an exception in the case of the
starplus dataset when the number of training examples of the test subject is one, where the performance of
the classifier using the MAP-direct method is lower than the one using the MAP-PEB method, and is also
lower compared to the performance of GNB-pooled. However, this phenomenon is not observed for the
twocategories dataset, so it is not a general trend of the methods.

4.6.2 Unknown σ

In figures 3 and 4, I include the results for the variants of the hierarchical GNB classifier when the variance
is assumed to be unknown. The results for the classifier trained using the MAP-PEB method when the
variance is assumed to be known are also included for comparison. In particular, we see that making the
assumption that the variance is unknown does not result in significant differences in the performance of
the variants of the hierarchical GNB classifier. Also, note that for the variant with the unknown variance
assumption trained with the MAP-direct method, we see again a lower performance in the starplus dataset
compared to the MAP-PEB variant when the number of training examples of the test subject is one, a trend
similar to that for the MAP-direct variant with the assumption of known variance.

4.7 Discussion

We see that for the two datasets presented here, the hierarchical GNB classifier is able to leverage the other
subjects’ data when the number of training examples is small, and at the same time reduce the contribution
of the other subjects’ data when the number of training examples increases. Of course, there are many
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Figure 3: Starplus dataset, classification accuracies and their standard errors vs number of training exam-
ples for the known-variance MAP-PEB hierarchical GNB, the unknown-variance variants of hierarchical
GNB, and the two reference methods.

more fMRI datasets available, and many more will be collected in the future. Will the results generalize to
other datasets? The key factor is whether the model assumptions hold for the datasets in question. In a lot
of cases, these assumptions hold because we know that there are similar patterns of brain activations for
the same feature across subjects when the subjects are doing the same cognitive task. However, it might
also be the case that for the same feature, the patterns of brain activations might be different for different
subjects, even when the cognitive task is the same. An example is given by the study presented in Kamitani
and Tong (2005), in which it is found that orientation columns in V1 are encoded by the signal captured by
fMRI; however, it is not clear whether after normalization, the same voxel, i.e. feature, across subjects will
encode the same orientation column. So applying the hierarchical GNB classifier in that case might not give
a significant benefit when the number of training examples for the test subject is small. Nevertheless, when
the number of training examples is large, the hierarchical GNB classifier should be less adversely affected
because of its ability to reduce contribution from the other subjects’ data.

Besides the validity of the model assumptions, another factor that can affect the performance of the
hierarchical GNB classifier is the number of subjects. Intuitively, the variance of the estimates of the group
parameters (i.e. the hyperparameters) will be high when the number of subjects is low. However, we can
see from the estimators for the MAP-direct method (in particular, in equations (8) and (11)), that when the
number of subjects is three, there will be no contribution from the other subjects’ data. This can be used as
a guideline that preferably there will be more than three subjects available when applying the hierarchical
GNB classifier. In the results, I have shown that the classifier can work well when there are as few as six
subjects available.

Given the four variants of the hierarchical GNB classifier, which one should be used? Even though the
results presented here do not give a conclusive evidence that one variant is better than the others, there
might be other fMRI datasets where the variants will perform differently. Let me highlight differences in
the variants that can affect the choice of one variant over the others in a future application. First, in terms
of computational complexity, the other variants besides the known-variance MAP-PEB method involve
iterative methods, i.e. the coordinate ascent method. Therefore, the known-variance MAP-PEB method
is the fastest to compute. Another difference is caused by the two methods of estimation. In the MAP-
PEB variants, the hyperparameters are estimated while in the MAP-direct variants, they are marginalized.
The difference between these two approaches will be small when the hyperparameters are concentrated on
particular values, but when they are not, then the MAP-PEB variants do not account for the uncertainty

14



0 5 10 15 20 25
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

no of training examples per class

cl
as

si
fic

at
io

n 
ac

cu
ra

ci
es

 

 

GNB indiv
GNB pooled
GNB PEB
GNB PEB UV
GNB direct UV

Figure 4: Twocategories dataset, classification accuracies vs number of training examples for the known-
variance MAP-PEB hierarchical GNB, the unknown-variance variants of hierarchical GNB, and the two
reference methods.

of the hyperparameters unlike the MAP-direct variants. And there is also the difference in whether the
variance is assumed known or unknown. When the variance is assumed unknown, the estimation takes
into account the revised estimates for the subjects’ means, while when the variance is assumed known,
the estimation uses the individual subjects’ means, so the two assumptions might result in significantly
different accuracies when the variations of the data around the different kinds of means are significantly
different.

Regardless of the variants, the results obtained are promising, in the sense that there is virtue in sharing
data across instances in a domain, in this case, subjects. The results suggest that it is also possible to reduce
the number of trials for some subjects and yet maintain almost the same level of accuracies as when the
number of trials is not reduced. This suggests that we can have a classifier that is initially trained on some
subjects and then trained on other subjects using fewer number of trials. Further work might make this
more flexible, for instance, having classifiers trained initially on some studies and then trained on other
studies. In the next section, I present my ideas about how to make this work, among others.

5 Proposed Work

There are opportunities for sharing data beyond sharing data across subjects. In this section, I discuss the
issues involved in sharing data across multiple domains. I plan to address some of these issues in my thesis.

5.1 Sharing in A Single Domain Type

Let me first consider the problem of sharing data in a single domain. The previous section discusses an
approach that can be used for sharing in a particular domain, namely sharing across subjects. Now I will
consider sharing within other domains relevant to the fMRI domain.

5.1.1 Sharing Across Voxels

Let us consider the voxel domain. One question might be whether the methods described in the previous
section are applicable for sharing across voxels. But before addressing this question, let us step back and
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consider the nature of the voxel domain. I will consider only the classification task. Note that in classifica-
tion of fMRI data, the voxels are features, which are direct inputs to the classifier, in contrast with subjects,
which virtually are classification tasks in the sense of multitask learning. Note that typically a classifier
takes the features describing the data, but the classifier is trained and tested only for a specific task. So
the problem of sharing across voxels is the problem of sharing across features. The GNB classifier, used as
baseline in the previous section, makes the assumption that each feature is conditionally independent given
the class. So sharing across features can relax this assumption. In the setting of a Gaussian Bayes classifier,
this means that we need to remove the naı̈ve conditional independence assumption in the class-conditional
probability/density p(y|C = ck) and model the class-conditional covariance structure of y.

A candidate method for modeling the covariance structure is the method outlined in the previous sec-
tion, namely a hierarchical modeling of the voxel means with a common normal prior. Here we need to
take into account the spatial nature of the voxel domain. There have been findings that spatially local-
ized groups of voxels tend to exhibit similar activations. So one possibility is to have separate hierarchical
normal models for spatial clusters of voxels. One problem is how we can determine which voxels belong
together in a cluster. To do this, heuristics such as those employed in Niculescu et al. (2006) can be em-
ployed to determine spatially neighboring voxels that share similar activation patterns so that they can be
modeled together. However, the clustering assumption can be relaxed through through a prior distribution
that encodes the prior knowledge for spatial dependence of nearby voxels, such as the Gaussian Markov
Random Field (Rue and Held (2005)). With this prior distribution, instead of having separate models for
different clusters, we can still have one model for the whole-brain activations.

5.1.2 Sharing Across Studies

In some cases, one subject participates in more than one fMRI study. In these cases, there are no cross-
subject variations, but there are cross-study variations. Can we model these cross-study variations using
a model similar to that presented for sharing data across subjects? First, let us consider the implications.
Using a hierarchical normal model for modeling cross-study variations means that we assume that for
that particular subject, a voxel’s mean activation in different studies comes from a normal distribution
with a common-study mean. This assumption might be reasonable when the studies are relatively similar,
in that they exercise similar cognitive functions. When the studies exercise completely different cognitive
functions, the activations across studies will be different for voxels discriminately activated by these studies,
so intuitively, it is less reasonable that these different activations will come from a normal distribution. So
the applicability of sharing across studies can be affected by the similarity of the studies. Of course, it is
also reasonable to consider some subjects more similar than others. I will discuss this topic in greater detail
in section 5.3, when I consider determining groups or clusters within domains.

In reality, it is not very common that a subject participates in multiple similar fMRI studies. Instead,
usually different studies involve different subjects. So in a lot of cases, we need to consider sharing across
studies and subjects together. This is an instance of sharing across multiple domains, which is covered next.

5.2 Sharing Across Multiple Domain Types

I have described potential for sharing in different kinds of domain types. The next question is, is it possible
to share across multiple domain types simultaneously? I think the answer is yes, and in this thesis I will
develop methods for doing so. Below, I will first discuss possible methods for sharing across two domain
types, and then I will cover sharing across an arbitrary number of domain types.

5.2.1 Sharing Across Two Domain Types

I first consider sharing across two domain types. Some examples are sharing across both subjects and
studies, and sharing across both subjects and voxels. How can we augment the model to simultaneously
handle sharing across two domain types? Here I describe two possible approaches: adding another level to
the hierarchy, or combining two separate submodels, one for each domain.
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Multiple Levels of the Hierarchy

ys(m)i ∼ N (θs(m) , σ2)

θs(m) ∼ N (µ(m), (τ (m))2)

µ(m) ∼ N (α, β2),

where m represents a specific study. In other words, we add another level to model the variations
(assumed normally distributed) of the study-specific means. I use the normal distribution for convenience,
but it is not clear whether it is the appropriate distribution to use. If there is sufficient data, it might be
possible to model the variations using a distribution with a nonparametric density function.

Independent Submodels for Each Domain An alternative possible model is the following:

ys(m)i ∼ N (f(θs, ξm), σ2)

θs ∼ N (µ, τ2)

ξm ∼ N (α, β2).

Here, we model the contributions from the subject group and the study group as independent, and f()
can be any arbitrary function. For simplicity, f() can be assumed to be linear, i.e. f(x, y) = ax+ by for some
constants a and b.

5.2.2 Sharing Across n Domain Types

Going beyond two domain types, we can consider a hybrid approach, using multiple levels of hierarchy
for a subset of the domain types and independent submodels for another subset of the domain types. A
key question is how to determine which option to use for which subsets of the domain types. Furthermore,
can such a decision be automated; in other words, can the model be made to be flexible enough to decide
between these options based on the data?

5.3 Determining Groups to Share

So far, I have assumed that when sharing across a domain type, we can share across all instances of that
domain type. However, as mentioned in section 5.1.2, it is more reasonable to share across similar domains
than across different domains. This information might be given in advance, for instance, it is usually the
case that we have to treat subjects with some clinical conditions differently from normal subjects. Nonethe-
less, is it possible to determine which domains to share and not to share automatically from the data, such
that the predictive performance is maximized?

I believe the answer to the preceding question is yes, and a way to do so is by using a mixture model.
I will consider this in the context of sharing across subjects, but the principle should be also applicable to
sharing across the other domain types.

Here is a model for sharing across subjects augmented with a mixture model:

ysi ∼ N (θs, σ
2)

θs ∼ N (µ(k), (τ (k))2)
k ∼ Multinomial(π1, · · · , πK)

where k is the group indicator, and K is the total number of groups. We can describe the model as
having the groups represented as Gaussian mixture models with K mixtures. One major question is how
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one can choose the correct value of K. We can do this using cross-validation or reversible-jump Markov
Chain Monte Carlo (RJMCMC). Alternatively, we can reformulate the model as

ysi ∼ N (θs, σ
2)

θs ∼ N (µ(k), (τ (k))2)
k ∼ DP(α0, G0)

where DP()is the Dirichlet process (Ferguson (1973)) with parameter α0 and base measure G0, which
we can take from the conjugate family (i.e. normal for a hierarchical normal model). Inference can be
performed using Markov Chain Monte Carlo (Neal (2000)) or variational methods (Blei and Jordan (2006)).

5.4 Factor Analysis

Up to now, I have discussed doing classification using voxels as the features. An alternative is provided
by assuming that in the data there exist unobserved factors, some of which might be discriminative of the
classes in the classification task. We can try to extract these factors using factor analysis methods. The
information extracted about the factors, including the information about which voxels belong to which
factors, can potentially yield novel insights about the workings of the brain.

Most factor analysis methods, such as those given in West (2003) and Griffiths and Ghahramani (2006),
are formulated in the context of data from a single domain. In order to extract the different kinds of factors,
a naı̈ve approach would be to combine data from the multiple domains and domain types and look at
the contribution to (in factor analysis terminology, the loading of) each factor. This might reveal factors
whose loadings come from data of a specific domain or domain type versus factors whose loadings come
from data across domains and/or domain types. The implication is that the latter factors are shared across
domains and domain types. In the factor regression context, it is also useful to look at the contribution of
each factor to the regression prediction to see how much these various factors contribute to the prediction.
Doing so can reveal how much can be shared versus how much is domain-specific and/or domain-type-
specific for the phenomenon to predict. An alternative is to explicitly encode the different classes of factors
(shared vs domain-specific and/or domain-type-specific) in the model or as prior distributions. It would be
interesting to find out how similar or different the results will be compared to those of the naı̈ve approach.

Computation is a major challenge when doing factor regression given the kind of data that I consider
here. One question that I also plan to address is whether approximate inference techniques such as vari-
ational (Jordan et al. (1999)) or expectation propagation (Minka (2001)) methods can be applied to get a
computationally efficient but accurate approximation for inference.

5.5 Methods for Unnormalized Data

In the previous discussions, I have assumed that the fMRI data have been normalized to a common space.
However, it is likely that the normalization procedure causes some loss of information. The causes include
the uncertainty of the mapping of voxels from the original subject’s space to the normalized space, and
the interpolations and extrapolations involved in the process. It might be desirable to incorporate the
normalization procedure into the model presented—instead of done as a preprocessing step as is common
currently—so that we can account for the uncertainty introduced by the normalization procedure. There
are models that have been proposed for using Bayesian inference to perform registration of images (e.g.
Marroquin et al. (2002) and Pohl et al. (2006)). As a first step, these Bayesian registration methods can be
used as a baseline for augmenting the model.

5.6 Incorporating Temporal Information

I have assumed that voxel values at a given time point can be features in the classification task, conditionally
independent given the class in the case of the GNB classifier (the starplus dataset in the preliminary work).
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The time element can also be removed by averaging the voxels over time (the twocategories dataset in the
preliminary work). In reality, especially in fMRI data analysis, the temporal information available might be
important, for instance, how the hemodynamic responses at particular locations evolve for different kinds
of cognitive tasks might indicate different demands for these tasks. However, inherent in the consideration
of temporal information is the notion of forward progress. In most cases, there is a dependence on values
at previous time points. Hence, the notion of sharing for time is different from the notion of sharing for the
other domain types I have discussed so far.

A way to incorporate temporal information is through the use of state space models (Durbin and Koop-
man (2001)), or, from the Bayesian perspective, the dynamic linear models (West and Harrison (1997)).
When using state space models, we need to specify the state transition and observation matrices. The ob-
servation matrix can be formulated by taking into account the hemodynamic response exhibited in fMRI
data. However, formulating the state transition matrix is more challenging. This is a problem of system iden-
tification (Ljung (1998)), and it is possible that existing system identification methods might be applicable.

5.7 Sharing Across Modalities

In this context, fMRI is a modality used to gather information about the workings of the brain. There
are also other modalities that are used in the cognitive neuroscience field, such as EEG. There have been
instances on simultaneous analysis of EEG and fMRI data (e.g. Christmann et al. (2007)). However, the
analysis is done independently on each subject and is usually done for a specific study. Hence, some of the
issues faced in the course of the thesis are also relevant for integrating data across modalities.

5.8 Levels of Granularity and Process Decomposition

Cognitive processes usually exist at several simultaneous levels of granularity or can be broken down into
subprocesses. When considering the process of reading a word, for instance, an example of the former is
considering the process of reading a noun as a specialization of the read-word process, while an example
of the latter is breaking the read-word process into processes for viewing the letters, recognizing the letters,
grouping the letters together, and associating the grouped letters with a word. Implicit in classification is
choosing a level of granularity or a specific level of processes in the above sense. The problem is that, when
focusing on a more specific level for either case, the analysis becomes more sensitive to the idiosyncrasies
of each subject. Of interest also is how lower levels in either case influence higher levels. I believe that
it is possible to incorporate both granularity levels and process levels into the models for sharing across
domain types into the model, potentially allowing us to make inference on a specific level of granularity or a
specific subprocess component of some cognitive process. In particular, hierarchical classification methods
(e.g., Shahbaba and Neal (2007)) might be applicable to the problem of dealing with different levels of
granularities.

6 Research Plan

Here is a plan of the research that I will undertake for the thesis work:

• Remainder of spring 2007: undertake research on models for combining data for multiple subjects
and studies, including extending the sparse Bayesian factor regression model.

• Fall 2007: undertake research on incorporating spatial normalization across subjects in the model.

• Spring 2008: investigate how to extend the model so that temporal information can be incorporated.
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