
Lecture Notes on
Inductive Definitions

15-411: Compiler Design
Jan Hoffmann

Lecture 1
January 17, 2023

1 Introduction

This course and the lecture notes will heavily rely on concepts such as inductive
definitions, inference rules, and derivations to define and formalize concepts and al-
gorithms. The advantage of this formalism is that it is mathematically precise,
flexible, concise, and can often be directly turned into a functional program using
pattern matching and recursion.

It is important to understand these concepts since you will otherwise have trou-
ble following the lectures and lecture notes. If you struggle then please review
chapters 1 and 2 in Bob Harper’s PFPL [Har12] and talk to the course staff during
office hours.

2 Judgments

A judgment (or predicate, assertion, . . .) states a property of certain objects or relates
two objects of potentially different classes. These objects and the judgments are
often inductively defined (see next section). We do not use a general notation for
judgments but use whatever notation is a good fit for the particular judgment we
are formalizing.

Example judgments:

n even n is an even number
type(τ) τ is a type
e : τ expression e has type τ
live(`, x) variable x is live at line `

One way to think of a judgment is to see it as a set, which consists of exactly
the objects that have the respective property. For instance, you can think of the

LECTURE NOTES JANUARY 17, 2023



Inductive Definitions L1.2

judgment live as defining a set L such that

(`, x) ∈ L ⇐⇒ live(`, x) .

3 Inductive Definitions

Most judgments that you will see in this course talk about programs and are de-
fined inductively. It is likely that you are already familiar with inductive defini-
tions. Most certainly, you have seen proofs by induction on the natural numbers:
To prove a statement A(n), you first prove that A(n) holds for n = 0 and then you
prove that A(n) implies A(n + 1) for all natural numbers n. One way to look at
such a proof is that you inductively define a proof for every number n.

We cannot only inductively define proofs but also other objects. For example,
we can define the natural numbers themselves inductively. We say that the set N of
natural numbers is inductively defined by the following two rules.

1. nat(0)

2. If nat(n) then nat(n+ 1).

An inductive definition always implies that we are looking for the smallest set
such that the given rules hold.1 For example, the two previous rules hold for the
natural numbers as well as for the integers. We have

0 ∈ N
n ∈ N =⇒ n+ 1 ∈ N

and
0 ∈ Z
n ∈ Z =⇒ n+ 1 ∈ Z .

But an inductive interpretation of the rules leads to the natural numbers since N is
the smallest set for which rules (1) and (2) hold.

Another example of an inductive definition is given by the following rules.

(a) leq(0, 0)
(b) leq(n,m) =⇒ leq(n+ 1,m+ 1)
(c) leq(n,m) =⇒ leq(n,m+ 1)

The first rule says that 0 is less or equal to 0. The second rule says that if n is less or
equal to m then n+ 1 is less or equal to m+ 1. The third rules states that if n is less
or equal to m then n is less or equal to m+1. The judgment formalizes the familiar
relation n ≤ m on natural numbers.

1We say that N is the smallest set that is closed under the two derivation rules.

LECTURE NOTES JANUARY 17, 2023



Inductive Definitions L1.3

Exercise: Prove that N is indeed the smallest set for which (1) and (2) hold. Hint:
Prove by induction that if S satisfies (1) and (2) and n ∈ N then n ∈ S.

Exercise: Prove that n ≤ m if and only if leq(n,m).

4 Inference Rules

If inductive definitions are as simple as the examples nat(n) and leq(n,m) then it is
straightforward to write them down in the way we have done in the previous sec-
tion. However, inductive definitions that involve programming languages tend to
be more complex. They have both more rules and the rules themselves have more
preconditions. As a result, it is more concise to formulate inductive definitions
using inference rules.

Assume a given inductive definition with a rules of the form

P1 and . . . and Pn =⇒ P .

From now on, we will write such rules as

P1

. . .
Pn

P
(Rule1)

We call P1, . . . , Pn the premises of the rule and we call P the conclusion of the rule.
If n = 0 then the rules does not have premises and we call it a leaf or an axiom.

Let us consider our two examples again. The judgment nat(n) is define by the
following two rules.

nat(0)
N1

nat(n)

nat(n+ 1)
N2

The judgment leq(n,m) can is defined by the following rules.

leq(0, 0)
L1

leq(n,m)

leq(n+ 1,m+ 1)
L2

leq(n,m)

leq(n,m+ 1)
L3

Inference rules (like inductive definitions) can also be mutually recursive. An
example are even and odd numbers.

even(0)
E1

odd(n)

even(n+ 1)
E2

even(n)

odd(n+ 1)
O1

LECTURE NOTES JANUARY 17, 2023



Inductive Definitions L1.4

5 Derivations

If we inductively apply the inference rules then we obtain a derivation of a judg-
ment. A derivation can be seen as a tree with axioms (or leaf rules) at the leaves. It
is a proof that a particular judgment holds.

For example, we can derive the judgment nat(3) as follows.

nat(0)
N1

nat(1)
N2

nat(2)
N2

nat(3)
N2

The derivation proofs that 3 is a natural number. Since we only have one or zero
premises in our rules, the derivation is a degenerated tree with only one branch.

We can read such a derivation either from top to bottom or from bottom to
top. If we start at the bottom then we construct the derivation starting with the
judgment nat(3) that we would like to derive. Since 3 6= 0 the only rule we can
apply is N2. We then have to find a derivation for the premise nat(2) of the rule
and so on.

Exercise: Use the rules L1, L2, and L3 to derive the judgment leq(3, 4).

6 Induction and Derivations

We have now seen to seemingly different interpretations of inductive rules. The
first interpretation was that the rules define the smallest set that is closed under
application of the rules (like N for the judgment nat(·)). The second interpretation
was that a judgment holds if and only if there is a derivation of that judgment using
the rules.

Fortunately, it turns out that both interpretations are identical. In other words,
there is a derivation of a judgment P (o1, . . . , on) if and only if ~o ∈ S where S is the
smallest set that is closed under the rules of the judgment.

7 Modes of a Judgment

As mentioned in the introduction, it is possible to define functions using rules. For
every inductive definition we can define the characteristic function that determines
for a given input if the judgment holds for this input or not. Consider again the
inductive definition of of leq(n,m). We can turn it into a function LEQ : Nat →
Nat→ Bool that evaluates to true for inputs n,m if and only if leq(n,m).

LECTURE NOTES JANUARY 17, 2023



Inductive Definitions L1.5

LEQ(0,0) = true

LEQ(n,m) = (* What rule to implement? *)

But we run into a problem. To get an efficient and easily-implementable func-
tion we would like that at most one rule is applicable for a given input. Otherwise,
we would need to backtrack in the translation of the inductive definition into a
recursive function. So we define

leq(0, 0)
L′
1

leq(n,m)

leq(n+ 1,m+ 1)
L′
2

leq(0,m)

leq(0,m+ 1)
L′
3

Now the direct translation yields the following function.

LEQ(0,0) = true

LEQ(0,m+1) = LEQ(0,m)

LEQ(n+1,m+1) = LEQ(n,m)

LEQ(_,_) = false

Note that the last case can be changed to LEQ(n+1,0) = false.
In addition to the characteristic function, inference rules can be also turned into

other functions by interpreting some arguments of the judgments as an input and
other arguments as the output. We call such a view on the judgment the mode of a
judgment. Some judgments allow for different modes.

Consider for example the judgment add(n1, n2, n) which that expresses that
n1 + n2 = n. It is defined by the following inference rules.

add(0, n, n)
A1

add(m,n, k)

add(m+ 1, n, k + 1)
A2

Like in the previous example, we could use the mode that all three arguments of
the judgment are inputs. However, we know that addition is a function, that is, for
a given natural numbers n1 and n2, there is at exactly on n such that add(n1, n2, n).
So we can consider another mode at which the first two arguments of the judgment
are the inputs and the third argument is the output. The rule A1 then reads at
follows. Given the arguments 0 and n, we return n. The rule A2 reads: Given the
arguments m+ 1 and n we recursively apply the judgment to m and n, and obtain
k such that add(m,n, k). We then return k + 1. In this way, the judgment describes
the usual recursive addition function.

Exercise: Show that the rules L′
1, L

′
2, and L′

3 are equivalent to the rules L1, L2,
and L3. Hint: You need to show that there exists a derivation of leq(n,m) using
the primed rules if and only if there is a derivation of leq(n,m) using the original
rules.

LECTURE NOTES JANUARY 17, 2023



Inductive Definitions L1.6

Exercise: Define the characteristic function of the judgment add(m,n, k).

8 Computing the Set of a Judgment

Sometimes we are also interested in computing the set of all objects for which a
judgment holds. For example, for the judgment live(`, x) we would like to compute
a set S ⊆ D ×D such that

(`, x) ∈ S ⇐⇒ live(`, x) .

Here, we assume again that live is defined by the rules L1, L2, and L3. However,
we assume that the rules are restricted to some domain D = [0, n] ⊆ N that is a
downward-closed subset of the natural numbers. (This example is slightly con-
trived but illustrates the idea.)

To compute S, we will start with the empty set S0 = ∅ and successively con-
struct sets S0, S1, . . . , Sk so that Si ⊆ Si+1. To construct Si+1, we will apply one of
the rules to the elements of Si. We will stop if there is no way to generate a new
element using the rules. In this case, we know that Si = S.

Assume for instance, we have D = {0, 1, 2}. Then the process could look as
follows.

S0 ∅ apply L1

S1 {(0, 0)} apply L2 to (0, 0)
S2 {(0, 0), (1, 1)} apply L2 to (1, 1)
S3 {(0, 0), (1, 1), (2, 2)} apply L3 to (0, 0)
S4 {(0, 0), (1, 1), (2, 2), (0, 1)} apply L2 to (0, 1)
S5 {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)} apply L3 to (0, 1)
S6 {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2), (0, 2)}

When we inspect the set S6 we realize that we cannot generate new elements ap-
plying any of the rules. So we know S = S6 and the computation ends.

References

[Har12] Robert Harper. Practical Foundations for Programming Languages. Cam-
bridge University Press, 2012.

LECTURE NOTES JANUARY 17, 2023


	Introduction
	Judgments
	Inductive Definitions
	Inference Rules
	Derivations
	Induction and Derivations
	Modes of a Judgment
	Computing the Set of a Judgment

