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There are two approaches to automatically deriving symbolic worst-case resource bounds for programs: static
analysis of the source code and data-driven analysis of cost measurements obtained by running the program.
Static resource analysis is usually sound but incomplete. Data-driven analysis can always return a result, but
its lack of robustness often leads to unsound results. This paper presents the design, implementation, and
empirical evaluation of hybrid resource bound analyses that tightly integrate static analysis and data-driven
analysis. The static analysis part builds on automatic amortized resource analysis (AARA), a state-of-the-art
type-based resource analysis method that performs cost bound inference using linear optimization. The
data-driven part is rooted in novel Bayesian modeling and inference techniques that improve upon previous
data-driven analysis methods by reporting an entire probability distribution over likely resource cost bounds.
A key innovation is a new type inference system called Hybrid AARA that coherently integrates Bayesian
inference into conventional AARA, combining the strengths of both approaches. Hybrid AARA is proven to
be statistically sound under standard assumptions on the runtime cost data. An experimental evaluation on a
challenging set of benchmarks shows that Hybrid AARA (i) effectively mitigates the incompleteness of purely
static resource analysis; and (ii) is more accurate and robust than purely data-driven resource analysis.
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1 INTRODUCTION

Static resource analysis. The prevailing goal of resource analysis—and the goal of this article—is to
derive a symbolic expression that bounds the worst-case execution cost of a program as a function
of the inputs. Building on pioneering resource analysis works such as Wegbreit’s metric system [88],
modern tools use various static analysis techniques: type systems [5, 21, 24, 26, 38, 40, 59, 86],
recurrence relations [2, 25, 35, 55, 56, 88], term rewriting [6, 7, 49, 72], ranking functions [12, 20, 31,
82], and abstract interpretation [3, 37, 91]. They can automatically and accurately analyze complex
functions such as operations on splay trees [61] and software product code [37]. Automatic resource
analysis is now used on a daily basis by developers in tools such as Meta’s static analyzer Infer [22].
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However, since static resource analysis is undecidable for Turing-complete languages, even the
most sophisticated tools fail to infer cost bounds for some programs. In such cases, users must
resort to rewriting their code or using manual techniques for resource analysis [19, 59, 70, 74, 75].
Both of these workarounds require expertise in programming languages and resource analysis,
which is a fundamental barrier to leveraging these methods in a wider spectrum of applications.

Data-driven resource analysis. An alternative approach to static resource analysis is data-driven
resource analysis, which infers resource bounds from a set of cost measurements obtained by running
the program [23, 30, 33, 50, 77, 80, 90]. Data-driven resource analysis is not as well established as
static resource analysis. A main advantage of data-driven approaches is that a program can be
treated as a black box, greatly expanding the scope of programs that can be analyzed.

Data-driven resource analysis comes with its own set of challenges, particularly for deriving
worst-case bounds. First, the analysis is sensitive to the given dataset and data collection can be
difficult. For example, inputs generated uniformly at random are unlikely to trigger worst-case
behaviors in many programs. Second, commonly used statistical techniques for inferring a bound
from the cost dataset lack accuracy (i.e., how close the inference result is to a sound worst-case
cost bound) and robustness (i.e., the inference result has a positive probability of being a sound
worst-case cost bound even if the dataset does not contain worst-case inputs). The aforementioned
works use optimization, and as we demonstrate with experiments (Section 7), bounds derived in
this way are prone to being unsound. Prior works also do not quantify any notion of uncertainty in
the inferred bounds.

Bayesian resource analysis. The first contribution of this work is the design and implementation of
Bayesian resource analysis for worst-case bounds. In general, Bayesian resource analyses are more
customizable than optimization-based ones, as users can express domain knowledge in the form of
probabilistic models. Additionally, Bayesian resource analyses return whole posterior distributions
of inferred cost bounds, providing richer information about the uncertainty in inference results.
This article presents two new Bayesian resource analyses: BayesWC and BayesPC. In BayesWC, for
each input size present in the runtime cost data, we conduct Bayesian inference to infer likely values
of worst-case costs that are no less than the observed costs. By treating these two costs separately,
we account for the possibility that worst-case costs have not been observed in the runtime data.
The inferred worst-case costs from BayesWC produce optimization problems that can be solved to
obtain cost bounds. In BayesPC, on the other hand, we conduct Bayesian inference to directly infer
cost bounds, bypassing optimization altogether. Compared to BayesWC, BayesPC allows users to
construct more holistic probabilistic models for specifying how observed cost measurements are
probabilistically generated. In our experiments, cost bounds inferred by BayesWC and BayesPC
are shown to be more sound and robust than those inferred by an optimization-based data-driven
baseline. However, because they ignore the source code and exclusively rely on data-driven analysis,
BayesWC and BayesPC can still fail to infer sound cost bounds in several important benchmarks.

Hybrid resource analysis. The main contribution of this work is the design, implementa-
tion, and evaluation of a new hybrid resource analysis method that combines static and
data-driven resource analyses. To the best of our knowledge, this article is the first to develop
such a hybrid analysis. Hybrid resource analysis aims to mitigate the incompleteness of static
resource analysis and improve the accuracy and robustness of data-driven resource analysis. A
main research challenge is designing a principled interface between static and data-driven resource
analyses that enables a tight integration to combine the respective strengths of both approaches.

For the static part of the hybrid resource analysis, we rely on automatic amortized resource
analysis (AARA) [45, 47], a type-based state-of-the-art technique that is implemented for OCaml
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programs in Resource-Aware ML (RaML) [41]. AARA supports advanced language features such as
recursive types [36], side effects [62], and higher-order functions [53]. Two distinguishing features
of AARA are the ability to handle non-monotone resources such as memory and the ability to
account for amortization effects. As a type-based technique, AARA is naturally compositional, and
cost bound inference can be reduced to off-the-shelf linear programming (LP) solving, even if the
derived bounds are nonlinear. We dub our hybrid resource analysis method Hybrid AARA.

For the data-driven part of Hybrid AARA, we present a new type inference system that combines
the two data-driven Bayesian resource analysis methods (BayesPC and BayesWC) with conventional
AARA. To invoke Hybrid AARA, a user annotates part of the code for data-driven analysis using
a syntactic form that has no runtime effect. Our integration of Bayesian resource analysis and
AARA rests on two key technical innovations. For Hybrid AARA with BayesWC, we combine the
optimization problems produced by the data-driven Bayesian inference with the linear constraints
derived using conventional AARA type inference to obtain and solve a joint linear program.
For Hybrid AARA with BayesPC, we integrate constraints from conventional AARA into the
probabilistic cost bound models of BayesPC. Bayesian inference within this model leverages recent
innovations from the sampling algorithm literature that allow Hamiltonian Monte Carlo (HMC)
sampling to be restricted to a convex polytope defined by AARA’s linear constraints [18, 69]. To
establish the soundness of Hybrid AARA, we first prove that its inferred bounds are sound with
respect to runtime cost data. Additionally, we prove the statistical soundness that the inferred
bounds converge to a sound bound if the analysis is repeated with a successively growing set of
runtime cost data that contains worst-case inputs with nonzero probability.

Applications. Hybrid AARA (and its special case of purely data-driven analysis) using Bayesian
inference returns a collection of cost bounds that approximate the posterior distribution. Even if
the proportion of sound cost bounds in the posterior distribution is less than 100%, Hybrid AARA
using Bayesian inference is useful for applications that can tolerate occasional underestimates of
the worst-case cost. One such application is scheduling of jobs in cloud computing, where the
cloud-service provider would like to have a reasonably accurate (but not necessarily sound at
all times) estimate of the resources required to run the job. The job’s cost use may respect the
tighter bounds in the posterior sample, but if it happens to run out of computational resources, then
the cloud-service provider can rerun the job with more resources. Other applications of Hybrid
AARA with Bayesian inference include auto-grading of students’ programming assignments and
annotating software libraries to help users of the library understand its performance characteristics.

Evaluation. In an experimental evaluation with a prototype built on RaML [41], we compare fully
data-driven analyses and Hybrid AARA on a curated set of benchmarks that pose challenges to
static, data-driven, and hybrid analyses. We find that Hybrid AARA outperforms fully data-driven
analyses both when considering soundness and tightness of the bounds.

Contributions. In summary, this article makes the following contributions.

• We present novel Bayesian data-driven resource analyses (BayesWC in Section 5.2; BayesPC
in Section 5.3) to infer posterior probability distributions over program cost bounds.

• We present Hybrid AARA: a novel type inference system that combines BayesWC and
BayesPC with conventional AARA (Sections 6.1 and 6.2).

• We formulate and prove two notions of soundness for Hybrid AARA (Theorems 6.1 and 6.2)
• We implement a prototype of Hybrid AARA by extending Resource-Aware ML (RaML) [41].
• We evaluate Hybrid AARA and fully data-driven resource analyses on a challenging bench-

mark set, showing examples of improvements in accuracy and robustness (Section 7).
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let rec partition pivot xs =
match xs with
| [] → ([], [])
| hd :: tl →
let lower, upper = partition pivot tl in
if complex_compare hd pivot then
(hd :: lower, upper)

else (lower, hd :: upper)

let rec quicksort xs =
match xs with
| [] → []
| hd :: tl →
let lower, upper = Raml.stat (partition hd tl) in
let lower_sorted = quicksort lower in
let upper_sorted = quicksort upper in
append lower_sorted (hd :: upper_sorted)

Lst. 1. Quicksort in OCaml. The function complex_compare in line 6 is intractable to static resource analysis.

The annotation Raml.stat in line 5 indicates data-driven resource analysis on partition.

2 OVERVIEW

In this section, we review static and data-driven resource analyses, identify their shortcomings,
and outline our main contribution of hybrid resource analysis. We use the implementation of
quicksort in OCaml given in Listing 1 as a running example. Our goal is to automatically derive a
symbolic worst-case cost bound for the function quicksort. For simplicity, we use the resource
metric that records the time cost of executing the comparisons complex_compare hd pivot in the
function partition. We consider different versions of complex_compare. For example, if the cost of
evaluating complex_compare hd pivot is bounded by 1, then the worst-case cost of quicksort
xs is 𝑛(𝑛 − 1)/2, where 𝑛 is the length of the list xs.

Static resource analysis. The predominant method for automatically deriving symbolic worst-case
bounds is static resource analysis. This article builds on automatic amortized resource analysis
(AARA) [39–42] (Section 4), a compositional type-based static analysis technique.

Resource-Aware ML (RaML) is an implementation of AARA that derives polynomial bounds
for a subset of OCaml. The compositionality of AARA ensures that RaML can derive a bound
for quicksort if it can derive a bound for complex_compare. Assuming each comparison has
cost 1, RaML correctly infers the tight bound 𝑛(𝑛 − 1)/2 for quicksort in less than 0.1 seconds.
Similarly, assume that the argument of quicksort is a list of lists and that complex_compare is a
lexicographical comparison whose worst-case is 𝑘 , where 𝑘 is the length of the first argument list.
Then RaML infers the tight bound𝑚𝑛(𝑛 − 1)/2 for quicksort in less than 0.2 seconds, where𝑚
is the maximum length of the inner lists. This analysis is nontrivial because of the nonstructural
recursion: to derive a cost bound, it is not enough to separately analyze the cost of the partition
function and the number of recursive steps. We must also analyze how the partition function
changes input sizes, relaying the size-change information to the next recursive call of quicksort.

Because resource analysis is undecidable, however, even the most sophisticated static resource
analyses are incomplete, and there remain programs that cannot be analyzed automatically. If the
comparison function complex_compare in partition is, for example, OCaml’s built-in polymor-
phic comparator, which examines the low-level memory representations of input values, RaML is
not able to derive a bound because the comparison code is not available to the analysis. Indeed, there
are many other comparison functions that RaML cannot analyze, even if the cost of the comparison
is bounded by a constant. AARA fails, for instance, if the control flow depends on mutable data or
complex loop conditions. A concrete example of a constant-time function that cannot be statically
analyzed is compare_dist, an implementation of complex_compare that compares two vectors by
computing their distance to a fixed vector that is stored in a reference cell. Such limitations are not
specific to RaML: every static resource analysis has unsupported language features or iteration
patterns that make the analysis feel brittle for non-experts users.
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Fig. 1. Hybrid resource analysis on quicksort infers more accurate bounds than purely data-driven analyses.

Data-driven resource analysis. One way to overcome the incompleteness of static analysis is
data-driven analysis. Existing data-driven techniques first collect execution costs for different inputs
and then solve an optimization problem to fit a cost function on the data [23, 30, 33, 50, 77, 80, 90].
Although these optimization-based approaches are fast, they can infer unsound cost bounds and do
not quantify the uncertainty over the unknown cost bounds.

To showcase such an approach, suppose that quicksort uses the aforementioned comparator
compare_dist and that the cost varies between 0.5 and 1.0 for different inputs. Figure 1a shows
the inferred quadratic cost bound (blue line) of data-driven optimization-based resource analysis
adapted from [23, 33, 90], given a randomly generated dataset of measured costs of quicksort
(black dots). Any worst-case cost bound must lie above all the measured costs and minimize the
total 𝐿1 distance between the curve and runtime data. This optimization problem can be framed as
a linear program (Opt; Section 5.1). Optimization fails to infer the correct worst-case cost bound
(red line), because randomly generated data sets rarely contain worst-case inputs.

To mitigate the shortcomings of such greedy optimizations, this paper introduces data-driven
Bayesian resource analyses (BayesWC and BayesPC; Sections 5.2 and 5.3). Bayesian resource
analysis enables users to express their domain knowledge in the form of models that specify
how observed runtime samples are probabilistically generated. It returns an entire probability
distribution over the corresponding cost bounds given observed samples. In particular, we condition
the probabilistic model on observed cost data and compute the posterior distribution of cost bounds
by running sampling-based probabilistic inference algorithms. For quicksort, Fig. 1b shows the
posterior distribution over cost bounds from Bayesian resource analysis. The blue line indicates
the median cost bound and the light-blue shade is the 10–90th percentile range. Most of the cost
bounds in the posterior distribution are closer to the true worst-case bound (red line) as compared to
optimization-based approach in Fig. 1a. In fact, 28/1000 bounds drawn from the posterior distribution
are sound. Although this fraction is small, it is already a substantial improvement over optimization.

Hybrid resource analysis. A central contribution of this work is the design, implementation, and
evaluation of Hybrid AARA (Section 6), which integrates our two novel data-driven methods for
Bayesian resource analysis (BayesWC and BayesPC) and a simple optimization-based data-driven
baseline (Opt) into conventional AARA. Hybrid AARA is modular and lets users combine data-
driven and static analyses in different parts of a program. Therefore, it covers a spectrum ranging
from fully data-driven to fully static analyses.

Consider again the example of quicksort where the comparator is compare_dist, which in-
tractable for static analysis and has a cost varying between 0.5 and 1.0. If we perform data-driven
analysis on the comparator and static analysis on the rest of the code, Hybrid BayesWC amounts
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to (i) inferring the worst-case constant cost of the comparator by data-driven analysis; and (ii) in-
corporating the inferred cost into conventional AARA. All 1000/1000 cost bounds drawn from the
posterior distribution are sound (the analysis time in our Hybrid AARA prototype is 66.2 seconds).

In the previous example, the interface between the statistical analysis and the static analysis is
particularly simple since the cost of evaluating quicksort does not depend on the result of the
comparison function. Many examples fall into this category, for which Hybrid AARA enables the
analysis of code that is intractable for purely static methods while clearly outperforming purely
data-driven methods. However, our experiment focuses on a different category of benchmarks for
which the integration of data-driven methods is technically challenging and the benefits of a hybrid
analysis are less clear.

Challenges for hybrid resource analysis. Revisit the quicksort example, using the compare_dist
comparator. But this time let us assume that the user marks the call to partition for data-driven
analysis instead of the call to complex_compare. A data-driven analysis could be able to derive a
linear cost bound for partition, but how can use this information to derive a bound for quicksort
using AARA? We would need additional information on the size of the result of partition. However, it
is not clear what exact information we need. For example, it is insufficient for analyzing quicksort
to statistically bound the size of each component in the result of partition.

A main technical innovation of our work is the design of a principled interface between data-
driven and static analyses that can handle such challenging cases. BayesWC and Opt are integrated
into AARA by developing a type inference system that combines the underlying LP problems.
Integrating BayesPC into AARA poses a significant challenge because the former relies on sampling
algorithms to approximate posterior distributions of resource coefficients instead of LP problems
as in AARA. To overcome this challenge, we leverage an innovative sampling algorithm that allow
Hamiltonian Monte Carlo (HMC) sampling to be restricted to a convex polytope [18, 69].

Figure 1c shows the posterior distribution over bounds from Hybrid BayesWC on quicksort
with the data-driven analysis of partition. The 10–90th percentile range (blue shade) is situated
above the true worst-case bound (red line) for all input sizes between 0 and 200. In fact, 471/1000
samples drawn from the posterior distribution in Hybrid BayesWC are theoretically sound bounds
for all input sizes, in contrast to the 28/1000 bounds for purely data-driven analysis with BayesWC
(Fig. 1b) and 0/1000 bounds for data-driven resource analysis with Opt (Fig. 1a).

We have empirically evaluated hybrid resource analysis on challenging and realistic micro
benchmarks where data-driven analysis is applied to non-trivial code that stresses the interface
between data-driven and static analysis (Section 7). The benchmarks demonstrate that (i) Bayesian
resource analysis returns more accurate cost bounds than optimization-based analysis and (ii) hybrid
resource analysis returns more accurate cost bounds than fully data-driven analysis. Notable among
our benchmarks is the median-of-medians-based linear-time selection algorithm [11]. Conventional
AARA cannot statically analyze this program, as it is challenging to reason about how the median
of medians influences the partition function. Fully data-driven analysis does not infer a sound
cost bound, either, as the worst-case behavior of partition rarely occurs in all recursive calls. By
exploiting hybrid resource analysis, we successfully infer a sound worst-case cost bound that
neither fully data-driven nor fully static analyses can.

3 SYNTAX AND COST SEMANTICS

We set the stage for Hybrid AARA by introducing a functional programming language. While AARA
can handle higher-order functions, we focus on the first-order setting to simplify the presentation.
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𝜏 F unit | int | 𝜏1 + 𝜏2 | 𝜏1 × 𝜏2 | 𝐿 (𝜏 ) polynomial and list types
𝑒 F ⟨ ⟩ | 𝑛 | 𝑥 unit, integer, and variable;𝑥 ∈ X, 𝑛 ∈ Z

| left · 𝑥 | right · 𝑥 | case 𝑥 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} sum constructor and destructor
| ⟨𝑥1, 𝑥2 ⟩ | case 𝑥 {⟨𝑥1, 𝑥2 ⟩ ↩→ 𝑒 } product constructor and destructor
| [ ] | 𝑥1 :: 𝑥2 | case 𝑥 { [ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2 ) ↩→ 𝑒2} list constructor and destructor
| 𝑓 𝑥 function application; 𝑓 ∈ F
| let 𝑥 = 𝑒1 in 𝑒2 | share 𝑥 as 𝑥1, 𝑥2 in 𝑒 let-binding and variable sharing
| tick 𝑞 resource consumption;𝑞 ∈ Q

| statℓ 𝑒 statistical analysis; ℓ ∈ L

Lst. 2. Datatypes 𝜏 and expressions 𝑒 in a first-order AARA functional programming language.

3.1 Syntax

Datatypes 𝜏 and expressions 𝑒 are formed by the grammar shown in Listing 2, where X, F , and L
are countable sets of identifiers for variable names, function names, and label names, respectively.
A program P contains a finite set 𝐹 ⊂ F of function identifiers and mutually-recursive definitions

𝑓 (𝑥) = 𝑒 for every 𝑓 ∈ 𝐹 . (3.1)

Function types have the form 𝜏1 → 𝜏2. The function body 𝑒 can reference all functions 𝑔 ∈ 𝐹 .
As in AARA [39, 40, 42], we adopt the share-let normal1 form where (i) variables are affine (i.e.,

they are used at most once) and (ii) constructors and destructors are applied to variables, but not
general expressions. The first restriction ensures that the potential stored in variables is consumed
at most once. To use variable 𝑥 twice, we write share 𝑥 as 𝑥1, 𝑥2 in 𝑒 , where fresh variables 𝑥1 and 𝑥2
have the same value as 𝑥 . The second restriction simplifies proofs of AARA. To apply constructors
and destructors to non-variable expressions, we first bind variables to them by let-bindings.

The construct tick 𝑞 increments a cost counter by 𝑞 ∈ Q, which is possibly negative, and returns
the unit element ⟨ ⟩. To specify a particular resource metric, users (manually or automatically)
insert tick 𝑞 throughout their code. As the tick metric lets us consider arbitrary resource metrics, it
is a standard practice in the literature of static resource analysis [25, 42, 67, 75, 86].

If all 𝑞’s in tick 𝑞 are non-negative, such resource metrics (e.g., running time) are said to be
monotone. Conversely, if we have 𝑞 < 0, it means resources can be freed up, and such resource
metrics (e.g., memory) are non-monotone. This article focuses on monotone resource metrics.

The construct statℓ 𝑒 does not have a runtime effect, but is used in the hybrid resource analysis. It
indicates that expression 𝑒 should be analyzed using data-driven analysis instead of static analysis.
The label ℓ ∈ L is used to uniquely identify sites of data-driven analysis in source code.

Our prototype implementation is based on Resource-Aware ML (RaML) [41], which uses OCaml
extended with annotations Raml.tick and Raml.stat as the input language. By way of example,
Listing 1 displays an implementation of quicksort.

The annotation stat can be either manually inserted by the user or automatically inserted by
walking over the program’s source code bottom-up to identify functions (or more fine-grained code
fragments) that cannot be analyzed statically by conventional AARA. Concretely, we first look at
the leaves of the program call graph (i.e., functions which do not call other functions), check if we
can analyze them using conventional AARA, and then recurse up the call graph to identify other
problematic functions. We then insert the annotations at all the required points.

1The share-let normal form does not affect the expressive power of the language. The implementation of AARA for
OCaml [41, 42] only uses the share-let normal form internally—users are allowed to write any OCaml programs.
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3.2 Cost Semantics

Given a program P, the cost semantics of expression 𝑒 is given by the judgment

𝑉 ⊢P 𝑒 ⇓𝑐 𝑣, (3.2)

where 𝑉 is an environment (i.e., a mapping from variables to values), 𝑣 is the value that 𝑒 evaluates
to, and 𝑐 ∈ Q≥0 denotes the cost of evaluating 𝑒 . Values 𝑣 are defined by the following grammar:

𝑣 F ⟨ ⟩ | 𝑛 | left · 𝑣 | right · 𝑣 | ⟨𝑣1, 𝑣2⟩ | [ ] | 𝑣1 :: 𝑣2 .

A well-formed value can be assigned a type 𝜏 and we write 𝑣 : 𝜏 .
Under non-monotone resource metrics, we would have two notions of costs: peak costs and

net costs [39, 40, 42]. However, as this article focuses on monotone resource metrics, (3.2) only
contains a single cost 𝑐 ∈ Q≥0. Additionally, for simplicity, this article assumes that (i) 𝑞 in tick 𝑞 is
known with absolute certainty and (ii) costs are measured perfectly without measurement errors.
Measurement errors can be factored into probabilistic models of Bayesian resource analysis by
encoding them in the input program.

3.3 Data Collection

In fully data-driven analysis (Section 5), we collect a dataset of runtime cost measurements for
a program P = {𝑓 (𝑥) = 𝑒} with a single function 𝑓 . Sweeping through a list of environments
𝑉𝑖 = {𝑥 : 𝑣𝑖 } (𝑖 = 1, . . . , 𝑁 ) that each includes bindings for argument 𝑥 , we evaluate the cost
semantics 𝑉𝑖 ⊢P 𝑒 ⇓𝑐𝑖 𝑣𝑖 . We then define the dataset as D = {(𝑉𝑖 , 𝑣𝑖 , 𝑐𝑖 )}𝑁𝑖=1.

The data collection for hybrid resource analysis (Section 6) is more involved. It is formalized with
a judgment that extends the cost semantics (3.2). Letting 𝑁 > 0 be a positive integer, the expression

(𝑉𝑖 ⊢P 𝑒 ⇓𝑐𝑖 𝑣𝑖 )𝑁𝑖=1 | D (3.3)

is defined as follows. We again perform independent executions of the program sweeping through
environments (𝑉1, . . . ,𝑉𝑁 ). Let 𝐿′ ⊂ L denote the labels of all statℓ subexpressions in program 𝑒 .
We collect in Dℓ all measurements (𝑉 , 𝑣, 𝑐) associated with expression statℓ 𝑒ℓ , for each ℓ ∈ 𝐿′. The
overall dataset is D = {(ℓ,𝑉 , 𝑣, 𝑐) | ℓ ∈ 𝐿′, (𝑉 , 𝑣, 𝑐) ∈ Dℓ }.

4 BACKGROUND ON STATIC RESOURCE ANALYSIS

This work builds on automatic amortized resource analysis (AARA) [21, 39, 40, 42, 47, 48, 60], a
type-based resource analysis technique for functional programs. It aims to automatically infer
polynomial cost bounds. It adopts the potential method of amortized analysis [85], where data
structures are equipped with potential functions mapping concrete values to non-negative numbers.

4.1 Linear AARA

To illustrate how AARA works, consider the function partition in Listing 1. Our goal is to derive
a worst-case bound on the number of comparisons during an evaluation of partition, namely
𝑛, where 𝑛 is the input list length. In AARA, we type expression partition (p,x), where p is a
pivot and x is an input list, as follows:

{p : int, x : 𝐿1 (int)}; 0 ⊢ partition (p,x) : ⟨𝐿0 (int) × 𝐿0 (int), 0⟩.
The type 𝐿1 (int) assigns the potential functionΦ(𝑣 : 𝐿1 (int)) = 1· |𝑣 | to an input list 𝑣 , representing
the tight worst-case bound. The annotation 0 in the typing context indicates that 0 additional
constant potential is stored in the context.

AARA is naturally compositional because potential functions explicitly track size changes of
data structures. Assume we have two nested calls to partition as in the following function f.
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f(x) = let (x1,x2) = partition (8128,x) in partition (1,x1)

In the call partition (1,x1), we can use the previous type for partition. However, for the call
partition (8128,x), we use the typing judgment

{p : int, x : 𝐿2 (int)}; 0 ⊢ partition (p,x) : ⟨𝐿1 (int) × 𝐿1 (int), 0⟩.
It assigns type 𝐿1 (int) to the output lists. Let 𝑣 , 𝑣1, 𝑣2 be values of variables 𝑥 , 𝑥1, 𝑥2, respectively.
The intuition is that the input potential Φ(𝑣 : 𝐿2 (int)) = 2 · |𝑣 | is used to cover both the cost (1 · |𝑣 |)
and the potential of the result (1 · |𝑣1 | + 1 · |𝑣2 |). It relies on the fact |𝑣1 | + |𝑣2 | = |𝑣 |. The remaining
potential Φ(𝑣1 : 𝐿1 (int)) = 1 · |𝑣1 | covers the cost of the second function call partition (1,x1).
In general, the type of partition (p,x) can be expressed with linear constraints:

{p : int, x : 𝐿𝑝1 (int)};𝑝0 ⊢ partition (p,x) : ⟨𝐿𝑞1 (int) × 𝐿𝑞2 (int), 𝑞0⟩
subject to 𝑝1 ≥ 1 + 𝑞′, 𝑞′ ≥ 𝑞1, 𝑞

′ ≥ 𝑞2, 𝑝0 ≥ 𝑞0.

Similar constraints are emitted by the local type rules during the type inference. The constraints
are then solved with an off-the-shelf linear programming solver to derive a bound for the program.

4.2 Polynomial AARA

AARA can be extended to polynomial potential functions and therefore polynomial cost bounds
while retaining compositionality and type inference with linear constraint solving [39, 43]. Consider
quicksort from Listing 1. In terms of the number of comparisons, the worst-case cost of quicksort
is 𝑛(𝑛 − 1)/2, where 𝑛 is the input list length. This cost bound is expressed by the following typing
judgment in univariate polynomial AARA:

{x : 𝐿 (0,1) (int)}; 0 ⊢ quicksort x : ⟨𝐿 (0,0) (int), 0⟩. (4.1)
Here, the input type 𝐿 (0,1) (int) assigns the potential function Φ(𝑣 : 𝐿 (0,1) (int)) = 0 ·

( |𝑣 |
1
)
+ 1 ·

( |𝑣 |
2
)
,

and the constant 0 after 𝐿 (0,1) (int) indicates the constant zero potential stored in the input.
Univariate polynomial AARA extends linear AARA with univariate polynomial potential func-

tions. For instance, given two values 𝑣1 and 𝑣2, univariate AARA can express a potential function
|𝑣1 |2 + |𝑣2 |2. Resource-annotated datatypes in univariate AARA are formed by the grammar

𝑎 F unit | int | ⟨𝑎1, 𝑞1⟩ + ⟨𝑎2, 𝑞2⟩ | 𝑎1 × 𝑎2 | 𝐿 ®𝑞 (𝑎).
Here, 𝑞1, 𝑞2 ∈ Q≥0 denote constant potential, and a tuple ®𝑞 over Q≥0 records coefficients of
polynomial potential functions, except their constant (i.e., degree-zero) potential. To indicate
constant potential 𝑞 ∈ Q≥0 in addition to higher-degree coefficients, we write ⟨𝑎, 𝑞⟩.

The amount Φ of potential stored in value 𝑣 according to a resource-annotated datatype 𝑎 is
Φ(𝑣 : unit) = Φ(𝑣 : int) := 0 Φ(⟨𝑣1, 𝑣2⟩ : 𝑎1 × 𝑎2) := Φ(𝑣1 : 𝑎1) + Φ(𝑣2 : 𝑎2)

Φ(left · 𝑣 : ⟨𝑎1, 𝑞1⟩ + ⟨𝑎2, 𝑞2⟩) := 𝑞1 + Φ(𝑣 : 𝑎1) Φ( [ ] : 𝐿 ®𝑞 (𝑎)) := 0

Φ(right · 𝑣 : ⟨𝑎1, 𝑞1⟩ + ⟨𝑎2, 𝑞2⟩) := 𝑞2 + Φ(𝑣 : 𝑎2) Φ(𝑣1 :: 𝑣2 : 𝐿 ®𝑞 (𝑎)) := 𝑞1 + Φ(𝑣1 : 𝑎)

+ Φ(𝑣2 : 𝐿⊳( ®𝑞) (𝑎)),
where ®𝑞 = (𝑞1, . . . , 𝑞𝑑 ) and the shift operator ⊳ on tuples is ⊳(𝑞1, . . . , 𝑞𝑑 ) := (𝑞1+𝑞2, . . . , 𝑞𝑑−1+𝑞𝑑 , 𝑞𝑑 ).
Equivalently, if ®𝑞 = (𝑞1, . . . , 𝑞𝑑 ), then a size-𝑛 list [𝑣1, . . . , 𝑣𝑛] of type 𝐿 ®𝑞 (𝑎) has potential

Φ( [𝑣1, . . . , 𝑣𝑛] : 𝐿 ®𝑞 (𝑎)) = ∑𝑑
𝑖=1 𝑞𝑖

(
𝑛
𝑖

)
+∑𝑛

𝑖=1 Φ(𝑣𝑖 : 𝑎). (4.2)
Given an evaluation context 𝑉 = {𝑥1 : 𝑣1, . . . , 𝑥𝑛 : 𝑣𝑛}, its potential according to a resource-

annotated typing context Γ = {𝑥1 : 𝑎1, . . . , 𝑥𝑛 : 𝑎𝑛} is Φ(𝑉 : Γ) :=
∑𝑛

𝑖=1 Φ(𝑣𝑖 : 𝑎𝑖 ). The notation of
potential function Φ is used for both value 𝑣 : 𝑎 and evaluation context 𝑉 : Γ.
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Fig. 2. Three approaches to data-driven resource analysis. (a) Opt uses linear programming to fit a polynomial

curve that lies above the runtime data while minimizing the distance to the observed worst-case cost at each

input size. (b) BayesWC uses a two-step approach: first, Bayesian survival analysis is used to infer a posterior

distribution over the worst-case cost at each input size; second, linear programming is used to fit polynomial

curves with respect to samples from the inferred distribution of worst-case costs. (c) BayesPC uses Bayesian

polynomial regression to infer the coefficients of polynomial curves that lie above the observed runtime data.

A resource-annotated typing judgment of univariate AARA is

Γ; 𝑝 ⊢ 𝑒 : ⟨𝑎, 𝑞⟩, (4.3)

where Γ is a resource-annotated typing context (i.e., a mapping from variables to resource-annotated
types), 𝑝 ∈ Q≥0 is constant potential of the context, and 𝑎 is a resource-annotated type of the
output with constant potential 𝑞 ∈ Q≥0. The judgment (4.3) means, given an environment 𝑉 that
carries potential 𝑝 + Φ(𝑉 : Γ), if 𝑒 evaluates to value 𝑣 , then 𝑣 carries 𝑞 + Φ(𝑣 : 𝑎) much potential.

The soundness of univariate AARA is formally stated in Theorem 4.1 [44].

Theorem 4.1 (Soundness of univariate AARA). Under a monotone resource metric, suppose
Γ;𝑝 ⊢ 𝑒 : ⟨𝑎, 𝑞⟩. If we have 𝑉 ⊢P 𝑒 ⇓𝑐 𝑣 , then Φ(𝑉 : Γ) + 𝑝 − Φ(𝑣 : 𝑎) − 𝑞 ≥ 𝑐 holds.

In our prototype of hybrid resource analysis, we use multivariate polynomial AARA [40, 42]
that can express multivariate polynomial potential functions and hence is strictly more expressive
than univariate polynomial AARA. Multivariate AARA preserves compositionality and linear-
programming-based type inference from univariate AARA. However, for the ease of presentation,
we use the notation of univariate AARA throughout this article.

5 DATA-DRIVEN BAYESIAN RESOURCE ANALYSIS

This section presents two novel data-driven resource analysis methods called BayesWC and
BayesPC that use Bayesian inference to learn probability distributions over cost bounds of programs.

Recall from Section 3.3 that fully data-driven resource analysis begins with a program P =

{𝑓 (𝑥) = 𝑒} that contains a single function 𝑓 and runtime dataset D = {(𝑉𝑖 , 𝑣𝑖 , 𝑐𝑖 )}𝑁𝑖=1. To simplify
the presentation, we assume in this section that 𝑓 takes as input a length-𝑛 integer list, returns a
length 𝜉 (𝑛)-integer list, and contains no free variables. Since 𝑉𝑖 ≡ {𝑥 : 𝑣𝑖 } holds for each 𝑖, . . . , 𝑁 ,
we denote the measurements more concisely as (𝑣𝑖 , 𝑣𝑖 , 𝑐𝑖 ). Following Eq. (4.3), a cost bound of 𝑓 is

{𝑥 : 𝐿 ®𝑝 (int)}, 𝑝0 ⊢ 𝑓 𝑥 : ⟨𝐿 ®𝑞 (int), 𝑞0⟩. (5.1)

This typing judgment is sound if, for all lists 𝑣 : 𝐿(int), the relation {𝑥 : 𝑣} ⊢P 𝑓 𝑥 ⇓𝑐 𝑣 holds, i.e.,

[Φ(𝑣 : 𝐿 ®𝑝 (int)) + 𝑝0] − [Φ(𝑣 : 𝐿 ®𝑞 (int)) + 𝑞0] ≡
[
Ψ( |𝑣 |;𝑝0, ®𝑝) − Ψ( |𝑣 |;𝑞0, ®𝑞)

]
≥ 𝑐, (5.2)

where we have introduced the function Ψ(𝑛;𝑝0, ®𝑝) :=
∑ | ®𝑝 |

𝑖=1 𝑝𝑖
(
𝑛
𝑖

)
+ 𝑝0 (𝑛 ∈ N). Unlike conventional

AARA, which derives (5.1) by static analysis of 𝑒 and linear programming, in data-driven resource
analysis we will infer the parameters (𝑝0, ®𝑝) and (𝑞0, ®𝑞) using the dataset D.
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5.1 Optimization

Before presenting Bayesian inference, we consider a simple optimization-based baseline (adapted
from [23, 33, 90]) to ensure that (5.2) is satisfied with respect to the runtime data D, i.e.,

∀𝑖 = 1, . . . , 𝑁 .Ψ( |𝑣𝑖 |;𝑝0, ®𝑝) ≥ 𝑐𝑖 + Ψ( |𝑣𝑖 |;𝑞0, ®𝑞). (5.3)

We seek the tightest bound among all 𝑝0, ®𝑝, 𝑞0, ®𝑞 that minimizes the nonnegative cost gaps between
the predicted and observed costs in the dataset D. Letting

𝑁D ≔ {|𝑣𝑖 |; 𝑖 = 1, . . . , 𝑁 } set of unique input sizes appearing in D (5.4)
𝑐max
𝑛 ≔ max {𝑐𝑖 | 𝑖 = 1, . . . , 𝑁 ; |𝑣𝑖 | = 𝑛} max. observed cost for input size 𝑛 ∈ 𝑁D (5.5)
𝑐max
𝑛 ≔ max {cost(𝑓 𝑣) | 𝑣 : 𝐿(int), |𝑣 | = 𝑛} true worst-case cost for input size 𝑛 ∈ 𝑁D, (5.6)

we define the following linear program:

minimize
∑𝑁

𝑖=1
[
Ψ( |𝑣𝑖 |;𝑝0, ®𝑝) − Ψ( |𝑣𝑖 |;𝑞0, ®𝑞)

]
− 𝑐max

|𝑣𝑖 | (Opt-LP)

subject to Ψ( |𝑣𝑖 |;𝑝0, ®𝑝) ≥ Ψ( |𝑣𝑖 |;𝑞0, ®𝑞) + 𝑐max
|𝑣𝑖 | (𝑖 = 1, . . . , 𝑁 ); 𝑝0, 𝑝1, . . . , 𝑝 | ®𝑝 | , 𝑞0, 𝑞1, . . . , 𝑞 | ®𝑞 | ≥ 0.

An example of this approach, which we call Opt, is shown in Fig. 2a. While any solution 𝑝0, ®̂𝑝, 𝑟0, ®̂𝑞
to (Opt-LP) is guaranteed to satisfy (5.3), even a conservative estimate Ψ(𝑛; 𝑝0, ®̂𝑝) of the worst-case
cost may lie below the true value 𝑐max

𝑛 in Eq. (5.6) (which we assume is finite), as shown in Fig. 1a.
This shortcoming occurs because Opt uses the point estimate 𝑐max

𝑛 given in Eq. (5.5) as a proxy for
𝑐max
𝑛 , which is not robust in cases where the data D is such that 𝑐max

𝑛 < 𝑐max
𝑛 for some 𝑛 ∈ 𝑁D .

5.2 Bayesian Inference on Worst-Case Costs

Overview. Our first approach to addressing the aforementioned limitation of Opt is Bayesian
inference on worst-case costs (BayesWC). Whereas Opt uses the data D to form a point estimate
𝑐max
𝑛 of the worst-case cost 𝑐max

𝑛 for each input size 𝑛 ∈ 𝑁D in the linear program, BayesWC instead
leverages D to learn an entire probability distribution 𝜇𝑛 that characterizes our uncertainty about
𝑐max
𝑛 . We identify two requirements that the inferred worst-case cost distributions 𝜇𝑛 must satisfy:

𝜇𝑛 ( [𝑐max
𝑛 ,∞)) = 1, ∀𝜖 > 0,𝑤 > 𝑐max

𝑛 . 𝜇𝑛 ( [𝑤 − 𝜖,𝑤 + 𝜖]) > 0. (5.7)

The left expression guarantees soundness (5.3) with respect to D and the right expression ensures
robustness with respect to the true worst-case cost 𝑐max

𝑛 . The latter property is not satisfied by Opt.
If we have access to probability distributions 𝜇𝑛 (𝑛 ∈ 𝑁D) over worst-case costs, we can use

them to robustly estimate bounds by generating |𝑁D | batches of 𝑀 > 0 i.i.d. samples

(𝑐′𝑛,1, . . . 𝑐′𝑛,𝑀 ) ∼ 𝜇𝑛 (𝑛 ∈ 𝑁D). (5.8)

Reorganizing these |𝑁D | × 𝑀 samples into 𝑀 lists c′𝑗 ≔ (𝑐′𝑛,𝑗 ;𝑛 ∈ 𝑁D) ( 𝑗 = 1, . . . , 𝑀) each of
length 𝑁D , we obtain posterior samples of coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 by solving 𝑀 linear programs
parametrized the random samples c′𝑗 :

minimize
∑𝑁

𝑖=1
[
Ψ( |𝑣𝑖 |;𝑝0, ®𝑝) − Ψ( |𝑣𝑖 |;𝑞0, ®𝑞)

]
− 𝑐′|𝑣𝑖 |, 𝑗 (BayesWC-LP)

subject to Ψ( |𝑣𝑖 |;𝑝0, ®𝑝) ≥ Ψ( |𝑣𝑖 |;𝑞0, ®𝑞) + 𝑐′|𝑣𝑖 |, 𝑗 (𝑖 = 1, . . . , 𝑁 ); 𝑝0, 𝑝1, . . . , 𝑝 | ®𝑝 | , 𝑞0, 𝑞1, . . . , 𝑞 | ®𝑞 | ≥ 0.

Figure 2b shows an example of BayesWC, where the blue dots above a given input size 𝑛 represents
the samples 𝑐′𝑛,𝑗 from the worst-case cost distribution 𝜇𝑛 . The solutions of the corresponding linear
programs (BayesWC-LP) are shown in red. Whereas Opt delivers a single bound using from one
LP, BayesWC delivers a posterior samples of bounds using multiple randomly generated LPs.
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Sampling worst-case costs via Bayesian inference. A central design challenge in BayesWC is
obtaining the distributions 𝜇𝑛 over worst-case costs that satisfy Eq. (5.7). Our approach uses
Bayesian inference in a probabilistic generative model over observed costs of the target function 𝑓 .

In particular, let 𝐶𝑛 be a random variable representing the cost of 𝑓 applied to a size-𝑛 input 𝑣
(the randomness is taken over the (unknown) distribution of 𝑣). Letting v ≔ (𝑣1, . . . , 𝑣𝑁 ) denote
the observed inputs in D and c ≔ (𝑐1, . . . , 𝑐𝑁 ) the corresponding costs, we infer the distribution of
𝐶𝑛 (𝑛 ∈ 𝑁D ) by designing a (yet-to-be-specified) Bayesian model that is indexed by v and defines a
probability distribution 𝜋v (𝜃, c) over latent parameters 𝜃 and observable costs c. Conditioned on
the realization of c in the dataset D, the posterior distribution of 𝜃 is given by the Bayes rule as

𝜋v (𝜃 |c) ≔
𝜋v (𝜃, c)∫

𝜃 ′ 𝜋v (𝜃 ′, c)d𝜃 ′
∝ ℎ(𝜃 )

𝑁∏
𝑖=1

𝑔(𝑐𝑖 ;𝜃, |𝑣𝑖 |) (5.9)

where the joint probability factorizes into prior distribution ℎ(𝜃 ) over parameters 𝜃 and a product
of likelihood terms 𝑔(𝑐𝑖 ;𝜃, |𝑣𝑖 |) for the conditionally independent observed costs 𝑐𝑖 . Here, 𝑔 denotes
a distribution over costs R>0 parameterized by an input size 𝑛 and latent parameter 𝜃 .

Suppose that, given D, we are able to infer the posterior 𝜋v (𝜃 |c) as defined in Eq. (5.9). We
generate samples (𝑐′𝑛,1, . . . , 𝑐′𝑛,𝑀 ) in Eq. (5.8) from the worst-case cost distribution 𝜇𝑛 by sampling:

𝜃 𝑗 ∼ 𝜋v (𝜃 |c), 𝑐′𝑛,𝑗 ∼ 𝑔(·;𝑛, 𝜃 𝑗 , [𝑐max
𝑛 ,∞)) ( 𝑗 = 1, . . . , 𝑀 ;𝑛 ∈ 𝑁D), (5.10)

where the distribution 𝑔 is defined as the restriction of 𝑔 to an interval 𝑈 ⊂ R, that is,

𝑔(𝑥 ;𝑛, 𝜃,𝑈 ) ≔ 𝑔(𝑥 ;𝑛, 𝜃 )I[𝑥 ∈ 𝑈 ]∫
𝑥 ′∈𝑈 𝑔(𝑥 ′;𝑛, 𝜃 )d𝑥 ′

(𝑥 ∈ R). (5.11)

Proposition 5.1. If the likelihood𝑔(𝑐 ;𝜃, 𝑛) has full support over [0,∞), then the inferred worst-case
distribution 𝜇𝑛 defined by Eqs. (5.10) and (5.11) satisfies the soundness and robustness properties (5.7).

Remark 5.2. The reader may be concerned that the distributions of the 𝑀 simulated worst-cost
bounds c′ ≔ (𝑐′𝑛, 𝑛 ∈ 𝑁D) in Eq. (5.10) are defined in terms of 𝑐max

𝑛 , which are observation-specific
quantities. However, because the prior 𝜋v is a probability distribution indexed by a fixed vector
of input instances v that uniquely define the sizes 𝑁D , the random variable 𝑐′𝑛 has a well-defined
prior distribution, as demonstrated by the factorization and graphical representation:

𝜃 c c′ 𝜋v (𝜃, c, c′) = ℎ(𝜃 )∏𝑁
𝑖=1 𝑔(𝑐𝑖 ;𝜃, |𝑣𝑖 |)

∏
𝑛∈𝑁D 𝑔(𝑐′𝑛 ;𝑛, 𝜃, [ max

𝑖∈[𝑁 ]; |𝑣𝑖 |=𝑛
𝑐𝑖 ,∞)) .

The conditional independence structure in the model is now obvious, and the 𝑀 replicates of c̃
drawn in Eq. (5.11) are valid posterior inferences conditioned on the observed costs c in D. «

Survival analysis for worst-case costs. To obtain the distribution 𝜋v (𝜃, c) (5.9) we design a domain-
general probability model grounded in survival analysis [4] for predicting “time-to-occurrence”
data beyond an observed horizon. We have three parameters 𝜃 = {𝛽0, 𝛽1, 𝜎} with i.i.d. normal
prior ℎ; a hyperparameter 𝛾0; a likelihood model 𝑔 over observable costs 𝑐 that is defined implicitly
through a variable transformation; and a noise distribution 𝑔noise:

𝛽0, 𝛽1, 𝜎
iid∼ Normal(0, 𝛾0), 𝜖𝑖 ∼ 𝑔noise (0, 1), 𝑦𝑖 = 𝛽0 + 𝛽1 |𝑣𝑖 | + |𝜎 |𝜖𝑖 , 𝑐𝑖 = exp(𝑦𝑖 ). (5.12)

for each 𝑖 = 1, . . . , 𝑁 (i.i.d.). Possible choices for the noise distribution 𝑔noise include the standard
normal, logistic, or Gumbel distributions, which in turn imply that the likelihood model 𝑔 is a
log-normal, log-logistic, or Weibull distribution each with scale parameter exp(𝛽0 + 𝛽1 |𝑣𝑖 |) and
shape parameters |𝜎 |, |𝜎 |−1, and |𝜎 |−1, respectively. Our reference implementation sets 𝑔noise to be
a Gumbel distribution, for its relatively heavier tails as compared to other choices.
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5.3 Bayesian Inference on Polynomial Coefficients

Overview. Whereas BayesWC performs Bayesian inference on worst-case costs and composes the
results with (BayesWC-LP) to deliver bounds, we develop another approach that bypasses LP solving
and directly performs inference over the unknown coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 in the judgment (5.1).

In this approach, which we call BayesPC, our Bayesian model is again indexed by the input
instances v and defines a probability distribution 𝜋v (𝜃, 𝑝0, ®𝑝, 𝑞0, ®𝑞, c) over a set of auxiliary latent
parameters 𝜃 , resource coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞, and observable costs c. Conditioned on c, we sample

𝑝′0, ®𝑝′, 𝑞′0, ®𝑞′ ∼ 𝜋v (𝑝0, ®𝑝, 𝑞0, ®𝑞 |c), (5.13)

which define the posterior bound 𝜆𝑛. Ψ(𝑛;𝑝′0, ®𝑝′) − Ψ(𝜉 (𝑛);𝑞′0, ®𝑞′). Figure 2c illustrates this idea:
the blue curves represent posterior samples of cost bounds and the blue dots show samples 𝑐′𝑛
of inferred worst-case costs that estimate the true value 𝑐max

𝑛 at each input size 𝑛 ∈ 𝑁D . As in
BayesWC, BayesPC delivers posterior samples of both worst-case costs and cost bounds, but it
rests on a different modeling and inference approach that bypasses linear programming entirely.

Bayesian polynomial regression for inferring coefficients. The generative model 𝜋v (𝜃, 𝑝0, ®𝑝, 𝑞0, ®𝑞, c)
in BayesPC must be carefully designed to ensure that the posterior distribution assigns probability
one to the set of coefficients (𝑝0, ®𝑝, 𝑞0, ®𝑞) that satisfy Eq. (5.3), for any dataset D. As in Remark 5.2,
to obtain a valid Bayesian model, we must define a prior distribution independently of the observed
maximum costs 𝑐max

𝑛 . We thus model the observable costs (𝑐1, . . . , 𝑐𝑁 ) as random variables where
each 𝑐𝑖 takes values in a bounded interval [0, 𝑐′|𝑣𝑖 | ], 𝑖 = 1, . . . , 𝑁 . For each 𝑛 ∈ 𝑁D , the endpoints 𝑐′𝑛
of these intervals are themselves random variables defined as polynomial regression outputs that
capture uncertainty in the true worst-case cost 𝑐max

𝑛 . The generative model in BayesPC is given by:

(𝑝 𝑗 ) | ®𝑝 |𝑗=0, (𝑞 𝑗 ) | ®𝑞 |𝑗=0
iid∼ Normal≥0 (0, 𝛾0), 𝜃 ∼ ℎnoise (𝛾1) (5.14)

𝑐′𝑛 ≔ Ψ(𝑛; 𝑝0, ®𝑝) − Ψ(𝜉 (𝑛);𝑞0, ®𝑞) (𝑛 ∈ 𝑁D) (5.15)
𝜖𝑖 ∼ 𝑔noise (·;𝜃, [0, 𝑐′|𝑣𝑖 | ]), 𝑐𝑖 ≔ 𝑐′|𝑣𝑖 | − 𝜖𝑖 (𝑖 = 1, . . . , 𝑁 ; i.i.d.), (5.16)

where 𝛾0, 𝛾1 are hyperparameters. The term 𝑔noise (·;𝜃, [0, 𝑐′𝑛]) is the truncation of an underlying
noise distribution 𝑔noise (·;𝜃 ) that has full support over [0,∞) (c.f., Eq. (5.11)). Its parameter 𝜃 has
prior ℎnoise. We take 𝑔noise to be a Weibull distribution with scale and shape parameters 𝜃 ≔ (𝜃0, 𝜃1).

Remark 5.3. The main challenge to posterior inference in BayesPC is the fact that the poly-
nomial coefficients 𝑝0, ®𝑝, 𝑞0, ®𝑞 are constrained by 𝑔noise to the linear regions 𝑐𝑖 ≤ Ψ( |𝑣𝑖 |;𝑝0, ®𝑝) −
Ψ(𝜉 ( |𝑣𝑖 |);𝑞0, ®𝑞) for 𝑖 = 1, . . . , 𝑁 (in addition to further constraints discussed in Section 6.2). Coeffi-
cients outside this region have zero posterior probability density because they require 𝜖𝑖 < 0 for
some 𝑖 , which has zero prior probability. Whereas traditional Markov chain Monte Carlo algorithms
struggle in this setting, we leverage “reflective” Hamiltonian Monte Carlo sampling [15, 18, 58, 69]
for posterior inference in BayesPC, where simulated trajectories reflect at the boundaries of the
convex polytopes. A high-quality implementation is available in the C++ library Volesti [17]. «

5.4 Generalizations

We briefly describe generalizations of BayesWC and BayesPC that relax the simplifying assumptions
made at the beginning of this section and are needed to describe hybrid resource analysis in Section 6.

General variable environments. Suppose we perform data-driven analysis on a function 𝑓 (𝑥) = 𝑒
where the measurements (𝑉𝑖 , 𝑣𝑖 , 𝑐𝑖 ) in D have general variable environments𝑉𝑖 = {𝑥1 : 𝑣1, 𝑥2 : 𝑣2, . . .}.
In this case, we define a projection function 𝜑 (𝑉 , 𝑣) that maps an environment and value to integer
tuples in the set ∪∞

𝑑=0N
𝑑 . For example, if 𝑣1 : 𝐿(int), 𝑣2 : 𝐿(int), 𝑣 : 𝐿(int) are three integer lists
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Fig. 3. Two hybrid resource analysis techniques for composing static and data-driven resource analysis.

Subexpression 𝑒 in program 𝑓 has a cannot be analyzed using AARA: it is analyzed using Bayesian inference.

and 𝑉 = {𝑥1 : 𝑣1, 𝑥2 : 𝑣2}, we may define 𝜑 (𝑉 , 𝑣) = ( |𝑣1 |, |𝑣2 |, |𝑣1 | + |𝑣2 |, |𝑣 |) ∈ N4. The unique input
sizes (5.4) are 𝑁D ≔ {𝜑 (𝑉𝑖 , 𝑣𝑖 ) | 𝑖 = 1, . . . , 𝑁 }. The models 𝜋v in BayesWC and BayesPC are now
indexed by v ≔ ((𝑉𝑖 , 𝑣𝑖 ), 𝑖 = 1, . . . , 𝑛). Remaining details generalize with minor modifications.

General type judgments. When generalizing the resource-annotated typing judgment (5.1) to the
form {𝑥1 : 𝑎1, 𝑥2 : 𝑎2, . . . , 𝑥𝑚 : 𝑎𝑚} ;𝑝0 ⊢ 𝑒 : ⟨𝑎, 𝑞0⟩ in Eq. (4.3), each resource-annotated type 𝑎𝑖 is
associated with symbolic coefficients ®𝑝𝑖 (𝑖 = 1, . . . ,𝑚), and the output type 𝑎 with coefficients ®𝑞.
The constant potentials 𝑝0 and 𝑞0 are unchanged. The linear programs (Opt-LP) and (BayesWC-LP)
and the BayesPC generative model (5.14)–(5.16) are then defined over this expanded collection
of coefficients. Simulations in Eq. (5.13) produced from BayesPC, for example, may be written as
equivalently (𝑝′0,

{
®𝑝′𝑖
}𝑚
𝑖=1 , ®𝑞, 𝑞

′
0) ∼ 𝜋v (·|c) or (𝑝′0, Γ′, 𝑎′, 𝑞′0) ∼ 𝜋v (·|c). In the latter case, the sampled

typing environment Γ′ is obtained by using the sampled coefficient ®𝑝′𝑖 in place of the symbolic
coefficient within each resource-annotated type 𝑎𝑖 (𝑖 = 1, . . . ,𝑚), and similarly for 𝑎′ and ®𝑞′.

6 HYBRID RESOURCE ANALYSIS

Having described two novel methods for Bayesian data-driven resource analysis, we next present
hybrid resource analysis (Hybrid AARA), which integrates data-driven analysis for parts of the
program tagged by statℓ with static AARA analysis (Section 4) on remaining parts. Hybrid AARA
is based on a formal typing system that extends AARA with a new type judgment:

Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩. (6.1)

Eq. (6.1) extends (4.3) by including a dataset D of runtime measurements that are collected using
the procedure described in Section 3.3. We also describe novel type inference algorithms and key
technical challenges in the design of the interface between data-driven resource analysis using
Bayesian inference and conventional AARA using static inference and linear programming.
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6.1 Hybrid BayesWC and Opt

Typing rules. Opt and BayesWC are integrated into the AARA type system (described in Appen-
dix A) by adding the following rules for statℓ subexpressions:

H:Opt
𝑝0 + Φ(𝑉 ℓ

𝑖 : Γ) ≥ 𝑞0 + Φ(𝑣 ℓ𝑖 : 𝑎) + 𝑐ℓ𝑖
(𝑖 = 1, . . . , |Dℓ |)

Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩

H:BayesWC
𝑝0 + Φ(𝑉 ℓ

𝑖 : Γ) ≥ 𝑞0 + Φ(𝑣 ℓ𝑖 : 𝑎) + 𝑐′ℓ
𝜑 (𝑉 ,𝑣)

𝑐′ℓ𝑛 ∼ 𝜋 ℓ
vℓ (·|c

ℓ ) (𝑖 = 1, . . . , |Dℓ |;𝑛 ∈ 𝑁Dℓ
)

Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩
. (6.2)

H:Opt states that the consequent holds whenever the input potential 𝑝0 + Φ(𝑉 : Γ) is large enough
to cover both cost 𝑐 and leftover potential 𝑞0 + Φ(𝑣 : 𝑎) for every measurement (𝑉 , 𝑣, 𝑐) ∈ Dℓ . In
H:BayesWC, we use labels ℓ to disambiguate data-driven inferences related to different labeled
statℓ sites in the program. That is, we have Dℓ =

{
(𝑉 ℓ

𝑖 , 𝑣
ℓ
𝑖 , 𝑐

ℓ
𝑖 ) | 𝑖 = 1, . . . , 𝑀ℓ

}
, vℓ ≔ ((𝑉 ℓ

𝑖 , 𝑣
ℓ
𝑖 ), 𝑖 =

1, . . . , 𝑀ℓ ), and cℓ ≔ (𝑐ℓ𝑖 , 𝑖 = 1, . . . , 𝑀ℓ ). The corresponding probabilistic model (e.g., Eq. (5.12))
used within statℓ is denoted 𝜋 ℓ . H:BayesWC is similar to H:Opt, except that each observed cost 𝑐
within a measurement (𝑉 , 𝑣, 𝑐) is replaced with a posterior sample 𝑐′ℓ

𝜑 (𝑉 ,𝑣) from BayesWC (5.8) that
captures inferential uncertainty about the true worst-case cost 𝑐max

𝜑 (𝑉 ,𝑣) .

Type inference. Because the premises of H:Opt and H:BayesWC are linear constraints over
the resource coefficients in 𝑒 , type inference operates similarly to conventional AARA. Figure 3a
shows the type inference workflow for BayesWC. Given the runtime data D we first perform data-
driven BayesWC inference to produce 𝑀 batches of posterior samples of c′ℓ𝑗 ≔ (𝑐′ℓ𝑛,𝑗 , 𝑛 ∈ 𝑁Dℓ

) for
𝑗 = 1, . . . , 𝑀 and each label ℓ , which define 𝑀 versions of H:BayesWC for each statℓ subexpression.
Next, for each 𝑗 = 1, . . . , 𝑀 we perform a static pass, denoted AARA+H:BayesWC in Fig. 3a, that
constructs a template typing tree according to the conventional AARA type system for traditional
expressions and uses (the posterior sample of) H:BayesWC for statℓ subexpressions. This process
produces 𝑀 systems of linear constraints 𝐶 𝑗 ( 𝑗 = 1, . . . , 𝑀), where the linear constraints within
each 𝐶 𝑗 are derived from two provenances: those from the conventional AARA type system and
those from the H:BayesWC type rule. Each 𝐶 𝑗 is provided to an LP solver to provide a typing
judgment 𝐽 𝑗 for the root node’s typing context, which translates to an inferred cost bound.

Linear Programming Objective. When solving the overall linear program in AARA+H:BayesWC
or AARA+H:Opt, our solver first minimizes the sum of cost gaps form the data-driven components
(i.e., (Opt-LP) or (BayesWC-LP)) and then performs minimization of input coefficients at the root.
As with conventional AARA [42], it is possible to either minimize the sum of coefficients at the root
or minimize higher-degree coefficients with higher priorities. Our prototype of hybrid resource
analysis allows users to make either choice.

6.2 Hybrid BayesPC

Key challenge. Integrating Bayesian data-driven resource analysis with BayesPC into conven-
tional AARA is fundamentally more difficult as compared to integrating Opt and BayesWC. This
difficulty arises because resource coefficients in the typing judgment Γ;𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩
are sampled using Bayesian inference in BayesPC, while they are optimized using LP solvers in
both Opt and BayesWC. AARA poses a challenge because we do not know in advance how much
potential should be stored in ⟨𝑎, 𝑞0⟩. Unlike in fully data-driven resource analysis, in hybrid resource
analysis the output of statℓ 𝑒 may be used in a subsequent computation that also consumes potential.
Both Γ and 𝑝0 should store enough potential to pay for both its own cost and the cost of subsequent
computation. Naïvely sampling resource annotations (Γ, 𝑝0, 𝑎, 𝑞0) for the statℓ subexpressions using
BayesPC and providing them to a conventional AARA pass over the remaining program will
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Fig. 4. Posterior distributions over resource coefficients restricted to convex polytopes using BayesPC.

likely produce a system with no solution. Hence, we need an interface between sampling-based
probabilistic inference over some coefficients and linear programming over other coefficients.

Type inference. We address this challenge by adding linear constraints to the BayesPC probabilistic
models that encode feasible regions of linear programs computed by conventional AARA. This
approach guarantees that judgments from BayesPC cannot impose new constraints that cause the
linear programs to fail to have a solution.

Figure 3b shows our type inference approach. We start by performing a static analysis pass
through the program using the conventional AARA type system to obtain a set of linear constraints
𝐶0, treating any statℓ using the rule H:Opt to ensure consistency with runtime data Dℓ . Next, for
each subexpression statℓ encountered in the first pass, we apply a variant of BayesPC that combines
both the runtime data Dℓ and constraints𝐶0 from the first pass to infer a resource-annotated typing
judgment of the form Γ;𝑝0 ⊢D statℓ 𝑒ℓ : ⟨𝑎, 𝑞0⟩.

Let 𝜋 ℓ
vℓ (𝜃, Γ, 𝑝0, 𝑞0, 𝑎, c) denote the BayesPC probabilistic model for statℓ (e.g., Eqs. (5.14)–(5.16)).

The constraints 𝐶0 are used to construct a modified probabilistic model 𝜋 ℓ
vℓ |𝐶0

(𝜀, 𝜃, Γ, 𝑝0, 𝑞0, 𝑎, c),
where 𝜀 is a collection of nuisance parameters that contains all the resource coefficients appearing
in the AARA constraints 𝐶0. Letting ℎ(𝜀) denote an uninformative prior (e.g., uniform if 𝐶0 is
bounded), the modified probabilistic model is restricted to the convex polytope defined by 𝐶0:

𝜋 ℓ
vℓ |𝐶0

(𝜀, 𝜃, Γ, 𝑝0, 𝑞0, 𝑎, c) ∝ ℎ(𝜀)𝜋 ℓ
vℓ (𝜀, 𝜃, Γ, 𝑝0, 𝑞0, 𝑎, c)I[(𝜀, . . . ) ∈ 𝐶0], (6.3)

where I[(𝜀, . . . ) ∈ 𝐶0] is 1 if the resource coefficients in the arguments to 𝜋 ℓ
vℓ |𝐶0

satisfy constraints
𝐶0 and 0 otherwise. Figure 4 shows an example: the original “Feasible Region” (grey, Fig. 4a) in
BayesPC induced by runtime data is further constrained by the constraints from the first AARA
pass (orange, Fig. 4b), with the distribution re-normalized appropriately.

Eq. (6.3) is then used to sample judgments

(Γℓ𝑗 , 𝑝ℓ0, 𝑗 , 𝑎ℓ𝑗 , 𝑞ℓ0, 𝑗 ) ∼ 𝜋 ℓ
vℓ |𝐶0

(Γ, 𝑝0, 𝑞0, 𝑎 |cℓ ) ( 𝑗 = 1, . . . , 𝑀 ; ℓ ∈ 𝐿′), (6.4)

which are shown as the output of BayesPC in Fig. 3a. Each sampled typing judgment in Eq. (6.4)
corresponds to a concrete realization of symbolic LP variables in 𝐶0 created by the corresponding
H:Opt rule at label ℓ during the first pass. We can then obtain 𝑀 new constraints

𝐶 𝑗 ≔ 𝐶0 ⊕
{
(Γℓ𝑗 , 𝑝ℓ0, 𝑗 , 𝑎ℓ𝑗 , 𝑞ℓ0, 𝑗 ) | ℓ ∈ 𝐿′

}
( 𝑗 = 1, . . . , 𝑀) (6.5)

by syntactically replacing the symbolic LP variables in𝐶0 with concrete variables at all labels ℓ ∈ 𝐿′.
Each 𝐶 𝑗 is then fed to an LP solver to obtain 𝑀 posterior samples (𝐵1, . . . , 𝐵𝑀 ) of cost bounds.
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6.3 Soundness

We formulate and prove two soundness theorems for Hybrid AARA.
Theorem 6.1 establishes that inferred cost bounds from Hybrid AARA are sound with respect to

all 𝑁 measurements in the runtime data (collected using the procedure described in Section 3.3)
Theorem 6.1. Given a program P, expression 𝑒 and D be the runtime data such that (𝑉𝑖 ⊢P 𝑒 ⇓𝑐𝑖

𝑣𝑖 )𝑁𝑖=1 | D. The following property holds with probability one: If Γ;𝑝0 ⊢D 𝑒 : ⟨𝑎, 𝑞0⟩ holds in the type
system of hybrid resource analysis, then Φ(𝑉𝑖 : Γ) + 𝑝0 − Φ(𝑣𝑖 : 𝑎) − 𝑞0 ≥ 𝑐𝑖 for any 𝑖 = 1, . . . , 𝑁 .

Proof. The proof proceeds by nested induction on (𝑉𝑖 ⊢ 𝑒 ⇓𝑐𝑖 𝑣𝑖 )𝑁𝑖=1 | D (outer induction)
and Γ; 𝑝0 ⊢D 𝑒 : ⟨𝑎, 𝑞0⟩ (inner induction), following the same structure as the soundness proof
of conventional AARA [39, 40]. The only necessary modification is proving the base case where
𝑒 ≡ statℓ 𝑒

′ for some expression 𝑒′, for the new inference rules H:Opt, H:BayesWC, and H:BayesPC.
We argue that for each typing rule, the resource-annotated judgment Γ; 𝑃 ⊢D statℓ 𝑒

′ : ⟨𝑎, 𝑞0⟩
is sound with respect to any measurement (𝑉 , 𝑣, 𝑐) ∈ Dℓ , meaning that the typing rule ensures
Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 ≥ 𝑐 holds with probability one. For H:OPT, the property follows
immediately from the premise of the typing rule. For H:BayesWC, Proposition 5.1 establishes a
condition that guarantees, for any runtime sample (𝑉 , 𝑣, 𝑐) ∈ Dℓ , the probabilistic model 𝜋v used in
BayesWC has zero probability of simulating a cost 𝑐′ℓ

𝜑 (𝑉 ,𝑣) < 𝑐 . Our choice of the likelihood function
𝑔 in Eq. (5.12) satisfies this requirement. Using this fact, the premise of H:BayesWC implies

Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 ≥ 𝑐′ℓ
𝜑 (𝑉 ,𝑣) ≥ 𝑐

max,ℓ
𝜑 (𝑉 ,𝑣) ≥ 𝑐 = 1 almost surely, (6.6)

and the conclusion follows. For H:BayesPC, Remark 5.3 establishes that the 𝜋 ℓ
v assigns zero posterior

probability density to any (Γ, 𝑝0, 𝑎, 𝑞0) that satisfies Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 < 𝑐 for some
runtime sample (𝑉 , 𝑣, 𝑐) ∈ Dℓ . As constraining 𝜋 ℓ

v to the convex polytope 𝐶0 in Eq. (6.3), cannot
possibly increase its support, the conclusion follows for H:BayesPC. □

The next result establishes the probability (over the randomness of the collected runtime data)
that inferred cost bounds from Hybrid AARA are sound up to a given input-size limit converges to
one as the dataset size 𝑁 tends to infinity.

Theorem 6.2. Let D be runtime data such that (𝑉𝑖 ⊢P 𝑒 ⇓𝑐𝑖 𝑣𝑖 )𝑁𝑖=1 | D, where (𝑉𝑖 )𝑁𝑖=1 are 𝑁
i.i.d. samples from an (unknown) input distribution and 𝑒 is an expression in program P. Assume there
exists an integer𝑚 and finite set V𝑚 of well-typed environments such that for all 𝑉 ∈ V𝑚 : 𝜑 (𝑉 ) < 𝑚

and 𝑉 has nonzero probability of appearing in D. Then for any typing judgment Γ;𝑝0 ⊢D 𝑒 : ⟨𝑎, 𝑞0⟩
inferred from Hybrid AARA, the probability that it satisfies Φ(𝑉 : Γ) + 𝑝0 − Φ(𝑣 : 𝑎) − 𝑞0 ≥ 𝑐 for all
𝑉 such that 𝑉 ⊢P 𝑒 ⇓𝑐 𝑣 and 𝜑 (𝑉 ) ≤ 𝑚 converges to one as 𝑁 → ∞.

Proof. For each 𝑛 = 1, . . . ,𝑚, there exists a worst-case environment
𝑉max
𝑛 ≔ arg max

𝑉 ∈V𝑚

{𝑐 | 𝜙 (𝑉 ) = 𝑛,𝑉 ⊢P 𝑒 ⇓𝑐 𝑣} (6.7)

with a maximal execution cost. Let 𝑝max
𝑛 > 0 be the probability 𝑉max

𝑛 is selected. Let 𝑊𝑛,𝑁 be
the event that 𝑉max

𝑛 is sampled within 𝑁 i.i.d. draws. The probability that all worst-case inputs
𝑉max

1 , . . . ,𝑉max
𝑚 occur in runtime dataset D of size 𝑁 is

P
(⋂𝑚

𝑛=0𝑊𝑛,𝑁

)
= 1 − P

(⋃𝑚
𝑛=0𝑊 𝑛,𝑁

)
≥ 1 −∑𝑚

𝑛=1 P(𝑊 𝑛,𝑁 ) = 1 −∑𝑚
𝑛=1 (1 − 𝑝max

𝑛 )𝑁 (6.8)

where𝑊 𝑛,𝑁 denotes the complement of event𝑊𝑛,𝑁 . The inequality follows from the union bound.
The last expression converges to one as 𝑁 → ∞ because 𝑝max

𝑛 > 0 for each 𝑛. The conclusion
follows from Theorem 6.1, which establishes that resource-annotated typing judgements from
Hybrid AARA are sound with respect to the environments used to generate runtime data D. □
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7 EVALUATION

Implementation. We implemented a prototype of Hybrid AARA [76] that integrates data-driven
(optimization-based and Bayesian) resource analysis into Resource-Aware ML (RaML) [42] and
evaluated it on challenging benchmarks that purely static analysis cannot solve. Each analysis run
using the prototype requires: (i) an OCaml program annotated with Raml.tick and Raml.stat; (ii)
a list of inputs for runtime cost data generation; and (iii) a configuration file, which includes e.g., a
polynomial degree, a data-driven analysis technique, a probabilistic model, and hyperparameters.
Appendix B describes an empirical Bayesian procedure to automatically determine hyperparameters.

Benchmarks. We built a benchmark suite of 10 functional programs (source code in Appendix C).
• MapAppend: Given two lists, 𝑥 and 𝑦, for each element of 𝑥 , run some (statically unanalyzable)

function 𝑓 and append its output to the cumulative result (whose initial value is 𝑦).
• Concat: Given a nested list, recursively append inner lists to the cumulative result.
• InsertionSort2: Sequentially run insertion sort twice on a list. We focus on the cost of

comparisons in the second insertion sort.
• QuickSort: Run deterministic quicksort on lists with their heads as pivots for partition.
• QuickSelect: Given an integer 𝑖 and a list, run deterministic quickselect and return the 𝑖th

smallest element in the list. Like Quicksort, it uses the heads of lists as pivots.
• MedianOfMedians: Given an integer 𝑖 and a list, recursively compute the 𝑖th smallest element

in the list by first computing the median of medians then using it to partition the list.
• ZAlgorithm: Given a list 𝑥 , return a list 𝑦 such that 𝑦 [𝑖] stores the maximum integer ℓ such

that 𝑥 [0, . . . , ℓ − 1] = 𝑥 [𝑖, . . . , 𝑖 + ℓ − 1].
• BubbleSort: Run bubble sort where pairs of adjacent reverse-ordered elements are repeatedly

swapped until no such pairs exist (i.e., saturation).
• Round: Given a natural number 𝑥 (represented as a list), compute a natural number 𝑦 such

that 𝑦 is the largest power of two below 𝑥 . Once 𝑦 is computed, we traverse 𝑦.
• EvenOddTail: Given a natural number 𝑥 (represented as a list), first traverse the list and if 𝑥

is even, we divide it by two; otherwise, we subtract one from it.
Conventional AARA cannot return a tight cost bound for any of these 10 programs. Specifically,

it cannot analyze 7/10 programs at all as they contain statically unanalyzable code fragments. For
BubbleSort, AARA cannot even reason about its termination due to bubble sort being saturation-
based. For MedianOfMedians, AARA cannot reason about the mathematical properties of medians.
For Round, to prove its linear complexity, AARA would need an infinitely tall resource-annotated
typing tree. The four benchmarks MapAppend, Concat, QuickSort, and QuickSelect fail because
they contain some complex function that conventional AARA cannot analyze (e.g., OCaml’s built-in
polymorphic comparator). For the remaining 3/10 programs, to infer some polynomial cost bound,
conventional AARA requires a wrong polynomial degree that is too high.

Proportions of sound cost bounds. Table 1 shows the proportion of inferred cost bounds that
are sound as well as analysis runtimes for all 10 benchmarks using data-driven analysis (Opt,
BayesWC, BayesPC) and their hybrid counterparts, where applicable. Optimization-based resource
analyses (data-driven and hybrid Opt) always return a single inferred cost bound, while Bayesian
resource analyses return collections of samples of cost bounds drawn from the posterior probability
distribution. In all benchmarks, for both data-driven and hybrid analyses, BayesWC produces
strictly higher proportions of sound cost bounds than Opt. This finding demonstrates that cost
bounds inferred by BayesWC are more robust than those inferred by Opt in 10/10 cases (data-
driven) and 7/7 cases (hybrid); that is, BayesWC has a strictly positive probability of inferring a
sound bound even though the runtime cost dataset does not contain worst-case inputs. In contrast,
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Table 1. Percentage of inferred cost bounds that are sound and analysis runtime for 10 benchmark programs.

Benchmark Conventional Analysis Fraction of Sound Inferred Bounds Analysis Runtime
Program AARA Method Data-Driven Hybrid Data-Driven Hybrid
MapAppend Cannot Analyze Opt 0% 0% 0.01 s 0.01 s

BayesWC 68.5% 100% 1.87 s 12.44 s
BayesPC 75.5% 100% 51.83 s 360.80 s

Concat Cannot Analyze Opt 0% 0% 0.00 s 0.01 s
BayesWC 67.3% 96.7% 2.54 s 14.73 s
BayesPC 96% 100% 113.53 s 125.28 s

InsertionSort2 Wrong Degree Opt 0% 0% 0.01 s 0.02 s
BayesWC 57.6% 100% 1.53 s 5.46 s
BayesPC 21% 57.5% 10.68 s 220.66 s

QuickSort Cannot Analyze Opt 0% 0% 0.01 s 0.11 s
BayesWC 4% 96% 2.20 s 144.88 s
BayesPC 0% 100% 13.72 s 274.51 s

QuickSelect Cannot Analyze Opt 0% 0% 0.02 s 0.19 s
BayesWC 0.2% 98.2% 1.83 s 222.47 s
BayesPC 0% 100% 12.39 s 277.20 s

MedianOfMedians Cannot Analyze Opt 0% 0% 0.17 s 0.21 s
BayesWC 11.5% 71.3% 2.36 s 93.89 s
BayesPC 0% 100% 70.39 s 896.98 s

ZAlgorithm Wrong Degree Opt 0% 0% 0.09 s 0.13 s
BayesWC 13.7% 95.9% 1.96 s 72.21 s
BayesPC 28% 100% 11.11 s 509.29 s

BubbleSort Cannot Analyze Opt 0% Cannot Analyze 0.01 s ∅
BayesWC 40.1% Cannot Analyze 2.69 s ∅
BayesPC 31.5% Cannot Analyze 11.70 s ∅

Round Cannot Analyze Opt 0% Cannot Analyze 0.01 s ∅
BayesWC 58.3% Cannot Analyze 1.91 s ∅
BayesPC 81% Cannot Analyze 12.87 s ∅

EvenOddTail Wrong Degree Opt 0% Wrong Degree 0.01 s ∅
BayesWC 65.1% Wrong Degree 1.98 s ∅
BayesPC 70% Wrong Degree 11.79 s ∅
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Fig. 5. Estimation gaps of inferred cost bounds with respect to ground-truth worst-case costs on 5 benchmarks.

in these benchmarks, Opt never returns a sound bound. Likewise, BayesPC returns more robust
bounds than Opt in 7/10 (data-driven) and 7/7 cases (hybrid). These improvements highlight the
benefits of probabilistic inference as compared to optimization.

Between fully data-driven Bayesian analysis and Hybrid AARA using BayesWC and BayesPC,
the latter delivers a substantially larger fraction of sound cost bounds in all seven benchmarks.
These results illustrate the benefits of integrating data-driven analysis with static type inference on
the remaining parts of the program not tagged with stat expressions.

The right two columns of Table 1 show the analysis runtime. Opt uses an LP solver that is much
faster than sampling algorithms: it returns answers in less than one second, whereas Bayesian
resource analysis can take minutes. Between BayesWC and BayesPC, the former is faster in terms
of analysis time per iteration. The main reason is that BayesWC uses HMC sampling without
constraints, which is much simpler than reflective HMC sampling over convex polytopes (Fig. 4)
needed for inference in BayesPC.
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QuickSort (D) QuickSelect (D) MedianOfMedians (D) Round (D)

QuickSort (H) QuickSelect (H) MedianOfMedians (H) EvenOddTail (D)

Fig. 6. Plots of inferred bounds for various benchmarks and resource analysis methods shown in Fig. 5

(D=Data Driven; H=Hybrid). Each benchmark has three plots (left-to-right): Opt, BayesWC, and BayesPC.
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Fig. 7. Plots of inferred multivariate cost bounds for MapAppend using data-driven resource analysis and

Hybrid AARA. Red planes show ground-truth tight worst-case bound and blue planes show inferred bounds.

Distributions of estimation gaps. Figure 5 shows relative estimation gaps of inferred cost bounds
with respect to the ground truth worst case bound in five benchmarks (full results in Appendix C).
In each benchmark, we fix three input sizes (10, 100, and 1000). For each size, we show the 5th,
50th, and 95th percentiles of relative estimation gaps. Because Opt infers a single bound, it has the
same estimation gap for all percentiles. Relative estimation gaps below 0 (resp. above 0) indicate an
underestimate (resp. overestimate) of the true bound. A cost bound is sound if its estimation gap is
at least 0. Figure 5 exhibits similar results as in Table 1. The QuickSort and QuickSelect panels
in Fig. 5 show an interesting finding. At input size 10, the bounds from Data-Driven BayesWC and
BayesPC are tighter than those from their Hybrid counterparts, but some of the former bounds are
unsound. As the input size increases, the estimation gaps from Hybrid AARA shrink but remain in
the “Sound Region,” whereas those from data-driven Bayesian analysis become unsound.

Posterior distributions of cost bounds. Figure 6 shows posterior distributions of cost bounds of five
benchmarks. Red curves are the true bounds and black dots show the runtime cost data. Blue curves
are median cost bounds, and light-blue shades around them show the 10–90th percentile ranges. In
both data-driven and hybrid analyses, Bayesian resource analysis delivers a sizeable fraction of
correct bounds. Certain datasets such as MedianOfMedians in Fig. 6 are particularly challenging for
purely data-driven analysis, however. Between data-driven and hybrid analyses, the cost bounds
from the latter are always more accurate (i.e., closer to sound worst-case cost bounds). Fig. 7 shows
inferred cost bounds for MapAppend, which are multivariate. The median bounds for the Bayesian
methods always lie about the ground-truth plane, whereas the single bounds for Data-Driven Opt
and Hybrid Opt are both incorrect.

Summary. Our evaluation has several key takeaways. First, in the 7/10 programs that conventional
AARA cannot solve (first 7 rows of Table 1), Hybrid AARA successfully returns accurate and robust
bounds using at least one of Hybrid BayesWC or Hybrid BayesPC. In the 3/10 programs that
Hybrid AARA cannot solve (last 3 rows of Table 1), purely data-driven analysis using BayesWC or
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BayesPC gives good proportions of sound bounds. Second, Bayesian resource analysis delivers a
substantially higher percentage of sound cost bounds as compared to optimization-based analysis
in both the purely data-driven and hybrid case. Between BayesWC and BayesPC, the former is
more conservative: it gives a larger fraction of sound bounds in the purely data-driven case, but its
cost gaps are higher. Third, for Hybrid AARA, incorporating static analysis (when possible) gives a
higher proportion of sound bounds than purely data-driven analysis with a similar runtime.

We have no clear winner between Hybrid BayesWC and Hybrid BayesPC: the latter is slower
but more accurate than the former in 5/7 cases. Additionally, BayesPC enables richer probabilistic
models than BayesWC since the probabilistic model of BayesPC models not only worst-case costs
but also resource coefficients. In practice, depending on the application, one can take the looser or
tighter result of the two methods.

8 RELATEDWORK

Static resource analysis. Existing static resource techniques are based on type systems [5, 21,
24, 26, 38, 59, 86], recurrence relations [2, 25, 35, 55, 56, 88], term rewriting [6, 7, 49, 72], ranking
functions [12, 20, 31, 82], and abstract interpretation [3, 37, 91]. Our works builds on automatic
amortized resource analysis (AARA) [36, 39, 40, 42, 45, 48, 54, 57, 61] a type-based resource-
analysis technique to analyze functional programs by automating the potential method of amortized
analysis [83–85]. AARA also has been used to analyze imperative code [13], parallel programs [46],
probabilistic programs [8, 73, 87], and session-typed concurrent programs [27, 28]. We are not
aware of prior works that combine static resource analysis with data-driven resource analysis.

Experimental algorithmics. Inference of algorithmic complexity from experiment data has been
extensively studied in the field of experimental algorithmics [29, 52, 65, 66, 71, 81]. These works
focus on using experimental data for improving pen-and-paper analyses of asymptotic complexity of
algorithms. Instead, this work focuses on using data-driven approaches for deriving non-asymptotic
bounds for programs and combining data-driven analysis with static resource analysis.

Data-driven resource analysis. There exist tools for analyzing the complexity of programs from
runtime cost samples [23, 30, 33, 50, 77, 80, 90]. Most of these works deliver average-case bounds
instead of worst-case bounds. Dynaplex [51] first infers a recurrence relation of a recursive program
from its execution traces by optimization and then solves the recurrence relation by the master
theorem. Our work on data-driven Bayesian resource analysis differs from existing works in this
field in several ways. First, we develop novel data-driven resource analyses based on Bayesian
inference (Section 5), which give us posterior distributions over unknown bounds that are more
robust than point estimates from optimization-based inference (e.g., Demontiê et al. [30] use
polynomial interpolation and Goldsmith et al. [33] use least-square power regression). Second, we
integrate data-driven Bayesian resource analysis into AARA to obtain Hybrid AARA (Section 6),
which to our knowledge is the first such combination of static and data-driven analysis.

Worst-case execution time analysis. Data-driven techniques have been studied in the worst-case
execution time (WCET) analysis of real-time embedded systems. This area focuses on deriving
concrete (i.e., non-symbolic) cost bounds of programs running on real-world hardware. Typically,
the maximum number of loop iterations in programs is assumed to be a constant independent
of input sizes. Numerous works study the use of extreme-value theory in measurement-based,
probabilistic WCET analysis [1, 16, 32, 34, 63, 64, 68, 78]. These methods all leverage frequentist
(non-Bayesian) inference. The hybrid of static and measurement-based WCET analyses has been
studied [9, 10, 89]. Unlike WCET analysis, our work focuses on symbolic cost bounds of programs
parametric in input sizes.
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9 CONCLUSION

This article has introduced Hybrid AARA, which to the best of our knowledge is the first resource
analysis method that combines data-driven and static resource analysis. We have presented two
novel data-driven Bayesian resource analysis methods (BayesWC and BayesPC) for inferring
principled posterior distributions over cost bounds. The data-driven Bayesian resource analyses
introduced in this work deliver more accurate and robust bounds as compared to previous methods
that use greedy optimization, which only gives a single point estimate. Our main contribution—
Hybrid AARA—integrates our Bayesian data-driven resource analyses into conventional AARA
using a novel type inference system. Two notions of soundness for Hybrid AARA are identified and
proven. We implemented a prototype of Hybrid AARA by extending Resource-Aware ML (RaML)
and evaluated it on a set of 10 challenging benchmarks that conventional AARA cannot solve. The
results on this benchmark set indicate that Hybrid AARA achieves several of its design goals. Our
system demonstrates the benefits of integrating Bayesian inference with traditional type inference
for improving the coverage of static analysis on the one hand and the accuracy and robustness of
data-driven analysis on the other hand.
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A SUPPLEMENTARY MATERIAL OF UNIVARIATE AARA

Listing 3 presents the syntax-directed rules of univariate AARA and Listing 4 presents the structural
rules. In a program P, for each function symbol 𝑓 ∈ 𝐹 with function definition 𝑓 (𝑥)=𝑒 , we
assume that T𝑓 is the set of valid resource-annotated arrow types ⟨𝑎1, 𝑝1⟩ → ⟨𝑎1, 𝑝1⟩ such that
𝑥 : 𝑎1;𝑝1 ⊢ 𝑒 : ⟨𝑎2, 𝑝2⟩ holds. Listing 5 defines the sharing relation for resource annotations.
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U:Var

𝑥 : 𝑎; 0 ⊢ 𝑥 : ⟨𝑎, 0⟩

U:Unit

·; 0 ⊢ ⟨ ⟩ : ⟨unit, 0⟩

U:SumL
Γ; 0 ⊢ 𝑥 : ⟨𝑎1, 𝑞1⟩

Γ; 0 ⊢ left · 𝑥 : ⟨⟨𝑎1, 𝑞1⟩ + ⟨𝑎2, 𝑞2⟩, 0⟩

U:SumR
Γ; 0 ⊢ 𝑥 : ⟨𝑎2, 𝑞2⟩

Γ; 0 ⊢ right · 𝑥 : ⟨⟨𝑎1, 𝑞1⟩ + ⟨𝑎2, 𝑞2⟩, 0⟩

U:Prod

𝑥1 : 𝑎1, 𝑥2 : 𝑎2; 0 ⊢ ⟨𝑥1, 𝑥2⟩ : ⟨𝑎1 × 𝑎2, 0⟩

U:Nil

·; 0 ⊢ [ ] : ⟨𝐿 ®𝑞 (𝑎), 0⟩

U:Cons
®𝑞 = (𝑞1, . . . , 𝑞𝑑 )

𝑥1 : 𝑎, 𝑥2 : 𝐿⊳( ®𝑞) (𝑎);𝑞1 ⊢ 𝑥1 :: 𝑥2 : ⟨𝐿 ®𝑞 (𝑎), 0⟩

U:App
(⟨𝑎1, 𝑝1⟩ → ⟨𝑎2, 𝑝2⟩) ∈ T

𝑓 : T𝑓 , 𝑥 : 𝑎1;𝑝1 ⊢ 𝑓 𝑥 : ⟨𝑎2, 𝑝2⟩

U:CaseSum
Γ, 𝑥1 : 𝑎1;𝑝1 ⊢ 𝑒1 : ⟨𝑎, 𝑞⟩ Γ, 𝑥2 : 𝑎2;𝑝2 ⊢ 𝑒2 : ⟨𝑎, 𝑞⟩

𝑥 : ⟨𝑎1, 𝑝1⟩ + ⟨𝑎2, 𝑝2⟩, Γ; 0 ⊢ case 𝑥 {left · 𝑥1 ↩→ 𝑒1 | right · 𝑥2 ↩→ 𝑒2} : ⟨𝑎, 𝑞⟩

U:CaseProd
Γ, 𝑥1 : 𝑎1, 𝑥2 : 𝑎2;𝑝 ⊢ 𝑒 : ⟨𝑎, 𝑞⟩

𝑥 : 𝑎1 × 𝑎2, Γ;𝑝 ⊢ case 𝑥 {⟨𝑥1, 𝑥2⟩ ↩→ 𝑒} : ⟨𝑎, 𝑞⟩

U:CaseList
Γ;𝑞 ⊢ 𝑒1 : ⟨𝑎, 𝑞⟩ Γ, 𝑥1 : 𝑎, 𝑥2 : 𝐿⊳( ®𝑝 ) (𝑎);𝑞 + 𝑝1 ⊢ 𝑒2 : ⟨𝑎, 𝑞⟩

𝑥 : 𝐿 ®𝑝 (𝑎), Γ;𝑞 ⊢ case 𝑥 {[ ] ↩→ 𝑒1 | (𝑥1 :: 𝑥2) ↩→ 𝑒2} : ⟨𝑎, 𝑞⟩

U:Let
Γ1;𝑝1 ⊢ 𝑒1 : ⟨𝑎1, 𝑝2⟩ Γ2, 𝑥 : 𝑎1;𝑝2 ⊢ 𝑒2 : ⟨𝑎2, 𝑝3⟩

Γ1, Γ2;𝑝1 ⊢ let 𝑥 = 𝑒1 in 𝑒2 : ⟨𝑎2, 𝑝3⟩

U:Share
𝑎 . (𝑎1, 𝑎2) Γ, 𝑥1 : 𝑎1, 𝑥2 : 𝑎2;𝑞 ⊢ 𝑒 : ⟨𝑎, 𝑞⟩

Γ, 𝑥 : 𝑎;𝑞 ⊢ share 𝑥 as 𝑥1, 𝑥2 in 𝑒 : ⟨𝑎, 𝑞⟩

Lst. 3. Syntax-directed rules of univariate AARA.

U:Sub
Γ;𝑞 ⊢ 𝑒 : ⟨𝑎, 𝑝⟩ 𝑎 <: 𝑎′

Γ;𝑞 ⊢ 𝑒 : ⟨𝑎′, 𝑝⟩

U:Sup
Γ, 𝑥 : 𝑎;𝑞 ⊢ 𝑒 : 𝐵 𝑎′ <: 𝑎

Γ, 𝑥 : 𝑎′;𝑞 ⊢ 𝑒 : 𝐵

U:Weak
Γ1;𝑞 ⊢ 𝑒 : 𝐵

Γ1, Γ2;𝑞 ⊢ 𝑒 : 𝐵

U:Re;ax
Γ;𝑝1 ⊢ 𝑒 : ⟨𝑎, 𝑝2⟩ 𝑞1 ≥ 𝑝1 𝑞1 − 𝑞2 ≥ 𝑝1 − 𝑝2

Γ;𝑞1 ⊢ 𝑒 : ⟨𝑎, 𝑞2⟩

Lst. 4. Structural rules of univariate AARA. 𝐵 denotes ⟨𝑎, 𝑝⟩.

unit . (unit, unit)
𝑎1 . (𝑎1,1, 𝑎1,2) 𝑎2 . (𝑎2,1, 𝑎2,2)
(𝑎1 + 𝑎2) . (𝑎1,1 + 𝑎2,1, 𝑎1,2 + 𝑎2,2)

𝑎1 . (𝑎1,1, 𝑎1,2) 𝑎2 . (𝑎2,1, 𝑎2,2)
(𝑎1 × 𝑎2) . (𝑎1,1 × 𝑎2,1, 𝑎1,2 × 𝑎2,2)

®𝑝 = ®𝑝1 + ®𝑝2 𝑎 . (𝑎1, 𝑎2)

𝐿
®𝑝 (𝑎) . (𝐿 ®𝑝1 (𝑎1), 𝐿 ®𝑝2 (𝑎2))

(𝐵1 → 𝐵2), (𝐶1 → 𝐶2), (𝐷1 → 𝐷2) ∈ T𝑓
(𝐵1 → 𝐵2) . (𝐶1 → 𝐶1, 𝐷1 → 𝐷2)

Lst. 5. Definition of the sharing relation 𝑎 . (𝑎1, 𝑎2).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 150. Publication date: June 2024.



Robust Resource Bounds with Static Analysis and Bayesian Inference 150:29

B MODEL HYPERPARAMETERS IN BAYESWC AND BAYESPC

This section describes an empirical Bayes approach [14] for automatically determining the hyperpa-
rameters of the probabilistic models in BayesWC (Section 5.2) and BayesPC (Section 5.3). Empirical
Bayes is a widely used approach in Bayesian data analysis in which the observed data is used to
infer plausible values of model hyperparameters: see Rizzelli et al. [79] for a recent survey. This
approach applies directly to most benchmarks: only one benchmark uses a hyperparameter that
deviates from the automatic procedure we have developed.

B.1 BayesWC

Recall from Eq. (5.12) that BayesWC uses a probabilistic model

𝛽0, 𝛽1, 𝜎
iid∼ Normal(0, 𝛾0) 𝜖𝑖 ∼ Gumbel(0, 1) (B.1)

𝑦𝑖 = 𝛽0 + 𝛽1 |𝑣𝑖 | + |𝜎 |𝜖𝑖 𝑐𝑖 = exp(𝑦𝑖 ), (B.2)

where 𝑔noise in Eq. (5.12) has been set to a standard Gumbel. The only hyperparameter in this model
is 𝛾0, which is set to 𝛾0 ≔ 5.0 for all benchmarks. Coupled with the exp component in the likelihood
model for the costs 𝑐𝑖 , this choice determines a broad prior distribution over observed datasets.

B.2 BayesPC

Recall from Eq. (5.14) that, in the probabilistic model for BayesPC, resource coefficients are drawn
from a truncated normal distribution:

(𝑝 𝑗 ) | ®𝑝 |𝑗=0, (𝑞 𝑗 ) | ®𝑞 |𝑗=0
iid∼ Normal≥0 (0, 𝛾0), (B.3)

where 𝛾0 ∈ R>0 is the scale hyperparameter (i.e., standard deviation).
In our prototype implementation, the hyperparameter 𝛾0 for each benchmark is determined from

data as follows. We first perform (Data-Driven or Hybrid) Opt to infer a resource-annotated typing
judgment for the entire program 𝑓 𝑥 :

Γ, 𝑝0 ⊢D 𝑓 𝑥 : ⟨𝑎, 𝑞0⟩, (B.4)

where Γ is a resource-annotated typing context, 𝑝0 ∈ Q≥0 is constant potential for the input, 𝑎 is a
resource-annotated output type, and 𝑞0 ∈ Q≥0 is constant potential for the output. Let 𝑑 be the
user-specified maximum polynomial degree for polynomial cost bounds, and let 𝑝1, . . . , 𝑝𝐷 be the
resource coefficients inside Γ that correspond to indices of degree 𝑑 . In other words, 𝑝1, . . . , 𝑝𝐷 are
the polynomial coefficients of the highest-degree terms inside the polynomial potential function. The
degree-0 coefficient 𝑝0 for constant potential in the typing context is never in the set {𝑝1, . . . , 𝑝𝐷 },
unless the user specifies the maximum polynomial degree of 0. For all benchmarks in our evaluation,
we set the hyperparameter 𝛾0 of the prior distribution for resource coefficients in BayesPC as

𝛾0 ≔
8
15 max {𝑝1, . . . , 𝑝𝐷 } +

4
5 . (B.5)

According to Eq. (5.16), the cost gap 𝜖𝑖 follows a truncated Weibull distribution:

𝑐′|𝑣𝑖 | − 𝑐𝑖 ≕ 𝜖𝑖 ∼ Weibull[0,𝑐′|𝑣𝑖 | ] (𝜃0, 𝜃1), (B.6)

where 𝜃0 ∈ R≥0 is the shape hyperparameter, 𝜃1 ∈ R>0 is the scale hyperparameter, and [0, 𝑐′|𝑣𝑖 | ] is
the interval of truncation.

The two hyperparameters 𝜃0 and 𝜃1 are determined as follows. The shape 𝜃0 ranges from 1.0
to 1.5 across benchmarks. Specifically, we set 𝜃0 ≔ 1.25 in Data-Driven BayesPC of MapAppend
and Hybrid BayesPC of ZAlgorithm. We set 𝜃0 ≔ 1.5 in Data-Driven BayesPC of BubbleSort,
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Data-driven and Hybrid BayesPC of Concat, and Data-Driven BayesPC of ZAlgorithm. In all the
remaining cases of BayesPC, we set 𝜃0 ≔ 1.0.

The scale hyperparameter 𝜃1 is set as follows. We first perform (Data-Driven or Hybrid) Opt to
obtain a resource annotated typing judgment around an annotated code fragment statℓ 𝑒:

Γ, 𝑝0 ⊢D statℓ 𝑒 : ⟨𝑎, 𝑞0⟩, (B.7)
where Γ is a resource-annotated typing context, 𝑝0 ∈ Q≥0 is constant potential for the input, 𝑎
is a resource-annotated output type, and 𝑞0 ∈ Q≥0 is constant potential for the output. We then
calculate the cost gap 𝜖𝑖 of statℓ 𝑒:

𝜖𝑖 ≔ 𝑝0 + Φ(𝑉 ℓ
𝑖 : Γ) − 𝑞0 − Φ(𝑣 ℓ𝑖 : 𝑎) (𝑖 = 1, . . . , |Dℓ |) . (B.8)

Let 𝜀𝛼 be the 𝛼 ≔ 90th percentile of these cost gaps 𝜖1, . . . , 𝜖 |Dℓ | . The scale 𝜃1 is then

𝜃1 ≔
1100
188.7𝜀𝛼 + 100. (B.9)

For Hybrid BayesPC of MedianOfMedians, the rule (B.9) suggests 𝜃1 ≔ 841.128. However, this
hyperparameter does not yield a posterior distribution whose median is close to the ground-truth
cost bound of MedianOfMedians due to the inaccuracy of Opt. Therefore, Hybrid BayesPC analysis
of MedianOfMedians is an exception, where we set 𝜃1 ≔ 41.128 instead.
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C FULL EXPERIMENT RESULTS

This appendix contains the full evaluation results on all 10 benchmark programs described in
Section 7 of the main paper.
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Table 2. Estimation gaps of inferred cost bounds for MapAppend benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

(10, 10) Opt -0.26 -0.26 -0.26 -0.15 -0.15 -0.15
BayesWC 0.03 0.41 1.64 0.53 1.03 2.27
BayesPC 0.85 1.62 2.61 1.18 1.92 2.91

(100, 100) Opt -0.32 -0.32 -0.32 -0.15 -0.15 -0.15
BayesWC -0.18 0.22 1.17 0.53 1.03 2.27
BayesPC 0.75 1.54 2.53 1.12 1.89 2.89

(1000, 1000) Opt -0.32 -0.32 -0.32 -0.15 -0.15 -0.15
BayesWC -0.22 0.20 1.15 0.53 1.03 2.27
BayesPC 0.74 1.54 2.52 1.11 1.88 2.89
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Fig. 9. MapAppend Hybrid
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let incur_cost (hd : int) =
let modulo = 5 in
if (hd mod 100) = 0 then Raml.tick 1.0
else (
if (hd mod modulo) = 1 then
Raml.tick 0.85

else (
if (hd mod modulo) = 2 then
Raml.tick 0.65

else Raml.tick 0.5))

let complex_function (hd : int) =
let _ = incur_cost hd in
if hd < 42 then hd / 2 else hd * 2

let rec map_append (xs : int list) (ys : int
list) =

match xs with
| [] → ys
| hd :: tl →

let hd_new = complex_function hd in
hd_new :: (map_append tl ys)

let map_append2 (xs : int list) (ys : int list)
= Raml.stat (map_append xs ys)

(a) Fully data-driven resource analysis.

let step_function (x : int) (xs : int list) (ys
: int list) =

let x_new = complex_function x in (x_new, xs,
ys)

let rec map_append (xs : int list)
(ys : int list) =
match xs with
| [] → ys
| hd :: tl →
let hd_new, rec_xs, rec_ys = Raml.stat (

step_function hd tl ys) in
hd_new :: map_append rec_xs rec_ys

(b) Hybrid resource analysis.

Lst. 6. Source code of MapAppend. The function complex_function is a computation that conventional AARA

cannot statically analyze; e.g., if < is OCaml’s built-in polymorphic comparison. Conventional AARA fails to

infer any polynomial cost bounds for the map_append function. (a) Fully data-driven resource analysis. (b)

Hybrid resource analysis. We perform data-driven analysis on step_function.
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Table 3. Estimation gaps of inferred cost bounds for BubbleSort benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt 0.01 0.01 0.01 ∅ ∅ ∅
BayesWC 0.44 6.29 60.73 ∅ ∅ ∅
BayesPC -0.31 0.02 0.39 ∅ ∅ ∅

100 Opt -0.38 -0.38 -0.38 ∅ ∅ ∅
BayesWC -0.48 0.41 8.34 ∅ ∅ ∅
BayesPC -0.34 -0.10 0.17 ∅ ∅ ∅

1000 Opt -0.38 -0.38 -0.38 ∅ ∅ ∅
BayesWC -0.93 -0.22 5.31 ∅ ∅ ∅
BayesPC -0.35 -0.10 0.15 ∅ ∅ ∅
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Fig. 10. BubbleSort Data-Driven
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let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick 0.5

let rec scan_and_swap (xs : int list) =
match xs with
| [] → ([], false)
| [ x ] → ([ x ], false)
| x1 :: x2 :: tl →

let _ = incur_cost x1 in
if x1 <= x2 then
let recursive_result, is_swapped = scan_and_swap (x2 :: tl) in
(x1 :: recursive_result, is_swapped)

else
let recursive_result, _ = scan_and_swap (x1 :: tl) in
(x2 :: recursive_result, true)

let rec bubble_sort (xs : int list) =
let xs_scanned, is_swapped = scan_and_swap xs in
if is_swapped then bubble_sort xs_scanned else xs_scanned

let bubble_sort2 (xs : int list) = Raml.stat (bubble_sort xs)

Lst. 7. Source code of BubbleSort for fully data-driven analysis. Conventional AARA cannot infer any

polynomial cost bound as it fails to bound the number of recursive calls.
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Table 4. Estimation gaps of inferred cost bounds for Concat benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

(50, 10) Opt -0.33 -0.33 -0.33 0.03 0.03 0.03
BayesWC 14.05 66.64 744.65 1.74 4.80 19.86
BayesPC 0.37 0.60 0.90 4.46 5.90 7.19

(500, 100) Opt -0.10 -0.10 -0.10 2.07 2.07 2.07
BayesWC 12.54 183.95 3329.73 2.10 13.59 130.41
BayesPC 0.50 1.25 4.50 16.22 32.27 47.71

(5000, 1000) Opt 2.83 2.83 2.83 22.44 22.44 22.44
BayesWC 11.04 931.52 32459.92 2.33 97.00 1309.28
BayesPC 1.06 7.84 42.44 132.48 298.20 456.99
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let incur_cost (hd : int) =
if (hd mod 5) = 0 then Raml.tick 1.0 else Raml.

tick 0.5

let complex_function (hd : int) =
let _ = incur_cost hd in
if hd < 42 then hd / 2 else hd * 2

let rec map_append (xs : int list) (ys : int
list) =

match xs with
| [] → ys
| hd :: tl →

let hd_new = complex_function hd in
hd_new :: map_append tl ys

let rec concat (xss : int list list) =
match xss with [] →[] | hd :: tl →map_append

hd (concat tl)

let concat2 (xss : int list list) = Raml.stat (
concat xss)

(a) Fully data-driven resource analysis.

let rec concat (xss : int list list) =
match xss with
| [] → []
| hd :: tl →

let rec_tl = concat tl in
Raml.stat (map_append hd rec_tl)

(b) Hybrid resource analysis.

Lst. 8. Source code of Concat. The function complex_function is a computation that conventional AARA

cannot statically analyze; e.g., if < is OCaml’s built-in polymorphic comparison. Conventional AARA fails to

infer any polynomial cost bounds for the concat function. (a) Fully data-driven resource analysis. (b) Hybrid

resource analysis. We perform data-driven analysis on map_append.
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Table 5. Estimation gaps of inferred cost bounds for EvenOddTail benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt 0.73 0.73 0.73 ∅ ∅ ∅
BayesWC 0.53 1.88 9.15 ∅ ∅ ∅
BayesPC 0.17 0.38 1.00 ∅ ∅ ∅

100 Opt -0.14 -0.14 -0.14 ∅ ∅ ∅
BayesWC -0.08 0.62 3.80 ∅ ∅ ∅
BayesPC 0.10 0.25 0.90 ∅ ∅ ∅

1000 Opt -0.21 -0.21 -0.21 ∅ ∅ ∅
BayesWC -0.62 0.52 3.75 ∅ ∅ ∅
BayesPC 0.11 0.27 0.92 ∅ ∅ ∅
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Fig. 13. EvenOddTail Data-Driven

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 150. Publication date: June 2024.



Robust Resource Bounds with Static Analysis and Bayesian Inference 150:39

exception Invalid_input

let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick 0.5

let rec linear_traversal (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let _ = incur_cost hd in
hd :: linear_traversal tl

let rec is_even (xs : int list) =
match xs with [] →true | [ x ] →false | x1 :: x2 :: tl →is_even tl

let tail (xs : int list) =
match xs with [] →raise Invalid_input | hd :: tl →tl

let rec split (xs : int list) =
match xs with
| [] → []
| [ x ] → raise Invalid_input
| x1 :: x2 :: tl →x1 :: split tl

let rec even_split_odd_tail (xs : int list) : int list =
let xs_traversed = linear_traversal xs in
match xs_traversed with
| [] → []
| hd :: tl →

let xs_is_even = is_even xs_traversed in
if xs_is_even then
let split_result = split xs_traversed in
even_split_odd_tail split_result

else
let tail_result = tail xs_traversed in
even_split_odd_tail tail_result

let even_split_odd_tail2 (xs : int list) : int list =
Raml.stat (even_split_odd_tail xs)

Lst. 9. Source code of EvenOddTail for fully data-driven resource analysis. Conventional AARA can only

infer a quadratic cost bound for EvenOddTail, but not the true linear cost bound.
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Table 6. Estimation gaps of inferred cost bounds for InsertionSort2 benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt -0.37 -0.37 -0.37 -0.15 -0.15 -0.15
BayesWC 0.05 1.17 8.68 0.39 0.72 1.47
BayesPC -0.33 -0.12 0.35 -0.14 0.08 0.84

100 Opt -0.39 -0.39 -0.39 -0.15 -0.15 -0.15
BayesWC -0.23 0.29 3.58 0.39 0.72 1.47
BayesPC -0.39 -0.23 0.26 -0.14 0.08 0.84

1000 Opt -0.40 -0.40 -0.40 -0.15 -0.15 -0.15
BayesWC -0.57 0.14 3.33 0.39 0.72 1.47
BayesPC -0.40 -0.24 0.25 -0.14 0.08 0.84
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let incur_cost (hd : int) =
let modulo = 5 in
if (hd mod 200) = 0 then Raml.tick 1.0
else (if (hd mod modulo) = 1 then Raml.tick

0.85
else if (hd mod modulo) = 2 then Raml.

tick 0.65 else Raml.tick 0.5)

let rec insert (x : int) (xs : int list) =
match xs with
| [] → [ x ]
| hd :: tl →

let _ = incur_cost hd in
if x <= hd then x :: hd :: tl else hd ::

insert x tl

let rec insertion_sort (xs : int list) =
match xs with [] →[] | hd :: tl →insert hd (

insertion_sort tl)

let rec insertion_sort_second_time (xs : int
list) =

match xs with
| [] → []
| hd :: tl → insert hd (

insertion_sort_second_time tl)

let insertion_sort_second_time2 (xs : int list)
=

Raml.stat (insertion_sort_second_time xs)

let double_insertion_sort (xs : int list) =
let sorted_xs = insertion_sort xs in
Raml.stat (insertion_sort_second_time

sorted_xs)

(a) Fully data-driven resource analysis.

let rec insert (x : int) (xs : int list) =
match xs with
| [] → [ x ]
| hd :: tl →

let _ = incur_cost hd in
if x <= hd then x :: hd :: tl else hd ::

insert x tl

let rec insertion_sort (xs : int list) =
match xs with [] →[] | hd :: tl →insert hd (

insertion_sort tl)

let rec insert_second_time (x : int) (xs : int
list) =

match xs with
| [] → [ x ]
| hd :: tl →

let _ = incur_cost hd in
if x <= hd then x :: hd :: tl
else hd :: (insert_second_time x tl)

let rec insertion_sort_second_time (xs : int
list) =

match xs with
| [] → []
| hd :: tl →

let rec_result = insertion_sort_second_time
tl in

Raml.stat (insert_second_time hd rec_result
)

let double_insertion_sort (xs : int list) =
let sorted_xs = insertion_sort xs in
insertion_sort_second_time sorted_xs

(b) Hybrid resource analysis.

Lst. 10. Source code of InsertionSort2. The insertion_sort procedure is called twice in a row. Our goal

is to analyze the cost of the second call to insertion sort, which has a linear worst-case cost bound because

inputs are already sorted. Conventional AARA can only infer a quadratic bound for the second call to insertion

sort (just like the first call to insertion sort), but not a linear cost bound, because it cannot determine that

the inputs to the second insertion sort are already sorted. (a) Fully data-driven resource analysis. (b) Hybrid

resource analysis. We perform data-driven analysis on the function insert_second_time.
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Table 7. Estimation gaps of inferred cost bounds for MedianOfMedians benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt -0.42 -0.42 -0.42 -0.39 -0.39 -0.39
BayesWC -0.29 0.60 5.20 19.69 85.53 709.77
BayesPC -0.64 -0.55 -0.34 1.41 1.48 1.52

100 Opt -0.95 -0.95 -0.95 -0.49 -0.49 -0.49
BayesWC -0.95 -0.89 -0.62 8.35 40.30 339.77
BayesPC -0.91 -0.80 -0.54 1.38 1.45 1.50

1000 Opt -0.99 -0.99 -0.99 -0.50 -0.50 -0.50
BayesWC -1.00 -0.99 -0.82 2.48 31.90 328.10
BayesPC -0.94 -0.81 -0.55 1.38 1.45 1.50
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exception Invalid_input

let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else

Raml.tick 0.5

let rec append (xs : int list) (ys : int list) =
match xs with [] →ys | hd :: tl →hd ::

append tl ys

let rec insert (x : int) (list : int list) =
match list with
| [] → [ x ]
| y :: ys → if x <= y then x :: y :: ys else y

:: insert x ys

let rec insertion_sort (list : int list) =
match list with [] →[] | x :: xs →insert x (

insertion_sort xs)

let median_of_list_of_five (xs : int list) =
let sorted_xs = insertion_sort xs in
match sorted_xs with
| [ x1; x2; x3; x4; x5 ] →(x3, [ x1; x2; x4;

x5 ])
| _ → raise Invalid_input

let rec partition_into_blocks (xs : int list) =
match xs with
| [] → ([], [])
| x1 :: x2 :: x3 :: x4 :: x5 :: tl →

let median, leftover =
median_of_list_of_five [ x1; x2; x3;
x4; x5 ] in

let list_medians, list_leftover =
partition_into_blocks tl in

(median :: list_medians, append leftover
list_leftover)

| _ → raise Invalid_input

let rec partition (pivot : int) (xs : int list)
=

match xs with
| [] → ([], [])
| hd :: tl →

let lower_list, upper_list = partition
pivot tl in

let _ = incur_cost hd in
if hd <= pivot then (hd :: lower_list,

upper_list)
else (lower_list, hd :: upper_list)

let rec lower_list_length_after_partition (pivot
: int) (xs : int list) =

match xs with
| [] → 0
| hd :: tl →

let lower_list_length =
lower_list_length_after_partition
pivot tl in

if hd <= pivot then lower_list_length + 1
else lower_list_length

let rec list_length (xs : int list) =
match xs with [] →0 | hd :: tl →1 +

list_length tl

let rec find_minimum_acc (acc : int list) (
candidate : int) (xs : int list) =

match xs with
| [] → (candidate, acc)
| hd :: tl →

if hd < candidate then find_minimum_acc (
candidate :: acc) hd tl

else find_minimum_acc (hd :: acc) candidate
tl

let find_minimum (xs : int list) =
match xs with
| [] → raise Invalid_input
| hd :: tl → find_minimum_acc [] hd tl

let rec preprocess_list_acc (minima_acc : int
list) (xs : int list) =

let xs_length = list_length xs in
if xs_length mod 5 = 0 then (minima_acc, xs)
else
let minimum, leftover = find_minimum xs in
preprocess_list_acc (minimum :: minima_acc)

leftover

let rec get_nth_element (index : int) (xs : int
list) =

match xs with
| [] → raise Invalid_input
| hd :: tl → if index = 0 then hd else

get_nth_element (index - 1) tl

Lst. 11. Source code of helper functions used in MedianOfMedians (Listing 12).
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let rec median_of_medians (index : int) (xs :
int list) =

match xs with
| [] → raise Invalid_input
| _ →

let minima, xs_trimmed =
preprocess_list_acc [] xs in

let mod_five = list_length minima in
if index < mod_five then get_nth_element (

mod_five - index - 1) minima
else
let index_trimmed = index - mod_five in
let list_medians, _ =

partition_into_blocks xs_trimmed in
let num_medians = list_length

list_medians in
let index_median = num_medians / 2 in
let median_of_medians =
Raml.stat (median_of_medians

index_median list_medians)
in
let lower_list_length =
lower_list_length_after_partition

median_of_medians xs_trimmed
in
if index_trimmed = lower_list_length - 1

then
let _, _ = partition median_of_medians

xs_trimmed in
median_of_medians

else if index_trimmed < lower_list_length
- 1 then

let lower_list, _ = partition
median_of_medians xs_trimmed in

Raml.stat (median_of_medians
index_trimmed lower_list)

else
let new_index = index_trimmed -

lower_list_length in
let _, upper_list = partition

median_of_medians xs_trimmed in
Raml.stat (median_of_medians new_index

upper_list)

let median_of_medians2 (index : int) (xs : int
list) =

Raml.stat (median_of_medians index xs)

(a) Fully data-driven resource analysis.

let rec median_of_medians (index : int) (xs :
int list) =

match xs with
| [] → raise Invalid_input
| _ →

let minima, xs_trimmed =
preprocess_list_acc [] xs in

let mod_five = list_length minima in
if index < mod_five then get_nth_element (

mod_five - index - 1) minima
else
let index_trimmed = index - mod_five in
let list_medians = partition_into_blocks

xs_trimmed in
let num_medians = list_length

list_medians in
let index_median = num_medians / 2 in
let median_of_medians = median_of_medians

index_median list_medians in
let lower_list_length =
lower_list_length_after_partition

median_of_medians xs_trimmed
in
if index_trimmed = lower_list_length - 1

then
let _, _ = Raml.stat (partition

median_of_medians xs_trimmed) in
median_of_medians

else if index_trimmed < lower_list_length
- 1 then

let lower_list, _ =
Raml.stat (partition

median_of_medians xs_trimmed)
in
median_of_medians index_trimmed

lower_list
else
let new_index = index_trimmed -

lower_list_length in
let _, upper_list =
Raml.stat (partition

median_of_medians xs_trimmed)
in
median_of_medians new_index upper_list

(b) Hybrid resource analysis.

Lst. 12. Source code of MedianOfMedians. Conventional AARA cannot infer any polynomial bound for

MedianOfMedians. (a) Fully data-driven resource analysis. (b) Hybrid resource analysis. We conduct data-

driven analysis on the function partition. Although conventional AARA can derive a linear cost bound of

the partition function, analyzing it using data-driven analysis gives a tighter cost bound. This tighter linear

bound of the partition function is required for deriving an overall linear cost bound of MedianOfMedians.
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Table 8. Estimation gaps of inferred cost bounds for QuickSelect benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt -0.42 -0.42 -0.42 -0.39 -0.39 -0.39
BayesWC -0.29 0.60 5.20 19.69 85.53 709.77
BayesPC -0.64 -0.55 -0.34 1.41 1.48 1.52

100 Opt -0.95 -0.95 -0.95 -0.49 -0.49 -0.49
BayesWC -0.95 -0.89 -0.62 8.35 40.30 339.77
BayesPC -0.91 -0.80 -0.54 1.38 1.45 1.50

1000 Opt -0.99 -0.99 -0.99 -0.50 -0.50 -0.50
BayesWC -1.00 -0.99 -0.82 2.48 31.90 328.10
BayesPC -0.94 -0.81 -0.55 1.38 1.45 1.50
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exception Invalid_input

let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else

Raml.tick 0.5

let rec append (xs : int list) (ys : int list) =
match xs with [] →ys | hd :: tl →hd ::

append tl ys

let rec partition (pivot : int) (xs : int list)
=

match xs with
| [] → ([], [])
| hd :: tl →

let lower_list, upper_list = partition
pivot tl in

let _ = incur_cost hd in
if hd <= pivot then (hd :: lower_list,

upper_list)
else (lower_list, hd :: upper_list)

let rec list_length (xs : int list) =
match xs with [] →0 | hd :: tl →1 +

list_length tl

let rec quickselect (index : int) (xs : int list
) =

match xs with
| [] → raise Invalid_input
| [ x ] → if index = 0 then x else raise

Invalid_input
| hd :: tl →

let lower_list, upper_list = partition hd
tl in

let lower_list_length = list_length
lower_list in

if index < lower_list_length then
quickselect index lower_list

else if index = lower_list_length then hd
else
let new_index = index - lower_list_length

- 1 in
quickselect new_index upper_list

let quickselect2 (index : int) (xs : int list) =
Raml.stat (quickselect index xs)

(a) Fully data-driven resource analysis.

let rec quickselect (index : int) (xs : int list
) =

match xs with
| [] → raise Invalid_input
| [ x ] → if index = 0 then x else raise

Invalid_input
| hd :: tl →

(* This is a workaround for an issue with
the let-normal form inside

Raml.stat(...) in the implementation *)
let tl = tl in
let lower_list, _ = partition_cost_free hd

tl in
let lower_list_length = list_length

lower_list in
if index < lower_list_length then
let lower_list, _ = Raml.stat (partition

hd tl) in
quickselect index lower_list

else if index = lower_list_length then
let _, _ = Raml.stat (partition hd tl) in
hd

else
let _, upper_list = Raml.stat (partition

hd tl) in
quickselect (index - lower_list_length -

1) upper_list

(b) Hybrid resource analysis.

Lst. 13. Source code of QuickSelect. Conventional AARA cannot analyze this source code if the comparison

function used inside QuickSelect is complex (e.g., OCaml’s built-in polymorphic comparison). (a) Fully

data-driven resource analysis. (b) Hybrid resource analysis. We perform data-driven analysis on partition.
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Table 9. Estimation gaps of inferred cost bounds for QuickSort benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt -0.23 -0.23 -0.23 -0.29 -0.29 -0.29
BayesWC 0.37 3.66 32.71 36.48 181.96 1776.52
BayesPC -0.52 -0.47 -0.22 4.12 4.73 4.96

100 Opt -0.90 -0.90 -0.90 -0.39 -0.39 -0.39
BayesWC -0.87 -0.64 1.24 17.83 82.90 667.39
BayesPC -0.88 -0.79 -0.61 3.78 4.41 4.69

1000 Opt -0.96 -0.96 -0.96 -0.40 -0.40 -0.40
BayesWC -0.98 -0.91 -0.09 5.07 60.66 610.58
BayesPC -0.93 -0.83 -0.63 3.75 4.38 4.66
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let incur_cost (hd : int) =
if (hd mod 5) = 0 then Raml.tick 1.0 else Raml.

tick 0.5

let rec append (xs : int list) (ys : int list) =
match xs with [] →ys | hd :: tl →hd ::

append tl ys

let rec partition (pivot : int) (xs : int list)
=

match xs with
| [] → ([], [])
| hd :: tl →

let lower_list, upper_list = partition
pivot tl in

let _ = incur_cost hd in
if hd <= pivot then (hd :: lower_list,

upper_list)
else (lower_list, hd :: upper_list)

let rec quicksort (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let lower_list, upper_list = partition hd
tl in

let lower_list_sorted = quicksort
lower_list in

let upper_list_sorted = quicksort
upper_list in

append lower_list_sorted (hd ::
upper_list_sorted)

let quicksort2 (xs : int list) = Raml.stat (
quicksort xs)

(a) Fully data-driven resource analysis.

let rec quicksort (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let lower_list, upper_list = Raml.stat (
partition hd tl) in

let lower_list_sorted = quicksort
lower_list in

let upper_list_sorted = quicksort
upper_list in

append lower_list_sorted (hd ::
upper_list_sorted)

(b) Hybrid resource analysis.

Lst. 14. Source code of QuickSort. Conventional AARA cannot analyze this source code if the comparison

function used inside QuickSort is complex (e.g., OCaml’s built-in polymorphic comparison). (a) Fully data-

driven resource analysis. (b) Hybrid resource analysis. We perform data-driven analysis on partition.
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Table 10. Estimation gaps of inferred cost bounds for Round benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt 0.26 0.26 0.26 ∅ ∅ ∅
BayesWC 0.27 0.68 2.83 ∅ ∅ ∅
BayesPC 0.49 0.82 2.57 ∅ ∅ ∅

100 Opt 0.40 0.40 0.40 ∅ ∅ ∅
BayesWC 0.40 0.68 2.33 ∅ ∅ ∅
BayesPC 0.55 0.87 2.86 ∅ ∅ ∅

1000 Opt 0.73 0.73 0.73 ∅ ∅ ∅
BayesWC 0.67 1.06 3.11 ∅ ∅ ∅
BayesPC 0.89 1.29 3.75 ∅ ∅ ∅
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Fig. 22. Round Data-Driven
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let incur_cost (hd : int) =
if (hd mod 10) = 0 then Raml.tick 1.0 else Raml.tick 0.5

let rec double (xs : int list) =
match xs with [] →[] | hd :: tl →hd :: hd :: double tl

let rec half (xs : int list) =
match xs with [] →[] | [ x ] → [] | x1 :: x2 :: tl →x1 :: half tl

let rec round (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let half_result = half tl in
let recursive_result = round half_result in
hd :: double recursive_result

let rec linear_traversal (xs : int list) =
match xs with
| [] → []
| hd :: tl →

let _ = incur_cost hd in
hd :: linear_traversal tl

let round_followed_by_linear_traversal (xs : int list) =
let round_result = round xs in
linear_traversal round_result

let round2 (xs : int list) =
Raml.stat (round_followed_by_linear_traversal xs)

Lst. 15. Source code of Round for fully data-driven resource analysis. Conventional AARA cannot infer any

polynomial cost bounds for this code [39, Section 5.4.3].
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Table 11. Estimation gaps of inferred cost bounds for ZAlgorithm benchmark on various input sizes.

Relative Gap in Inferred Cost Bound

Data-Driven Hybrid
Percentile 5th 50th 95th 5th 50th 95th

Input Size Method

10 Opt -0.68 -0.68 -0.68 -0.08 -0.08 -0.08
BayesWC -0.53 -0.21 1.37 0.00 0.29 2.99
BayesPC -0.48 -0.10 0.33 1.18 1.49 1.78

100 Opt -0.68 -0.68 -0.68 -0.08 -0.08 -0.08
BayesWC -0.65 -0.44 0.56 0.00 0.29 2.99
BayesPC -0.50 -0.13 0.23 1.18 1.49 1.78

1000 Opt -0.68 -0.68 -0.68 -0.08 -0.08 -0.08
BayesWC -0.76 -0.47 0.56 0.00 0.29 2.99
BayesPC -0.50 -0.14 0.22 1.18 1.49 1.78
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Fig. 23. ZAlgorithm Data-Driven
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Fig. 24. ZAlgorithm Hybrid
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exception Invalid_input

let incur_cost (hd : int) =
let modulo = 5 in
if (hd mod 100) = 0 then Raml.tick 1.0
else (if (hd mod modulo) = 1 then Raml.tick 0.85

else if (hd mod modulo) = 2 then Raml.tick 0.65 else Raml.tick 0.5)

let rec list_length (xs : int list) =
match xs with [] →0 | hd :: tl →1 + list_length tl

let hd_exn (xs : int list) =
match xs with [] →raise Invalid_input | hd :: _ →hd

let min (x1 : int) (x2 : int) = if x1 < x2 then x1 else x2

let rec drop_n_elements (xs : int list) (n : int) =
match xs with
| [] → []
| hd :: tl → if n = 0 then hd :: tl else drop_n_elements tl (n - 1)

let rec longest_common_prefix (xs1 : int list) (xs2 : int list) =
match xs1 with
| [] → 0
| hd1 :: tl1 →(

match xs2 with
| [] → 0
| hd2 :: tl2 →

if hd1 = hd2 then
let _ = incur_cost (hd1 + hd2) in
1 + longest_common_prefix tl1 tl2

else 0 )

Lst. 16. Source code of helper functions used in ZAlgorithm (Listing 17).
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let rec z_algorithm_acc (acc : int list) (
original_string : int list)

(current_string : int list) (left : int) (
right : int) =

match current_string with
| [] → acc
| hd :: tl →

let _ = incur_cost hd
in let current_index = list_length acc
in let old_result =
if left = 0 then 0 else hd_exn (

drop_n_elements acc (left - 1))
in let current_result_initial =
if current_index < right then min (right

- current_index) old_result
else 0

in let first_sublist =
drop_n_elements original_string

current_result_initial
in let second_sublist =
drop_n_elements current_string

current_result_initial
in let common_prefix_size =
longest_common_prefix first_sublist

second_sublist
in let current_result =

current_result_initial +
common_prefix_size

in let cumulative_result_updated =
current_result :: acc

in if current_index + current_result >
right then

z_algorithm_acc cumulative_result_updated
original_string tl

current_index
(current_index + current_result)

else
z_algorithm_acc

cumulative_result_updated
original_string tl left right

let rec reverse_acc (acc : int list) (xs : int
list) =

match xs with [] →acc | hd :: tl →
reverse_acc (hd :: acc) tl

let z_algorithm (xs : int list) =
match xs with
| [] → []
| hd :: tl →
reverse_acc []
(z_algorithm_acc [ 0 ] xs tl 0 0)

let z_algorithm2 (xs : int list) = Raml.stat (
z_algorithm xs)

(a) Fully data-driven resource analysis.

let rec z_algorithm_acc (acc : int list) (
original_string : int list)

(current_string : int list) (left : int) (
right : int) =

match current_string with
| [] → acc
| hd :: tl →

let _ = incur_cost hd in
let current_index = list_length acc in
let old_result =
if left = 0 then 0 else hd_exn (

drop_n_elements acc (left - 1))
in let current_result_initial =
if current_index < right then min (right

- current_index) old_result
else 0

in let first_sublist =
drop_n_elements original_string

current_result_initial
in let second_sublist =
drop_n_elements current_string

current_result_initial
in let common_prefix_size =
Raml.stat (longest_common_prefix

first_sublist second_sublist)
in let current_result =

current_result_initial +
common_prefix_size

in let cumulative_result_updated =
current_result :: acc

in if current_index + current_result >
right then

z_algorithm_acc cumulative_result_updated
original_string tl

current_index
(current_index + current_result)

else
z_algorithm_acc

cumulative_result_updated
original_string tl left right

let rec reverse_acc (acc : int list) (xs : int
list) =

match xs with [] →acc | hd :: tl →
reverse_acc (hd :: acc) tl

let z_algorithm (xs : int list) =
match xs with
| [] → []
| hd :: tl →
reverse_acc []
(z_algorithm_acc [ 0 ] xs tl 0 0)

(b) Hybrid resource analysis.

Lst. 17. Source code of ZAlgorithm. Conventional AARA can infer a quadratic cost bound, but not the true

linear cost bound. (a) Fully data-driven resource analysis. (b) Hybrid resource analysis. We perform data-driven

analysis on longest_common_prefix.
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