
Lecture Notes on
Mutable Store

15-411: Compiler Design
Frank Pfenning and Jan Hoffmann*

Lecture 14
March 2, 2023

1 Introduction

In this lecture we extend our language with the ability to allocate data structures
on the so-called heap. Addresses of heap elements serve as pointers which can be
dereferenced to read stored values, or used as destinations for write operations.
Similarly, arrays are stored on the heap1 and via appropriate address calculations.

Adding mutable store requires yet again a significant change in the structure of
the rules of the dynamic semantics. By contrast, the static semantics is relatively
easy to extend.

2 Pointers

We extend our language of types with τ∗, where τ is a (non-void) type.

τ ::= int | bool | τ∗

In the language of expressions, we can allocate a cell on the heap that can hold
a value of type τ , we have a distinguished null pointer, and we can dereference a
pointer to obtain the stored value.

e ::= . . . | alloc(τ) | ∗e | null

They have the following typing rules:

Γ ` alloc(τ) : τ∗
Γ ` e : τ∗
Γ ` ∗e : τ Γ ` null : τ∗

*Typos fixed by Seth Goldstein, 2019
1C0 does not have stack-allocated arrays

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.2

At first glance they might be harmless, but the third rule should raise a red flag:
we previously claimed in our mode analysis of typing, that given Γ and e we can
synthesize the type of e (if it exists). However, in the rule for null that’s not the case.

3 Typing ∗null

We cannot synthesize a definite type for null. Unfortunately, we also cannot, in
general, know what type to check an expression against. So we’ll synthesize an
indefinite type, let’s call it any ∗, the type of a pointer to data of potentially any
type.

Now we have to walk through all the constructs in the language to see whether
we can resolve any ∗, assuming it can only arise for null. Let’s consider pointer
equality first, that is, an expression p == q where p and q are pointers. If p and q
both have definite type τ∗, we just treat it as well-typed. If one has type τ∗ and the
other τ ′∗ for τ 6= τ ′, we reject the comparison as ill-typed. If one is definite τ∗ and
the other indefinite, we allow the comparison, because the indefinite type has only
one value (null) which can be compared to a pointer of any definite type. If both
are indefinite, we would be comparing null with null, which is also fine.

One way to capture this is to have a so-called type subsumption rule that allows
a “silent” transition:

Γ ` e : any ∗
Γ ` e : τ∗

Then the following rule suffices for our overloaded equality.

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 == e2 : bool

A difficulty arises with the dereferencing operator: ∗null would have any type,
which means it could essentially appear anywhere. Of course, when run, it will
always yield an exception, since dereferencing the null pointer is disallowed. We
therefore rewrite our earlier rule to disallow dereferencing values of indefinite
type.

Γ ` e : τ∗ Γ 6 ` e : any ∗
Γ ` ∗e : τ

In particular ∗null is disallowed, and so is ∗(b ? null : null) and variants thereof,
because the conditional still has indefinite type any∗. Of course, indefinite types
are not part of the source language and only used internally during type checking.

4 Dynamic Semantics for Pointers

A value of type τ∗ is just an address where a value of type τ is stored, or the special
address 0 (the value of null). Allocation returns an unused address, and dereferenc-

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.3

ing the pointer retrieves the stored value. But where is the store? We currently only
carry an environment η that maps variables to their values. We now also carry a
heap H that maps addresses to stored values.

A question that arises is how we should represent addresses, that is, the domain
of the heap H . One possibility would be to say that addresses have 64 bits like in
our target architecture. The benefit of this approach is that the abstract machine
remains very close to the real machine on which compiled programs execute. The
downside is that we only have a finite amount of addresses and that we can run
out of memory: for example if we allocate space for an integer 264 times then ex-
ecution will get stuck or have to throw an exception. At first sight, this seems to
be a good specification. However, what if the runtime provides a garbage collec-
tor that automatically frees memory that is not reachable from the stack anymore?
Then our dynamic semantics would potentially require to throw an out of memory
exception even though there is still plenty of memory left.

To deal with all possible implementations and behaviors of the operating sys-
tem, we are treating memory failures in the same way we treat stack overflow. We
do not model them in the high-level dynamic semantics but allow that they can
happen at runtime. This is why we assume we have an infinite address space and
that the heap maps natural numbers to values.

To keep track of the free memory we also store a pointer to the next available
address. For simplicity, we assume that this pointer is part of the heap and stored
at a special address next

H : (N ∪ {next})→ Val

Evaluation of expressions may change the heap, because it may call a function
that changes its state. The state of the abstract machine therefore carries heaps,
stacks, and continuations.

H ; S ; η ` eBK

Here the semicolon ’;’ is just a separator between the heap H , the stack S, and the
current environment η. The state should be read as follows.

Given heap H , stack S, and environment η, we evaluate expression e with
continuation K.

Execution of statements is similarly generalized to states of the form.

H ; S ; η ` s I K

All the prior transition rules leave the heap unchanged. For example

H ; S ; η ` e1 � e2 BK −→ H ; S ; η ` e1 B (_� e2 , K)

In the following, we present the new rules for manipulating pointers. The expres-
sion null evaluates to the address 0. Allocation returns a fresh address a and maps

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.4

it to an appropriate default value in the new heap.

H ; S ; η ` nullBK −→ H ; S ; η ` 0 BK

H ; S ; η ` alloc(τ) BK −→ H[a 7→ default(τ), next 7→ a+ |τ |] ; S ; η ` aBK
a = H(next)

Freshly allocated cells are initialized with a default value for the type τ . In the
implementation, this is arranged to always be 0 (in whatever word length required
by the size of τ). For booleans this means false, for integers 0 and for pointers null
in the source language.

For the implementation of this rule, we need to know the sizes of each type.
This is, of course, highly dependent on the processor architecture and conventions.
For this course, we compile to x86-64, in which case we have:

|int| = 4
|bool| = 4
|τ∗| = 8
|τ []| = 8

Of course, 8 does not correspond to the real sizes of the (unbounded) addresses
that we have at the high level. But this is not important as we only need to provide
a accurate model of the target and not implement this exact model. In the target
code, addresses will have 64 bit.

Dereferencing a pointer just retrieves from the address, assuming it is not 0. If
it is 0, we raise the memory exception mem, which for us will be the signal SIGUSR2
(12) on our architecture. (We use SIGUSR2 instead of the obvious choice, SIGSEGV,
for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; η ` ∗eBK −→ H ; S ; η ` eB (∗_ , K)

H ; S ; η ` aB (∗_ , K) −→ H ; S ; η ` H(a) BK (a 6= 0)

H ; S ; η ` aB (∗_ , K) −→ exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a inH . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.5

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ∗d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

Γ ` d : τ Γ ` e : τ

Γ ` assign(d, e) : [τ ′]

Recall that in typings of statements, τ ′ is the return type of the function that we are
currently typing. The rule for assignment is valid for every τ ′.

In the operational semantics we now distinguish variables from other destina-
tions, since variables are on the stack (or in registers), while destinations ∗d are on
the heap. First, a reminder for assignment if the destination is a variable.

H ; S ; η ` assign(x, e) I K −→ H ; S ; η ` eB (assign(x, _) , K)
H ; S ; η ` cB (assign(x, _) , K) −→ H ; S ; η[x 7→ c] B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; η ` assign(∗d, e) I K −→ H ; S ; η ` dB (assign(∗_, e) , K)
H ; S ; η ` aB (assign(∗_, e) , K) −→ H ; S ; η ` eB (assign(∗a, _) , K)
H ; S ; η ` cB (assign(∗a, _) , K) −→ H[a 7→ c] ; S ; η ` nop I K (a 6= 0)
H ; S ; η ` cB (assign(∗a, _) , K) −→ exception(mem) (a = 0)

Evaluating Assignments

Based on the rules above, what should happen in the following code fragments.

int* p = NULL;

*p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate p to 0. Second we evaluate 1/0. This will raise an arithmetic
exception, which is therefore the outcome of the execution.

int** p = NULL;

**p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate ∗p. Since the value of p is 0 this raises a memory exception,
which is therefore the outcome of the execution.

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.6

6 Arrays

Arrays are in many ways similar to pointers, but there are no null arrays. We’ll
discuss default arrays below. For now, though, this is a simplification since the
typing rules are more straightforward.

τ ::= . . . | τ []
e ::= . . . | alloc array(τ, e) | e1[e2]
d ::= . . . | d[e]

Γ ` e : int

Γ ` alloc array(τ, e) : τ []

Γ ` e1 : τ [] Γ ` e2 : int

Γ ` e1[e2] : τ

The dynamic semantics for allocation obtains a fresh segment of memory and
initializes all n elements of the array with the default value of type τ .

H ; S ; η ` alloc array(τ, e) BK −→ H ; S ; η ` eB (alloc array(τ, _) , K)
H ; S ; η ` nB (alloc array(τ, _) , K) −→ H ′ ; S ; η ` aBK (n ≥ 0)

a = H(next)
H ′ = H[a+ 0|τ | 7→ default(τ), . . . , a+ (n− 1)|τ | 7→ default(τ), next 7→ a+ n|τ |]

H ; S ; η ` nB (alloc array(τ, _) , K) −→ exception(mem) (n < 0)

Array access evaluates from left to right and then computes the correct memory
address for the value.

H ; S ; η ` e1[e2] BK −→ H ; S ; η ` e1 B (_[e2] , K)
H ; S ; η ` aB (_[e2] , K) −→ H ; S ; η ` e2 B (a[_] , K)
H ; S ; η ` iB (a[_] , K) −→ H ; S ; η ` H(a+ i|τ |) BK

a 6= 0, 0 ≤ i < length(a), a : τ []
H ; S ; η ` iB (a[_] , K) −→ exception(mem) a = 0 or i < 0 or i ≥ length(a)

There are two significant complications here: where do we obtain the length of the
array stored at address a, and where do we get the type τ?

The second is actually easier: when we compile an array access, we will know
the type of e1. It must be of the form τ [] for some τ . Then we calculate its size at
compile time and generate code to multiply it by the index i. I the dynamic seman-
tics, we can reflect this by annotating every array access with the element type τ of
the array:

e1{τ}[e2]

Finding the length of the array is actually harder, since it is not known at com-
pile time. This is because array allocation has the form alloc array(τ, e) where e is
an arbitrary expression that should evaluate to the number of elements in the array
to allocate.

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.7

Storing the Array Length

One possibility is to allocate a few additional bytes to store the length of the array.
This could be layed out as follows, where a is the address of the array A with
elements of type τ .

n
�
��

@
@@ A[0] · · · A[n− 1]

a a+4 a+8 a+8+(n−1)|τ |

Alternatively, we could lay it out with the address a pointing to the first array
element. This simplifies the address arithmetic, and would also allow passing this
pointer directly to C (which would not care about the length information to the
left).

n
�
��

@
@@ A[0] · · · A[n− 1]

a−8 a−4 a a+(n−1)|τ |

The reason we locate the length n at a − 8 and not a − 4 is so that a itself will be
aligned at 0 modulo 8, if the whole memory block as returned from calloc is aligned
that way.

This second solution is reflected in the following, updated evaluation rules.

H ; S ; η ` e1{τ}[e2] BK −→ H ; S ; η ` e1 B (_{τ}[e2] , K)
H ; S ; η ` aB (_{τ}[e2] , K) −→ H ; S ; η ` e2 B (a{τ}[_] , K)
H ; S ; η ` iB (a{τ}[_] , K) −→ H ; S ; η ` H(a+ i|τ |) BK

a 6= 0, 0 ≤ i < H(a− 8)
H ; S ; η ` iB (a{τ}[_] , K) −→ exception(mem)

a = 0 or i < 0 or i ≥ H(a− 8)

H ; S ; η ` alloc array(τ, e) BK −→ H ; S ; η ` eB (alloc array(τ, _) , K)
H ; S ; η ` nB (alloc array(τ, _) , K) −→ H ′ ; S ; η ` a′ BK (n ≥ 0)

a = H(next) a′ = a+ 8
H ′ = H[a′ + 0|τ | 7→ default(τ), . . . , a′ + (n− 1)|τ | 7→ default(τ), next 7→ a′ + n|τ |]

H ; S ; η ` nB (alloc array(τ, _) , K) −→ exception(mem) (n < 0)

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.8

The code pattern for e1{τ}[e2] and |τ | = k could be like this:

cogen(e1, a) (a new)
cogen(e2, i) (i new)
a1 ← a− 8
t2 ←M [a1]
if (i < 0) goto error
if (i ≥ t2) goto error
a3 ← i ∗ $k
a4 ← a+ a3
t5 ←M [a4]

Here, a, a1, a3, a4 would be 64 bit temps, t2 would be 32 bits, and t5 would be k
bytes. We have written $k to indicate that this is an immediate operand (that is, a
compile-time constant). Some compound memory operands can be used on x86-64
to avoid some intermediate computation such as a1 or a4. Also, we can exploit
properties of two’s complement arithmetic and combine the two comparisons into
a single unsigned comparison of i and t2.

Of course, there are still limits to interoperability with C: if C passes an array to
a C0 program, we somehow need to find out its length and marshal it somewhere
else so we can add the length information. Alternatively, we can compile the code
in unsafe mode where array bounds are not checked, which is just what C does.

Executing assignments with the new destinations is quite similar to reading.

H ; S ; η ` assign(d{τ}[e2], e3) I K −→ H ; S ; η ` dB (assign(_{τ}[e2], e3) , K)
H ; S ; η ` aB (assign(_{τ}[e2], e3) , K) −→ H ; S ; η ` e2 B (assign(a{τ}[_], e3) , K)
H ; S ; η ` iB (assign(a{τ}[_], e3) , K) −→ H ; S ; η ` e3 B (assign(a+ i|τ |, _) , K)

a 6= 0, 0 ≤ i < length(a)
H ; S ; η ` iB (assign(a{τ}[_], e3) , K) −→ exception(mem)

a = 0 or i < 0 or i ≥ length(a)
H ; S ; η ` cB (assign(b, _) , K) −→ H[b 7→ c] ; S ; η ` nop I K

Here, we have written length(a) for H(a− 8).

7 Values of Array Type

Each type has a default value. For integers it is 0, for booleans 0 (which represents
false), and for pointers it is 0 (which represents null). The default for arrays is also
0, which represents an array of size 0. We can never legally access any element of
this default array, since the condition that the index must be in bounds can never be
satisfied. Nevertheless, arrays can be compared for equality and disequality (which
is a comparison of their address), so zero-sized arrays are not entirely useless. In
particular, alloc array(0) must return a fresh zero-sized array that’s different from

LECTURE NOTES MARCH 2, 2023

Mutable Store L14.9

all other arrays already allocated, and also different from the default array of size
0.

The fact that a = 0 is a valid array address creates an issue when we try to
access M [a − 8] to obtain its size. We could rely on the operating system to raise
a memory exception, although that may not be reliably so. To be sure, we should
check whether a is 0 before doing address calculation. Of course, if we are in unsafe
mode when bounds-checking is turned off (which we will implement in Lab 5),
then this is not necessary.

8 Compound Assignment Operators

Previously, we could expand x += e to x = x + e. However, with the addition of
arrays, this has become problematic. The difficulty is d1[e2] += e3. After syntac-
tic expansion we obtain d1[e2] = d1[e2] + e3 in which both d1 and e2 would be
evaluated twice. Since evaluation of expressions and destinations now can have an
effect, that effect would be unexpectedly repeated. Instead we have to more-or-less
repeat the rules for assignment with appropriate checks for out-of-bounds access
and arithmetic exceptions. The address-of operator introduced in the next lecture
can make this somewhat more elegant.

LECTURE NOTES MARCH 2, 2023

	Introduction
	Pointers
	Typing *null
	Dynamic Semantics for Pointers
	Writing to Heap Destinations
	Arrays
	Values of Array Type
	Compound Assignment Operators

