Maximum Cardinality Search and Chordal Graphs

Mario Carneiro

September 25, 2018

Definitions:

- A graph *G* is chordal if every cycle of length > 3 has a chord, that is, an edge between vertices of the cycle that is not itself in the cycle.
- A vertex v is simplicial if N(v), the neighbors of v, form a complete subgraph.
- An ordering v_1, \ldots, v_n of the vertices of *G* is a simplicial elimination ordering if v_i is simplicial in the subgraph v_1, \ldots, v_i , for all $i \le n$.
- The maximum cardinality search algorithm works as follows: Initialize $W \leftarrow V$ where V = V(G), and set weight(v) = 0 for all $v \in V$. For each i = 1, ..., n, let u be a node with maximal weight in W, set $v_i \leftarrow u$, and increment the weight of all neighbors of u in W by one. Then remove u from W and repeat. The resulting order is the sequence v_1, \ldots, v_n .

Theorem 1. Performing a maximum cardinality search on a graph *G* produces a simplicial elimination ordering for *G* if and only if *G* is chordal.

Suppose *G* is not chordal. Then I claim there is no simplicial elimination ordering of *G*, so the maximum cardinality search cannot return one. Suppose that we have such an ordering. Let $s_0, s_1, \ldots, s_k = s_0$ be a cycle of length k > 3 with no chord, and suppose s_i appears last in the ordering. Then s_{i-1} and s_{i+1} are not equal (since k > 2) and are not adjacent (since k > 3 and otherwise this would be a chord), so s_i is not simplicial in the subgraph $v_1, \ldots, v_m = s_i$.

For the converse, suppose that *G* is chordal, and suppose that v_1, \ldots, v_n is the ordering returned by the MCS algorithm. Let $V_i = \{v_1, \ldots, v_i\}$, and let $v \prec w$ mean that *v* appears before *w* in the ordering. Let " v_i is simplicial" denote that v_i is simplicial in its subgraph V_i , that is, whenever $a, b \prec v_i$ and $a, b \in N(v_i)$ then $a \in N(b)$.

Then for each $i \le n$, after the loop has executed *i* times, the following loop invariant holds (with subscripts on *W* and weight to indicate values depending on the loop counter):

- 1. $u = v_i$ (if i > 0)
- 2. $W_i = V V_i$
- 3. v_1, \ldots, v_i are distinct, and have been set to their final values

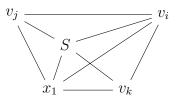
- 4. weight_i $(w) = |N(w) \cap V_i|$ for all $w \in W_i$
- 5. v_i is simplicial
- 6. Let *S* be a clique of simplicial vertices, and let N(S) denote the vertices incident on every vertex of *S*. If $a \prec v_i$, and $a, v_i \in N(S) S$, and there is a path $a \sim v_i$ in N(S) S, then there is a path $a \sim v_i$ in N(S) S all of whose vertices are below v_i in the order.

Parts 1-4 are immediate from the definition of the algorithm. From part 3 we obtain that v_1, \ldots, v_n is an ordering of *V*, so $a \prec b$ is a total order on *V*.

Proof of part 5. Suppose v_i is not simplicial in V_i . Then there exists $v_j, v_k \in N(v_i)$ with j < k < i, but $v_j \notin N(v_k)$, and a clique *S* (possibly empty) incident on v_i, v_j, v_k and below v_k . By part 5 of the induction hypothesis at each $s \prec v_i$, *s* is simplicial, so by part 6 at k < i, since v_j, v_i, v_k is a path in N(S) - S, there is a path $v_j = x_0, \ldots, x_m = v_k$ in N(S) - S where each x_a is below v_k , and necessarily m > 1.

Among all such configurations choose one such that |S| is maximal, and among these choose one such that *m* is minimal. Then $v_i, v_j = x_0, \ldots, x_m = v_k, v_i$ is a cycle of size > 3.

- If there was a chord $x_a \in N(x_b)$ where a + 1 < b, then there would be a shorter path $v_j = x_0, \ldots, x_a, x_b, \ldots, x_m = v_k$.
- If there was a chord $x_a \in N(v_i)$ where 0 < a < m-1, then $x_a, \ldots, x_m = v_k$ is a shorter path satisfying the conditions, since $x_a, v_k \in N(v_i)$ and $x_a \notin N(v_k)$.
- If there was a chord $x_a \in N(v_i)$ where 1 < a < m, then $v_j = x_0, \ldots, x_a$ is a shorter path satisfying the conditions, since $v_j, x_a \in N(v_i)$ and $v_j \notin N(x_a)$.
- Otherwise, a = 1 and m = 2, that is, we have the configuration:



But then $S \cup \{x_1\}$ is a larger clique incident on v_i, v_j, v_k , contradicting maximality.

Let *S* be a clique of simplicial vertices, and let N(S) denote the vertices incident on every vertex of *S*. If $a \prec v_i$, and $a, v_i \in N(S) - S$, and there is a path $a \sim v_i$ in N(S) - S, then there is a path $a \sim v_i$ in N(S) - S all of whose vertices are below v_i in the order.

Proof of part 6. If $a \in N(v_i)$ then we are done. Otherwise, if there exists $b \prec v_i$ in V - S adjacent to v_i , then for each $s \in S$:

• If $s \prec v_i$, then since $b, s \in N(v_i)$ and $b, s \prec v_i$ and v_i is simplicial (using part 5 at *i*), *b* is adjacent to *s*.

• If $a \prec v_i \prec s$, then $a, v_i \in N(s)$ and s is simplicial so $a \in N(v_i)$, contradiction.

Thus $b \in N(S) - S$, so by the inductive hypothesis at the larger of a or b there is a path $a \sim b$ in N(S) - S below $\max(a, b)$, and this extends to a path $a \sim b - v_i$.

Otherwise, v_i has no neighbors in $V_{i-1} - S$, so weight $_{i-1}(v_i) \leq |S \cap V_{i-1}|$. But if $a \sim b - v_i$ is the path from a to v_i , we must have $a \prec v_i \prec b$, so there is a first transition $a \sim c - d \sim v_i$ such that $c \prec v_i \prec d$. Then weight $_{i-1}(d) \geq |S \cap V_{i-1}| + 1$ since $d \in N(S) - S$ and $c \in N(d)$, but since $d \in W_{i-1}$ as well, weight $_{i-1}(d) \leq \text{weight}_{i-1}(v_i)$ by maximality of v_i . This is a contradiction.

Thus v_i is simplicial in V_i for each *i*, so v_1, \ldots, v_n is a simplicial elimination ordering.