
Lecture Notes on
Intermediate Representation

15-411: Compiler Design
Frank Pfenning*

Lecture 06
February 2, 2023

1 Introduction

In this lecture we discuss the “middle end” of the compiler. After the source has
been parsed and elaborated we obtain an abstract syntax tree, on which we carry
out various static analyses to see if the program is well-formed. In the L2 language,
this consists of type-checking, checking that every finite control flow path ends in a
return statement, that every variable is initialized before its use along every control
flow path. For more specific information you may refer to the Lab 2 specification.

After we have constructed and checked the abstract syntax tree, we transform
the program through several forms of intermediate representation on the way to
abstract symbolic assembly and finally actual x86-64 assembly form. How many
intermediate representations and their precise form depends on the context: the
complexity and form of the language, to what extent the compiler is engineered
to be retargetable to different machine architectures, and what kinds of optimiza-
tions are important for the implementation. Some of the most well-understood
intermediate forms are intermediate representation trees (IR trees), static single-
assignment form (SSA), quads and triples. Quads (that is, three-address instruc-
tions) and triples (two-address instructions) are closer to the back end of the com-
piler and you will probably want to use one of them, maybe both. In this lecture
we focus on IR trees.

2 Elaboration

The language that we originally parse, because it is derived from C and designed
to be compatible with C whenever possible, has many complications, quirks, and

*with contributions by André Platzer, Rob Simmons, and Jan Hoffmann.

LECTURE NOTES FEBRUARY 2, 2023

http://www.cs.cmu.edu/afs/cs/academic/class/15411-f19/www/hw/lab2.pdf

Intermediate Representation L06.2

forms of syntactic sugar. One example is the for statement, which is easier to
describe in terms of its components - an optional initialization, a loop guard, and
loop body, and an “afterthought” that is run after the loop body. As a starting
example, this for loop could be elaborated into a while loop:

// Before elaboration

for (int x = 4; x < 30; x++) { y = y + x }

// After elaboration

{

int x = 4;

while (x < 30) { y = y + x; x += 1 }

}

The extra scope is necessary: if the next statement after this for loop is a decla-
ration of x, we have to add the scope or we’d turn the well-formed program into a
program that declares x twice. This brings up another use of elaboration: making
the scope of variables more explicit. Consider this example:

int i = 4;

int j = i + 2;

return i + j;

To make it clearer that the declaration of j is in the scope of the declaration of i, we
could require all variable declarations to stand on their own at the beginning of a
basic block:

{ int i;

i = 4;

{ int j;

j = i + 2;

return i + j;

}

}

This is getting awkward, though: the surface structure of C-like languages just
doesn’t support make the scoping of individual declarations clear. Rather than con-
tinuing to perform manipulations on surface syntax, we introduce the BNF of an
elaborated abstract syntax. Rather than being tied to the structure of the language’s
context-free grammar, the elaborated language tries to capture the meaning of the
language constructs. In particular, declare(x, τ, s) means that the variable x is de-
clared (only) within the statement s.

Expressions e ::= n | x | e1 ⊕ e2 | e1 � e2 | f(e1, . . . , en)
| e1 ? e2 | !e | e1 && e2 | e1 || e2

Statements s ::= declare(x, τ, s) | assign(x, e) | if(e, s1, s2) | while(e, s)
| return(e) | nop | seq(s1, s2)

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.3

We use n for constants, x for variables, ⊕ for effect-free operators, � for potentially
effectful operators (such as division or shift, which could raise an exception), ’?’
for comparison operators returning a boolean, !, &&, and || for logical negation,
conjunction, and disjunction, respectively. The latter have the meaning as in C,
always returning either 0 or 1, and short-circuiting evaluation if the left-hand side
is false (for &&) or true (for ||).

Given our full elaborated language, we can say that a program like this one,
which has a for loop:

for (int x = 4; x < 30; x++) { y = y + x; }

should be elaborated to this abstract syntax:

declare(x, int, seq(assign(x, 4),
while(x < 30,

seq(assign(y, y + x), assign(x, x+ 1)))))

A complete description of elaboration can be given in the form of inference
rules. When we turn the surface syntax given by the parser into elaborated abstract
syntax, we write surface elaborated. Here is a rule for elaborating a for state-
ment where the initialization includes a declaration directly into our elaborated
abstract syntax tree.

<tp> τ
<ident> x
<exp1> e1
<exp2> e2
<stmt1> s1
<stmt2> s2

for (<tp> <ident> = <exp1>; <exp2>; <stmt1>) <stmt2>

 declare(x, τ,while(e1, seq(s2, s1)))

We read this rule as being one case of a large case analysis, with one branch for
every pattern in the surface syntax. When we want to translate a for loop that
matches the pattern at the bottom, we have to do six things: elaborate the type,
elaborate the identifier, elaborate both expressions, elaborate the afterthought, and
then elaborate the loop body. Depending on how you set your compiler up, the
first four operations might be trivial: you might not have any elaboration to do on
expressions, types, or identifiers. However, it will be necessary to make a recursive
call to the elaboration procedure in our running example, because we have to elab-
orate x++ assign(x, x+ 1). We will also, in general, have to make sure any nested
for loops in <stmt2>, the body of our for loop, are elaborated.

In summary, after we parse our program into a surface (or concrete) represen-
tation, we frequently want to transform that syntax into a abstract (or elaborated)

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.4

representation. The elaborated abstract syntax trees, our first intermediate lan-
guage, makes it easier to do typechecking and later transformations. Especially if
we do type checking on the elaborated syntax, doing too much elaboration can be a
problem: it may make our error messages less readable. However, some elabora-
tion is an important part of most languages.

Both the surface and elaboration representations may be referred to as abstract
syntax trees. In the remainder of this lecture and course, we will ignore the surface
representations and refer to the elaborated form as the abstract syntax tree, or AST.

3 IR Trees

Our next translation will be to a new intermediate representation form called IR
trees. In the translation to IR trees we want to achieve several goals. One is to iso-
late potentially effectful expressions, making their order of execution explicit. This
simplifies instruction selection and also means that the remaining pure expressions
can be optimized much more effectively. Another goal is to make the control flow
explicit in the form of conditional or unconditional branches, which is closer to
the assembly language target and allows us to apply standard program analyses
based on an explicit control flow graph. The treatment in the textbook achieves
this [App98, Chapters 7 and 8] but it does so in a somewhat complicated manner
using tree transformations that would not be motivated for our language.

We describe the IR through pure expressions p and commands c. Programs r are
just sequences of commands; typically these would be the bodies of function def-
initions. An empty sequence of commands is denoted by ’·’, and we write r1 ; r2
for the concatenation of two sequences of commands.

Pure Expressions p ::= n | x | p1 ⊕ p2
Commands c ::= x← p

| x← p1 � p2
| x← f(p1, . . . , pn)
| if (p1 ? p2) then lt else lf
| goto l
| l :
| return(p)

Programs r ::= c1 ; . . . ; cn

Pure expressions are a subset of all expressions that do not have any side ef-
fects. We choose an IR tree representation in which potentially effectful operations
and function calls can only appear at the top-level of assignments. The logical op-
erators are no longer present and must be eliminated in the translation in favor
of conditionals. These transformations help optimizations and analysis. Function
calls only take pure arguments, which guarantees the left-to-right evaluation order

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.5

prescribed in the C0 language semantics. Since function calls may have effects, we
also lift function calls to the command level rather than embedding them inside
expression evaluation.

4 Translating Expressions

The first idea may be to translate abstract syntax expressions to pure expressions,
but this does not quite work because potentially effectful expressions have to be
turned into commands, and commands are not permitted inside pure expressions.
Returning just a command, or sequence of commands, is also insufficient because
we somehow need to refer to the result of the translation as a pure expression so
we can use it, for example, in a conditional jump or return command.

A solution is to translate from an expression e to a pair consisting of a sequence
of commands r and a pure expression p. After executing r, the value of p will the
value of e (assuming the computation does not abort). We write

tr(e) = 〈ě, ê〉

where ě is a sequence of commands r that we need to write down to compute the
effects of e and ê is a pure expression p that we can use to compute the value of e
back up. Here are the first three clauses in the definition of tr(e):

tr(n) = 〈·, n〉
tr(x) = 〈·, x〉
tr(e1 ⊕ e2) = 〈(ě1 ; ě2), ê1 ⊕ ê2〉

Constants and variables translate to themselves. If we have a pure operation e1⊕e2
it is possible that the sub-expressions have effects, so we concatenate the command
sequences for these to expressions ě1 and ě2. Now ê1 and ê2 are pure expressions
referring to the values of e1 and e2, respectively, so we can combine them with a
pure operation to get a pure expression representing the result.

We can see that the translation of any pure expression p yields an empty se-
quence of commands followed by the same pure expression p, that is, tr(p) = 〈·, p〉.
Effectful operations and function calls require us to introduce some commands and
a fresh temporary variable to refer to the value resulting from the operation or call.

tr(e1 � e2) = 〈(ě1 ; ě2 ; t← ê1 � ê2), t〉 (t fresh)
tr(f(e1, . . . , en)) = 〈(ě1 ; . . . ; ěn ; t← f(ê1, . . . , ên)), t〉 (t fresh)

We postpone the translation of boolean expressions e1 ? e2, !e, e1 && e2 and
e1 || e2 to Section 6.

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.6

5 Translating Statements

Translating statements is in some ways simpler, because we only need to return
a sequence of commands. It is slightly more complicated in other ways, since we
have to manage control flow via jumps and conditional branches. We write tr(s) =
š, where š is a sequence of commands r.

Assignments and conditionals are simple, given the translation of expression
from the previous section, as are return, nop and seq.

tr(assign(x, e)) = ě ; x← ê

tr(return(e)) = ě ; return(ê)

tr(nop) = ·

tr(seq(s1, s2)) = š1 ; š2

Conditionals require labels and jumps. Below is a first attempt. We combine
labels with the following statement (where there is one) to make it easier to read.

tr(if(e, s1, s2)) = ě ;
if (ê != 0) then l1 else l2 ;

l1 : š1 ;
goto l3 ;

l2 : š2 ;
l3 : (l1, l2, l3 fresh)

We can unify the presentation a bit more by inserting a redundant jump and com-
bining a few commands involving control on the same line.

tr(if(e, s1, s2)) = ě ;
if (ê != 0) then l1 else l2 ;

l1 : š1 ; goto l3 ;
l2 : š2 ; goto l3 ;
l3 : (l1, l2, l3 fresh)

This modification also puts the code into basic blocks, allowing us to divide our code
into segments that begin with labels and end with a conditional or unconditional
jump (or a return).

The remaining awkwardness in this code comes from having to compute e to a
boolean value and then checking this against 0. While this is correct, it does not lead
to particularly efficient machine code. We will present an improved translation in
the next section.

Here is a similarly straightforward translation for while.

tr(while(e, s)) = l1 : ě;
if (ê != 0) then l2 else l3 ;

l2 : š ; goto l1;
l3 : (l1, l2, l3 fresh)

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.7

6 Translating Boolean Expressions

As indicated above, the code with the translations above does not take advantage
of the way conditional branches work in x86 and x86-64, where we can compare
two values and then branch based on the outcome of the comparison by testing
condition flags. So we may look for ways to translation conditionals (if(e, s1, s2))
and loops (while(e, s)) into simpler code.

One insight is that we use booleans mostly so we can branch on them. So we
define a new function

cp(b, l, l′) = r

where b is a boolean expression. The resulting command sequence r should jump
to l if b is true and jump to l′ if b is false. Boolean expressions here are compar-
isons, negation, logical and, and logical or. They can also be function calls returning
booleans or constants 0 for false and 1 for true.

We define

cp(e1 ? e2, l, l′) = ě1 ; ě2 ;
if (ê1 ? ê2) then l else l′

cp(!e, l, l′) = cp(e, l′, l)
cp(e1 && e2, l, l

′) = cp(e1, l2, l
′) ;

l2 : cp(e2, l, l
′) (l2 fresh)

cp(e1 || e2, l, l
′) = left to the reader

cp(0, l, l′) = goto l′

cp(1, l, l′) = goto l
cp(e, l, l′) = ě ;

if (ê != 0) then l else l′

The last form should only be necessary if e = x or e = f(e1, . . . , fn).
This is then used in the translation of statements in a straightforward way

tr(if(b, s1, s2)) = cp(b, l1, l2)
l1 : tr(s1) ; goto l3
l2 : tr(s2) ; goto l3
l3 : (l1, l2, l3 fresh)

We leave while loops using the cp translation to the reader.
We still have to define how to compile an expression that happens to be boolean

(for example, as part of return statement).

tr(e) = 〈 cp(e, l1, l2) ;
l1 : t← 1 ; goto l3
l2 : t← 0 ; goto l3
l3 :

, t 〉 (l1, l2, l3, t fresh)

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.8

7 Extended Basic Blocks

As discussed, the translation we’ve discussed so far translates code into a basic
block form. One of the benefits of basic blocks is that they can be treated as a single
independent unit in many analyses. Constant propagation is an obvious example:
a definition at the beginning of a basic block will necessarily be the only reaching
definition for the remainder of that block. (Unless, of course, another definition of
the same temp is reached, and that definition is the only one that reaches further.)

However, the transformation to basic blocks sometimes results in us having a
large number of labels and jumps, which can obscure the structure of the program
to some degree:

int fastpow(int b, int e) fastpow(b,e):

//@requires e >= 0; r <- 1

{ goto loop

int r = 1; loop:

while (e > 0) if (e > 0) then body else done

//@loop_invariant e >= 0; body:

// r * b^e remains invariant t0 <- e % 2

{ if (t0 == 0) then mult else next

if (e % 2 != 0) mult:

r = r * b; r <- r * b

b = b * b; goto next

e = e / 2; next:

} b <- b * b

return r; e <- e / 2

} goto loop

done:

return r

An extended basic block is a collection of basic blocks with one label at the begin-
ning (that may be the target of multiple jumps) and internal labels, each of which is
the target of only one internal jump and no external jumps. In the example above,
we could observe that loop and next are the only blocks which are the target of
multiple jumps. Therefore, there are three extended basic blocks: the function’s
entry is one extended basic block, the four blocks beginning with loop, body, mult,
and done comprise another basic block, and next is the third extended basic block.

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.9

This extended basic block structure can be seen in the control flow graph of
the program, a graph with one node for every label and an edge for every possible
jump. The extended basic blocks are depicted with dashed lines in this control flow
graph:

fastpow	

loop	

body	

done	

next	

mult	

Another way of thinking about extended basic blocks as yet another intermedi-
ate language, where instead of basic blocks being sequences of commands ending
in a jump, they are trees of commands that branch at conditional statements and
have unconditional jumps (goto or return) as their leaves.

fastpow(b,e):

r <- 1

goto loop

loop:

if (e > 0)

then

t <- e % 2 // loop

if (t0 == 0)

r <- r * b // mult

goto next

else

goto next

else

return r // done

next:

b <- b * b

e <- e /2

goto loop

Representing extended basic blocks in this form recovers some of the original pro-
gram’s branching structure while still allowing optimizations like constant propa-
gation to proceed eagerly within a basic block.

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.10

8 Ambiguity in Language Specification

The C standard explicitly leaves the order of evaluation of expressions unspeci-
fied [KR88, p. 200]:

The precedence and associativity of operators is fully specified, but the order
of evaluation of expressions is, with certain exceptions, undefined, even if the
subexpressions involve side effects.

At first, this may seem like a virtue: by leaving evaluation order unspecified, the
compiler can freely optimize expressions without running afoul the specification.
The flip side of this coin is that programs are almost by definition not portable.
They may check and execute just fine with a certain compiler, but subtly or catas-
trophically break when a compiler is updated, or the program is compiled with a
different compiler.

A possible reply to this argument is that a program whose proper execution
depends on the order of evaluation is simply wrong, and the programmer should
not be surprised if it breaks. The flaw in this argument is that dependence on
evaluation order may be a very subtle property, and neither language definition
nor compiler give much help in identifying such flaws in a program. No amount
of testing with a single compiler can uncover such problems, because often the code
will execute correctly under the decision made for this compiler. It may even be that
all available compilers at the time the code is written may agree, say, evaluating
expressions from left to right, but the code could break in a future version.

Therefore I strongly believe that language specifications should be entirely un-
ambiguous. In this course, this is also important because we want to hold all com-
pilers to the same standard of correctness. This is also why the behavior of division
by 0 and division overflow, namely an exception, is fully specified. It is not accept-
able for an expression such as (1/0)*0 to be “optimized” to 0. Instead, it must raise
an exception.

The translation to intermediate code presented here therefore must make sure
that any potentially effectful expressions are indeed evaluated from left to right.
Careful inspection of the translation will reveal this to be the case. On the resulting
pure expressions, many valid optimizations can still be applied which would oth-
erwise be impossible, such as commutativity, associativity, or distributivity, all of
which hold for modular arithmetic.

Questions

1. In the section on abstract syntax trees it looks like we have defined a language
instead of an abstract syntax tree. Why not just have people program directly
in the elaborated language? What can be represented in the surface represen-

LECTURE NOTES FEBRUARY 2, 2023

Intermediate Representation L06.11

tation but not the elaborated AST? What can be represented in the elaborated
AST but not the surface syntax?

2. Which choices of i, j, k, l ∈ {1, 2}make the following translation valid?

tr(e1 + e2) = 〈(ěi; ěj), êk + êl〉

3. You can make your translation more uniform by requiring all translations to
put their results into temp variables using commands, as we did in the lecture
on instruction selection. Discuss the difference.

4. Extend the elaboration to hand break and continue for while loops under their
C semantics.

5. Does each basic block in the intermediate representation for C0 have at most
2 predecessors?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988.

LECTURE NOTES FEBRUARY 2, 2023

	Introduction
	Elaboration
	IR Trees
	Translating Expressions
	Translating Statements
	Translating Boolean Expressions
	Extended Basic Blocks
	Ambiguity in Language Specification

