
15-411: First-Class Functions

Jan Hoffmann

C1

C1 is a conservative extension of C0

• (A limited form of) function pointers

• Break and continue statements

• Generic pointers (void*)

• More details in the C0 language specification

Function Pointers

Function Pointers in C

• In C we can use the address of operator & to get the address of a
functions

• However, we cannot modify the content of a function’s address

• Function types are defined using typedef

typedef int optype(int,int);

Example:

typedef int (*optype_pt)(int,int);

Function Pointers in C

• In C we can use the address of operator & to get the address of a
functions

• However, we cannot modify the content of a function’s address

• Function types are defined using typedef

typedef int optype(int,int);

Example:

typedef int (*optype_pt)(int,int);

Not in C1!

Function Pointers in C: Examples

int f (int x, int y) {
 int g (int y) {return 0};
 return x+y;
}

int f (int x, int y) {
 return x+y;
}

int (*g)(int x, int y) = &f;

int main () {
 (*g)(1,2);
}

Function Pointers in C: Examples

int f (int x, int y) {
 int g (int y) {return 0};
 return x+y;
}

int f (int x, int y) {
 return x+y;
}

int (*g)(int x, int y) = &f;

int main () {
 (*g)(1,2);
}

Not in C1!

Function Pointers in C: Examples

int f (int x, int y) {
 int g (int y) {return 0};
 return x+y;
}

Cannot define local functions:

int f (int x, int y) {
 return x+y;
}

int (*g)(int x, int y) = &f;

int main () {
 (*g)(1,2);
}

Not in C1!

Function Pointers in C: Examples

typedef int optype(int,int);

int add (int x, int y) {return x+y;}

int mult (int x, int y) {return x*y;}

optype* f1 (int x) {
 optype* g;
 if (x)
 g = &add;
 else
 g = &mult;
 return g;
}

int g1 (optype* f, int x, int y) {
 return (*f)(x,y);
}

Function Pointers in C: Examples

typedef int optype(int,int);

int h () {
 optype f2;
 int x = f2(1,2);
 return x;
}

Function Pointers in C: Examples

typedef int optype(int,int);

int h () {
 optype f2;
 int x = f2(1,2);
 return x;
}

In C, ‘variables’ can have a
function type.

Function Pointers in C: Examples

typedef int optype(int,int);

int h () {
 optype f2;
 int x = f2(1,2);
 return x;
}

In C, ‘variables’ can have a
function type.

What happens if you
compile the program?

Function Pointers in C: Examples

typedef int optype(int,int);

int h () {
 optype f2;
 int x = f2(1,2);
 return x;
}

In C, ‘variables’ can have a
function type.

What happens if you
compile the program?

Local function
declaration.

Function Pointers in C: Examples

typedef int optype(int,int);

int h () {
 optype f2;
 int x = f2(1,2);
 return x;
}

int f2 (int x, int y) {return x+y;}

Function Pointers in C: Examples

typedef int optype(int,int);

int h () {
 optype f2;
 int x = f2(1,2);
 return x;
}

int f2 (int x, int y) {return x+y;}

What happens if you
compile the program?

Function Pointers in C1

gdef ::= … 
 | typedef type ft (type vid, … , type vid)

type ::= … | ft

Function Pointers in C1

gdef ::= … 
 | typedef type ft (type vid, … , type vid)

type ::= … | ft Functional types with different names
are treated as different types.

Function Pointers in C1

unop ::= … | &

exp ::= … | (* exp) (exp, … ,exp)

gdef ::= … 
 | typedef type ft (type vid, … , type vid)

type ::= … | ft Functional types with different names
are treated as different types.

Function Pointers in C1

unop ::= … | &

exp ::= … | (* exp) (exp, … ,exp)

Can only be applied to functions.

gdef ::= … 
 | typedef type ft (type vid, … , type vid)

type ::= … | ft Functional types with different names
are treated as different types.

Function Pointers in C1

unop ::= … | &

exp ::= … | (* exp) (exp, … ,exp)

Can only be applied to functions.

Dereference only in
function application.

gdef ::= … 
 | typedef type ft (type vid, … , type vid)

type ::= … | ft Functional types with different names
are treated as different types.

Function Pointers in C1

unop ::= … | &

exp ::= … | (* exp) (exp, … ,exp)

Can only be applied to functions.

Dereference only in
function application.

gdef ::= … 
 | typedef type ft (type vid, … , type vid)

type ::= … | ft

Small types:

int, bool, t*, t[] struct s, ft

Large types:

Functional types with different names
are treated as different types.

Function Pointers in C1

unop ::= … | &

exp ::= … | (* exp) (exp, … ,exp)

Can only be applied to functions.

Dereference only in
function application.

gdef ::= … 
 | typedef type ft (type vid, … , type vid)

type ::= … | ft

Small types:

int, bool, t*, t[] struct s, ft

Large types: No variables,
arguments, and
return values of

large type.

Functional types with different names
are treated as different types.

Static Semantics

• Function parameters and locally declared variables with overlapping scopes may not have the
same name. Among other things, this means that for a given function, all function parameters
must have distinct names. However, local variables are allowed to shadow function names.
This is similar to the behavior of C. You can emulate this specification, for example, by
extending the rules for declarations from L2 as follows:

x 62 Dom(�) �, x : ⌧ ` s valid

� ` declare(x, ⌧, s) valid

�(x) = (⌧1, . . . , ⌧n) ! ⌧ 0 �, x : ⌧ ` s valid

� ` declare(x, ⌧, s) valid

• A function must be called with the correct number of arguments, and with compatible types.
The whole expression has the corresponding return type.

ft = (⌧1, . . . , ⌧n) ! ⌧ �(f) = ft

� ` &f : ft⇤

ft = (⌧1, . . . , ⌧n) ! ⌧ � ` e : ft⇤ � ` e1 : ⌧1 · · · � ` en : ⌧n

� ` ⇤e(e1, . . . , en) : ⌧

• The new type void is allowed only as the return type of a function. It expresses that the
function returns no value. Such a function can not be called inside an expression, but only
directly as a statement.

• A function returning void does not require an explicit return statement at the end of each
control flow path starting from the beginning of the function. Any explicit return that happens
to be present must have the form “return;” with no argument.

• The new statement assert(e) is typed by

� ` e : bool

� ` assert(e) valid

As you can probably observe, we have imported a lot of the non-uniform behavior of C to
L3, especially with respect to name collisions and shadowing. It is plausible to handle these
inconsistencies to varying extents in the elaborator and the type checker. You are free to make
design decisions that suit your compiler. However, wherever you draw your module boundaries (if
at all), think carefully about why your implementation is equivalent to this specification.

The static check that there is a return statement along every control flow path from the beginning
of a function is similar to L2, except that we omit this check for functions returning void. The
check that all local variables are defined before they are used also proceeds as in L2, where function
parameters are considered defined at the beginning of the function body. This is because they will
have values when the execution of the body of a function commences.

Now that we have function calls, we define main as an identifier with the special requirement
that it can only be defined as a function with no parameters and the return type of int. Execution
of an L3 program begins in the main function. Please refer to the section describing the runtime.

5

• Function parameters and locally declared variables with overlapping scopes may not have the
same name. Among other things, this means that for a given function, all function parameters
must have distinct names. However, local variables are allowed to shadow function names.
This is similar to the behavior of C. You can emulate this specification, for example, by
extending the rules for declarations from L2 as follows:

x 62 Dom(�) �, x : ⌧ ` s valid

� ` declare(x, ⌧, s) valid

�(x) = (⌧1, . . . , ⌧n) ! ⌧ 0 �, x : ⌧ ` s valid

� ` declare(x, ⌧, s) valid

• A function must be called with the correct number of arguments, and with compatible types.
The whole expression has the corresponding return type.

ft = (⌧1, . . . , ⌧n) ! ⌧ �(f) = ft

� ` &f : ft⇤

ft = (⌧1, . . . , ⌧n) ! ⌧ � ` e : ft⇤ � ` e1 : ⌧1 · · · � ` en : ⌧n

� ` ⇤e(e1, . . . , en) : ⌧

• The new type void is allowed only as the return type of a function. It expresses that the
function returns no value. Such a function can not be called inside an expression, but only
directly as a statement.

• A function returning void does not require an explicit return statement at the end of each
control flow path starting from the beginning of the function. Any explicit return that happens
to be present must have the form “return;” with no argument.

• The new statement assert(e) is typed by

� ` e : bool

� ` assert(e) valid

As you can probably observe, we have imported a lot of the non-uniform behavior of C to
L3, especially with respect to name collisions and shadowing. It is plausible to handle these
inconsistencies to varying extents in the elaborator and the type checker. You are free to make
design decisions that suit your compiler. However, wherever you draw your module boundaries (if
at all), think carefully about why your implementation is equivalent to this specification.

The static check that there is a return statement along every control flow path from the beginning
of a function is similar to L2, except that we omit this check for functions returning void. The
check that all local variables are defined before they are used also proceeds as in L2, where function
parameters are considered defined at the beginning of the function body. This is because they will
have values when the execution of the body of a function commences.

Now that we have function calls, we define main as an identifier with the special requirement
that it can only be defined as a function with no parameters and the return type of int. Execution
of an L3 program begins in the main function. Please refer to the section describing the runtime.

5

Dynamic Semantics

Reminder

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

Reminder

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

| &f | (⇤e)(e1, e2) | (⇤e)()

Reminder

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

| &f | (⇤e)(e1, e2) | (⇤e)()

| &f

Reminder

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

| &f | (⇤e)(e1, e2) | (⇤e)()

| &f

| (⇤)(e1, e2)

Summary: Expressions

Dynamic Semantics L13.9

S ; ⌘ ` e1 � e2 BK �! S ; ⌘ ` e1 B (_� e2 , K)
S ; ⌘ ` c1 B (_� e2 , K) �! S ; ⌘ ` e2 B (c1 � _ , K)
S ; ⌘ ` c2 B (c1 � _ , K) �! S ; ⌘ ` cBK (c = c1 � c2)
S ; ⌘ ` c2 B (c1 � _ , K) �! exception(arith) (c1 � c2 undefined)

S ; ⌘ ` e1 && e2 BK �! S ; ⌘ ` e1 B (_ && e2 , K)
S ; ⌘ ` falseB (_ && e2 , K) �! S ; ⌘ ` falseBK
S ; ⌘ ` trueB (_ && e2 , K) �! S ; ⌘ ` e2 BK

S ; ⌘ ` xBK �! S ; ⌘ ` ⌘(x)BK

S ; ⌘ ` nop I (s , K) �! S ; ⌘ ` s I K
S ; ⌘ ` assign(x, e) I K �! S ; ⌘ ` eB (assign(x, _) , K)
S ; ⌘ ` cB (assign(x, _) , K) �! S ; ⌘[x 7! c] ` nop I K

S ; ⌘ ` decl(x, ⌧, s) I K �! S ; ⌘[x 7! nothing] ` s I K

S ; ⌘ ` assert(e) I K �! S ; ⌘ ` eB (assert(_) , K)
S ; ⌘ ` trueB (assert(_) , K) �! S ; ⌘ ` nop I K
S ; ⌘ ` falseB (assert(_) , K) �! exception(abort)

S ; ⌘ ` if(e, s1, s2) I K �! S ; ⌘ ` eB (if(_, s1, s2) , K)
S ; ⌘ ` trueB (if(_, s1, s2)) �! S ; ⌘ ` s1 I K
S ; ⌘ ` falseB (if(_, s1, s2)) �! S ; ⌘ ` s2 I K

S ; ⌘ ` while(e, s) I K �! S ; ⌘ ` if(e, seq(s,while(e, s)), nop) I K

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
(S , h⌘0,K 0i) ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

· ; ⌘ ` cB (return(_) , K) �! value(c)

LECTURE NOTES OCTOBER 10, 2016

Summary: Statements

Dynamic Semantics L13.10

S ; ⌘ ` e1 � e2 BK �! S ; ⌘ ` e1 B (_� e2 , K)
S ; ⌘ ` c1 B (_� e2 , K) �! S ; ⌘ ` e2 B (c1 � _ , K)
S ; ⌘ ` c2 B (c1 � _ , K) �! S ; ⌘ ` cBK (c = c1 � c2)
S ; ⌘ ` c2 B (c1 � _ , K) �! exception(arith) (c1 � c2 undefined)

S ; ⌘ ` e1 && e2 BK �! S ; ⌘ ` e1 B (_ && e2 , K)
S ; ⌘ ` falseB (_ && e2 , K) �! S ; ⌘ ` falseBK
S ; ⌘ ` trueB (_ && e2 , K) �! S ; ⌘ ` e2 BK

S ; ⌘ ` xBK �! S ; ⌘ ` ⌘(x)BK

S ; ⌘ ` nop I (s , K) �! S ; ⌘ ` s I K
S ; ⌘ ` assign(x, e) I K �! S ; ⌘ ` eB (assign(x, _) , K)
S ; ⌘ ` cB (assign(x, _) , K) �! S ; ⌘[x 7! c] ` nop I K

S ; ⌘ ` decl(x, ⌧, s) I K �! S ; ⌘[x 7! nothing] ` s I K

S ; ⌘ ` assert(e) I K �! S ; ⌘ ` eB (assert(_) , K)
S ; ⌘ ` trueB (assert(_) , K) �! S ; ⌘ ` nop I K
S ; ⌘ ` falseB (assert(_) , K) �! exception(abort)

S ; ⌘ ` if(e, s1, s2) I K �! S ; ⌘ ` eB (if(_, s1, s2) , K)
S ; ⌘ ` trueB (if(_, s1, s2),K) �! S ; ⌘ ` s1 I K
S ; ⌘ ` falseB (if(_, s1, s2),K) �! S ; ⌘ ` s2 I K

S ; ⌘ ` while(e, s) I K �! S ; ⌘ ` if(e, seq(s,while(e, s)), nop) I K

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
(S , h⌘0,K 0i) ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

· ; ⌘ ` cB (return(_) , K) �! value(c)

LECTURE NOTES OCTOBER 11, 2016

Summary: Functions

Dynamic Semantics L13.9

S ; ⌘ ` e1 � e2 BK �! S ; ⌘ ` e1 B (_� e2 , K)
S ; ⌘ ` c1 B (_� e2 , K) �! S ; ⌘ ` e2 B (c1 � _ , K)
S ; ⌘ ` c2 B (c1 � _ , K) �! S ; ⌘ ` cBK (c = c1 � c2)
S ; ⌘ ` c2 B (c1 � _ , K) �! exception(arith) (c1 � c2 undefined)

S ; ⌘ ` e1 && e2 BK �! S ; ⌘ ` e1 B (_ && e2 , K)
S ; ⌘ ` falseB (_ && e2 , K) �! S ; ⌘ ` falseBK
S ; ⌘ ` trueB (_ && e2 , K) �! S ; ⌘ ` e2 BK

S ; ⌘ ` xBK �! S ; ⌘ ` ⌘(x)BK

S ; ⌘ ` nop I (s , K) �! S ; ⌘ ` s I K
S ; ⌘ ` assign(x, e) I K �! S ; ⌘ ` eB (assign(x, _) , K)
S ; ⌘ ` cB (assign(x, _) , K) �! S ; ⌘[x 7! c] ` nop I K

S ; ⌘ ` decl(x, ⌧, s) I K �! S ; ⌘[x 7! nothing] ` s I K

S ; ⌘ ` assert(e) I K �! S ; ⌘ ` eB (assert(_) , K)
S ; ⌘ ` trueB (assert(_) , K) �! S ; ⌘ ` nop I K
S ; ⌘ ` falseB (assert(_) , K) �! exception(abort)

S ; ⌘ ` if(e, s1, s2) I K �! S ; ⌘ ` eB (if(_, s1, s2) , K)
S ; ⌘ ` trueB (if(_, s1, s2)) �! S ; ⌘ ` s1 I K
S ; ⌘ ` falseB (if(_, s1, s2)) �! S ; ⌘ ` s2 I K

S ; ⌘ ` while(e, s) I K �! S ; ⌘ ` if(e, seq(s,while(e, s)), nop) I K

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
(S , h⌘0,K 0i) ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

· ; ⌘ ` cB (return(_) , K) �! value(c)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics: Function Pointers

Lecture Notes on
First-Class Functions

15-411: Compiler Design
Rob Simmons and Jan Hoffmann

Lecture 26
Nov 28, 2017

1 Introduction

In this lecture, we discuss two generalizations of C0: function pointers and nested,
anonymous functions (lambdas). As a language feature, nested functions are a nat-
ural extension of function pointers. However, because of the necessity of closures
in the implementation of nested functions, the necessary implementation strategies
are somewhat different.

2 Function pointers

The C1 language includes a concept of function pointers, which are obtained from
a function with the address-of operator &f . The dynamic semantics can treat &f as
a new type of constant, which represents the memory address where the function
f is stored.

S; ⌘ ` (⇤e)(e1, e2)BK �! S; ⌘ ` eB ((⇤_)(e1, e2) , K)
S; ⌘ ` &f B ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B (f(_, e2) , K)

Again, we only show the special case of evaluation function calls with two and
zero arguments. After the second instruction, we continue evaluating the argu-
ments to the function left-to-right and then call the function as in our previous
dynamics. We do not have to model function pointers using a heap as we did for
arrays and pointers since we are not able to change the functions that is stored at a
given address.

It is relatively straightforward to extend a language with function pointers, be-
cause they are addresses. We can obtain that address at runtime by referring to
the label as a constant. Any label labl in an assembly file represents an address in
memory (since the program must be loaded into memory in order to run), and can

LECTURE NOTES NOV 28, 2017

Lecture Notes on
First-Class Functions

15-411: Compiler Design
Rob Simmons and Jan Hoffmann

Lecture 26
Nov 28, 2017

1 Introduction

In this lecture, we discuss two generalizations of C0: function pointers and nested,
anonymous functions (lambdas). As a language feature, nested functions are a nat-
ural extension of function pointers. However, because of the necessity of closures
in the implementation of nested functions, the necessary implementation strategies
are somewhat different.

2 Function pointers

The C1 language includes a concept of function pointers, which are obtained from
a function with the address-of operator &f . The dynamic semantics can treat &f as
a new type of constant, which represents the memory address where the function
f is stored.

S; ⌘ ` (⇤e)(e1, e2)BK �! S; ⌘ ` eB ((⇤_)(e1, e2) , K)
S; ⌘ ` &f B ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B (f(_, e2) , K)

Again, we only show the special case of evaluation function calls with two and
zero arguments. After the second instruction, we continue evaluating the argu-
ments to the function left-to-right and then call the function as in our previous
dynamics. We do not have to model function pointers using a heap as we did for
arrays and pointers since we are not able to change the functions that is stored at a
given address.

It is relatively straightforward to extend a language with function pointers, be-
cause they are addresses. We can obtain that address at runtime by referring to
the label as a constant. Any label labl in an assembly file represents an address in
memory (since the program must be loaded into memory in order to run), and can

LECTURE NOTES NOV 28, 2017

Nominal Types

C1 treats function types nominally

typedef int binop_fn(int,int);

typedef int binop_fn2(int,int);

binop_fn and binop_fn2 are different types and pointers of binop_fn and
binop_fn2 cannot be compared.

int add (int x, int y) {return x+y;}

int main {
 binop_fn* f = &add;
 binop_fn2* f2 = &add;
 return 0;
}

Nominal Types

C1 treats function types nominally

typedef int binop_fn(int,int);

typedef int binop_fn2(int,int);

binop_fn and binop_fn2 are different types and pointers of binop_fn and
binop_fn2 cannot be compared.

int add (int x, int y) {return x+y;}

int main {
 binop_fn* f = &add;
 binop_fn2* f2 = &add;
 return 0;
}

Like null, add can
have both types.

Nominal Types

C1 treats function types nominally

typedef int binop_fn(int,int);

typedef int binop_fn2(int,int);

binop_fn and binop_fn2 are different types and pointers of binop_fn and
binop_fn2 cannot be compared.

int add (int x, int y) {return x+y;}

int main {
 binop_fn* f = &add;
 binop_fn2* f2 = &add;
 return 0;
}

Like null, add can
have both types.

(*&add)(x,y)

Nominal Types

C1 treats function types nominally

typedef int binop_fn(int,int);

typedef int binop_fn2(int,int);

binop_fn and binop_fn2 are different types and pointers of binop_fn and
binop_fn2 cannot be compared.

int add (int x, int y) {return x+y;}

int main {
 binop_fn* f = &add;
 binop_fn2* f2 = &add;
 return 0;
}

Like null, add can
have both types.

(*&add)(x,y)

Not allowed in
C1.

Nominal Type and Contracts

• binop_fn and binop_fn_2 are treated as different types

• The call *f(3,3) can cause a precondition violation

• The call *f2(3,3) might be fine even if f and f2 point to the same function

First-class functions L19.2

The static semantics of function pointers are straightforward, though slightly
obfuscated because C1 inherits C’s horrendous syntax for function types. The C1
language disallows the common definition-as-use C version of declaring function
types, which looks like this:

int (*f)(int, int) = &foo;

Instead, function types in C1 must be declared as type definitions, by writing typedef

followed by a function declaration:

typedef int binop_fn(int x, int y);

typedef int unop_fn(int x);

typedef int binop_fn_2(int x, int y);

These declarations create three function types, binop_fn, unop_fn, and binop_fn_2;
the address-of operation gives us pointers to those functions.

binop_fn* f = &foo;

binop_fn_2* g = &foo;

unop_fn* h = &bar;

A further restriction on C’s syntax is that we treat function types nominally – the
types of f and g are different, and these pointers cannot be compared for equality.
This means that &foo has a status similar to NULL: it can have type binop_fn* or
type binop_fn_2*, but we don’t know until we assign it. As was the case for NULL,
both (*NULL)(e1,e2) and (*&foo)(e1,e2) are disallowed in C1.

As an aside, the reasons for treating function types nominally is a result of the
use of contracts in the C1 language, a topic we’ve ignored so far in this class. We
can attach different contracts to different type definitions by including them as part
of the type definition:

typedef int binop_fn(int x, int y);

//@requires x >= y; ensures \result > 0;

typedef int binop_fn_2(int x, int y);

//@requires x != y;

These type definitions mean that even though both f and g refer to the same func-
tion foo, C1 will signal a precondition violation if we call (*g)(3,3) but not if we
call (*f)(3,3).

3 First-class functions

The ability to pass functions around as values is convenient, but it is insufficient
for many of the idioms usually associated with functional programming. One such
idiom is currying and partial application: the ability to take a function with two

LECTURE NOTES NOV 17, 2015

First-Class Functions

Currying and Partial Application

In ML we can have functions that return functions

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

return fn (int y) { return x + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information

LECTURE NOTES NOV 17, 2015

Currying and Partial Application

In ML we can have functions that return functions

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

return fn (int y) { return x + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information

LECTURE NOTES NOV 17, 2015

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

return fn (int y) { return x + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information

LECTURE NOTES NOV 17, 2015

In C (C0, C1, …) we can support this by adding a new syntactic form for
anonymous functions

Currying and Partial Application

In ML we can have functions that return functions

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

return fn (int y) { return x + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information

LECTURE NOTES NOV 17, 2015

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

return fn (int y) { return x + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information

LECTURE NOTES NOV 17, 2015

In C (C0, C1, …) we can support this by adding a new syntactic form for
anonymous functions

The type of this expression is

(int -> t)*

where t is the synthesized return type.

Example

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

Dynamic Semantics of Anonymous Functions

Dynamic semantics is not immediately clear

In a functional language we could define the semantics using substitution

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

would lead to

Dynamic Semantics of Anonymous Functions

Dynamic semantics is not immediately clear

In a functional language we could define the semantics using substitution

But in an imperative language that does not work: might be incremented
inside a loop 
What would the effect of the substitution be?

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

would lead to

Dynamic Semantics of Anonymous Functions

Dynamic semantics is not immediately clear

In a functional language we could define the semantics using substitution

But in an imperative language that does not work: might be incremented
inside a loop 
What would the effect of the substitution be?

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

would lead to

What we called variables are in fact
assignables; details in 15-312.

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

C1 Example: Dynamic Semantics

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

C1 Example: Dynamic Semantics

When we call addn the
values of x and z are

available.

First-class functions L19.3

arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (int i) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of calling
addn(7) is that we evaluate the body of addn with 7 substituted for x, that is:

return fn (int y) { return 7 + 8 + y; }

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds seven to its argument, and h2 should be a pointer
to a function that adds 6 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = 3, given that 7 = 3 is not a valid assignment!
This is not just a problem for C0 and C, but for all “Algol-like” languages, including
Java and, to some extent, JavaScript and Python. If you take the Foundations of
Programming Languages class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,

LECTURE NOTES NOV 17, 2015

C1 Example: Dynamic Semantics

When we call addn the
values of x and z are

available.

Idea: Store “variable” environment with function code
➡ function closure

Function Closures: Dynamic Semantics

For functions with two arguments (other functions are similar)

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

Function Closures: Dynamic Semantics

For functions with two arguments (other functions are similar)

New value: function
closure.

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

Function Closures: Dynamic Semantics

For functions with two arguments (other functions are similar)

New value: function
closure.

Store the current
variable environment.

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

First-Class Functions L26.4

The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. This is not just a problem for
C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take the Foundations of Programming Languages
class at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn

through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.
S; ⌘ ` fn(x, y){s}BK �! S; ⌘ ` hhfn(x, y){s}, ⌘iiBK
S; ⌘ ` hhfn(x, y){s}, ⌘0iiB ((⇤_)(e1, e2),K) �! S; ⌘ ` e1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K)
S; ⌘ ` v1 B ((⇤hhfn(x, y){s}, ⌘0ii)(_, e2) , K) �! S; ⌘ ` e2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K)
S; ⌘ ` v2 B ((⇤hhfn(x, y){s}, ⌘0ii)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages

LECTURE NOTES NOV 28, 2017

Another Example

First-class functions L19.4

both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of x is. This combination of the function pointer
and the arguments is called a closure. When we evaluate a function expression, we
capture the current environment into the closure, and when we call the function,
we use the stored environment for the function call.

S; ⌘ ` fn(x, y){s} I K �! S; ⌘ ` �fn(x, y){s}, ⌘� I K
S; ⌘ ` �fn(x, y){s}, ⌘0� I (⇤_)(e1, e2) I K �! S; ⌘ ` e1 I ((⇤�fn(x, y){s}, ⌘0�)(_, e2) , K)
S; ⌘ ` v1 I ((⇤�fn(x, y){s}, ⌘0�)(_, e2) , K) �! S; ⌘ ` e2 I ((⇤�fn(x, y){s}, ⌘0�)(v1, _) , K)
S; ⌘ ` v2 I ((⇤�fn(x, y){s}, ⌘0�)(v1, _) , K) �! S; h⌘,Ki; [⌘0, x 7! v1, y 7! v2] ` sB ·

This is only a particular implementation of closures, however, and it differs in
important ways from the way Python and JavaScript handle closures. To think
about why, consider what the semantics above says about the result value of this
computation, and then compare that result to the comparable Python program:

unop_fn* addn(int x) {

unop_fn* f = fn (int y) { x++; return x + y; };

x++;

return f;

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

One of the problems with nested functions in imperative programming languages
is that it necessitates knowing a lot about the details of closures. Even a language
like ML is using closures at runtime – there’s no actual substitution happening –
but it’s not necessary to know the details like it is when doing programming in
Python or in this variant of C0. In lecture, we discussed the possibility of using
the static semantics to disallow modifying temps that will be captured inside of
closures, which is one way of avoiding these sorts of ambiguities.

We can implement the semantics we described above by rewriting the program.
Each anonymous function can be turned into a top-level function that takes one
extra argument: the struct containing the extra initialization data needed to run .
We can’t quite rewrite the program into a valid C0 program with function pointers.
A closure for a unop_fn* may need:

• no extra data, as in fn (int y) { return y + 3; }

• only one piece of extra data, as in fn (int y) { return x + y; }

LECTURE NOTES NOV 17, 2015

Function Closures in Python

def makeInc(x):
 def inc(y):
 # x = x + 1
 return y + x
 x = x + 1
 return inc

inc5 = makeInc(5)
inc10 = makeInc(10)

inc5(4)

Function Closures in Python

def makeInc(x):
 def inc(y):
 # x = x + 1
 return y + x
 x = x + 1
 return inc

inc5 = makeInc(5)
inc10 = makeInc(10)

inc5(4)What’s the return
value?

Function Closures in Python

def makeInc(x):
 def inc(y):
 # x = x + 1
 return y + x
 x = x + 1
 return inc

inc5 = makeInc(5)
inc10 = makeInc(10)

inc5(4)What’s the return
value?

What happens when we
add this line?

Implementing Function Closures

Is it be possible to translate programs with function closures to C0?

• Idea: turn local funs. into top-level funs. with additional closure argument

• But: the closure argument is different for each instance

• A closure for unop_fn* may need

First-Class Functions L26.5

or 11. The result in Python is 10 since the local variables of the outer functions
are shared in local function definitions. Interestingly, adding the line x = x + 1

results in the error message local variable ’x’ referenced before assignment.
One of the problems with nested functions in imperative programming lan-

guages is that it necessitates knowing a lot about the details of closures. Even a
language like ML is using closures at runtime – there’s no actual substitution hap-
pening – but it’s not necessary to undertsand the details of closure conversion like
in Python or in this variant of C0. In lecture, we discussed the possibility of using
the static semantics to disallow modifying temps that will be captured inside of
closures, which is one way of avoiding these sorts of ambiguities.

We can implement the semantics we described above by rewriting the program.
Each anonymous function can be turned into a top-level function that takes one ex-
tra argument: the struct containing the extra initialization data needed to run. Still,
we cannot rewrite the program into a valid C0 program with function pointers. A
closure for a unop_fn* may need:

• no extra data, as in fn (int y) { return y + 3; }

• only one piece of extra data, as in fn (int y) { return x + y; }

• multiple pieces of extra data, as in fn (int y) { return (*f)(x,z); }

In every case, when we evaluate the function to a value, we know at compile-time
what data needs to be associated with the pointer.

LECTURE NOTES NOV 27, 2018

Implementing Function Closures

Is it be possible to translate programs with function closures to C0?

• Idea: turn local funs. into top-level funs. with additional closure argument

• But: the closure argument is different for each instance

• A closure for unop_fn* may need

First-Class Functions L26.5

or 11. The result in Python is 10 since the local variables of the outer functions
are shared in local function definitions. Interestingly, adding the line x = x + 1

results in the error message local variable ’x’ referenced before assignment.
One of the problems with nested functions in imperative programming lan-

guages is that it necessitates knowing a lot about the details of closures. Even a
language like ML is using closures at runtime – there’s no actual substitution hap-
pening – but it’s not necessary to undertsand the details of closure conversion like
in Python or in this variant of C0. In lecture, we discussed the possibility of using
the static semantics to disallow modifying temps that will be captured inside of
closures, which is one way of avoiding these sorts of ambiguities.

We can implement the semantics we described above by rewriting the program.
Each anonymous function can be turned into a top-level function that takes one ex-
tra argument: the struct containing the extra initialization data needed to run. Still,
we cannot rewrite the program into a valid C0 program with function pointers. A
closure for a unop_fn* may need:

• no extra data, as in fn (int y) { return y + 3; }

• only one piece of extra data, as in fn (int y) { return x + y; }

• multiple pieces of extra data, as in fn (int y) { return (*f)(x,z); }

In every case, when we evaluate the function to a value, we know at compile-time
what data needs to be associated with the pointer.

LECTURE NOTES NOV 27, 2018

Need union types.

Implementing Function Closures

First-Class Functions L26.5

or 11. The result in Python is 10 since the local variables of the outer functions
are shared in local function definitions. Interestingly, adding the line x = x + 1

results in the error message local variable ’x’ referenced before assignment.
One of the problems with nested functions in imperative programming lan-

guages is that it necessitates knowing a lot about the details of closures. Even a
language like ML is using closures at runtime – there’s no actual substitution hap-
pening – but it’s not necessary to undertsand the details of closure conversion like
in Python or in this variant of C0. In lecture, we discussed the possibility of using
the static semantics to disallow modifying temps that will be captured inside of
closures, which is one way of avoiding these sorts of ambiguities.

We can implement the semantics we described above by rewriting the program.
Each anonymous function can be turned into a top-level function that takes one ex-
tra argument: the struct containing the extra initialization data needed to run. Still,
we cannot rewrite the program into a valid C0 program with function pointers. A
closure for a unop_fn* may need:

• no extra data, as in fn (int y) { return y + 3; }

• only one piece of extra data, as in fn (int y) { return x + y; }

• multiple pieces of extra data, as in fn (int y) { return (*f)(x,z); }

In every case, when we evaluate the function to a value, we know at compile-time
what data needs to be associated with the pointer.

Using a union type, we can describe appropriate C code for compiling the three
examples above as follows:

typedef int unop(int y);

union unop_data {

struct {} clo1;

struct { int x; } clo2;

struct { struct binop_closure* f; int x; int z; } clo3;

};

typedef int unop_cl_fn(union unop_data* data, int y);

struct unop_closure {

unop_cl_fn* f;

union unop_data* data;

};

typedef int unop_fn(struct unop_closure* clo, int y);

LECTURE NOTES NOV 27, 2018

Implementing Function Closures

First-Class Functions L26.5

or 11. The result in Python is 10 since the local variables of the outer functions
are shared in local function definitions. Interestingly, adding the line x = x + 1

results in the error message local variable ’x’ referenced before assignment.
One of the problems with nested functions in imperative programming lan-

guages is that it necessitates knowing a lot about the details of closures. Even a
language like ML is using closures at runtime – there’s no actual substitution hap-
pening – but it’s not necessary to undertsand the details of closure conversion like
in Python or in this variant of C0. In lecture, we discussed the possibility of using
the static semantics to disallow modifying temps that will be captured inside of
closures, which is one way of avoiding these sorts of ambiguities.

We can implement the semantics we described above by rewriting the program.
Each anonymous function can be turned into a top-level function that takes one ex-
tra argument: the struct containing the extra initialization data needed to run. Still,
we cannot rewrite the program into a valid C0 program with function pointers. A
closure for a unop_fn* may need:

• no extra data, as in fn (int y) { return y + 3; }

• only one piece of extra data, as in fn (int y) { return x + y; }

• multiple pieces of extra data, as in fn (int y) { return (*f)(x,z); }

In every case, when we evaluate the function to a value, we know at compile-time
what data needs to be associated with the pointer.

Using a union type, we can describe appropriate C code for compiling the three
examples above as follows:

typedef int unop(int y);

union unop_data {

struct {} clo1;

struct { int x; } clo2;

struct { struct binop_closure* f; int x; int z; } clo3;

};

typedef int unop_cl_fn(union unop_data* data, int y);

struct unop_closure {

unop_cl_fn* f;

union unop_data* data;

};

typedef int unop_fn(struct unop_closure* clo, int y);

LECTURE NOTES NOV 27, 2018

A closure is a pair of a function pointer
and the environment variables.

Implementing Function Closures

First-Class Functions L26.5

or 11. The result in Python is 10 since the local variables of the outer functions
are shared in local function definitions. Interestingly, adding the line x = x + 1

results in the error message local variable ’x’ referenced before assignment.
One of the problems with nested functions in imperative programming lan-

guages is that it necessitates knowing a lot about the details of closures. Even a
language like ML is using closures at runtime – there’s no actual substitution hap-
pening – but it’s not necessary to undertsand the details of closure conversion like
in Python or in this variant of C0. In lecture, we discussed the possibility of using
the static semantics to disallow modifying temps that will be captured inside of
closures, which is one way of avoiding these sorts of ambiguities.

We can implement the semantics we described above by rewriting the program.
Each anonymous function can be turned into a top-level function that takes one ex-
tra argument: the struct containing the extra initialization data needed to run. Still,
we cannot rewrite the program into a valid C0 program with function pointers. A
closure for a unop_fn* may need:

• no extra data, as in fn (int y) { return y + 3; }

• only one piece of extra data, as in fn (int y) { return x + y; }

• multiple pieces of extra data, as in fn (int y) { return (*f)(x,z); }

In every case, when we evaluate the function to a value, we know at compile-time
what data needs to be associated with the pointer.

Using a union type, we can describe appropriate C code for compiling the three
examples above as follows:

typedef int unop(int y);

union unop_data {

struct {} clo1;

struct { int x; } clo2;

struct { struct binop_closure* f; int x; int z; } clo3;

};

typedef int unop_cl_fn(union unop_data* data, int y);

struct unop_closure {

unop_cl_fn* f;

union unop_data* data;

};

typedef int unop_fn(struct unop_closure* clo, int y);

LECTURE NOTES NOV 27, 2018

A closure is a pair of a function pointer
and the environment variables.

There are three possibilities
in our example.

Implementing Function Closures

First-Class Functions L26.6

int run_unop_closure (struct unop_closure* clo, int y) {

unop_cl_fn* f = clo->f;

return (*f) (clo->data, y);

}

int fn1 (union unop_data* data, int y) {

return y + 3;

}

int fn2 (union unop_data* data, int y) {

int x = data->clo2.x;

return x + y;

}

int main () {

int x = 10;

/* unop* g = fn (int y) { return y + 3; }; */

struct unop_closure* g = malloc(sizeof(struct unop_closure));

g->f = &fn1;

g->data = malloc(sizeof(struct {}));

/* unop* h = fn (int y) { return x + y; }; */

struct unop_closure* h = malloc(sizeof(struct unop_closure));

h->f = &fn2;

h->data = malloc(sizeof(struct {int x;}));

h->data->clo2.x = x;

/* result = g(4) */

int result = run_unop_closure (g,4);

printf ("%i\n",result);

/* result = h(1) */

result = run_unop_closure (h,1);

printf ("%i\n",result);

return 0;

}

As we can see in the last example, introducing closures means that we need to treat
the runtime value of every function as a closure. We would additionally replace any
of the expression fn (int y) { return x + y; } in the program with an alloca-

LECTURE NOTES NOV 27, 2018

Implementing Function Closures

First-Class Functions L26.6

int run_unop_closure (struct unop_closure* clo, int y) {

unop_cl_fn* f = clo->f;

return (*f) (clo->data, y);

}

int fn1 (union unop_data* data, int y) {

return y + 3;

}

int fn2 (union unop_data* data, int y) {

int x = data->clo2.x;

return x + y;

}

int main () {

int x = 10;

/* unop* g = fn (int y) { return y + 3; }; */

struct unop_closure* g = malloc(sizeof(struct unop_closure));

g->f = &fn1;

g->data = malloc(sizeof(struct {}));

/* unop* h = fn (int y) { return x + y; }; */

struct unop_closure* h = malloc(sizeof(struct unop_closure));

h->f = &fn2;

h->data = malloc(sizeof(struct {int x;}));

h->data->clo2.x = x;

/* result = g(4) */

int result = run_unop_closure (g,4);

printf ("%i\n",result);

/* result = h(1) */

result = run_unop_closure (h,1);

printf ("%i\n",result);

return 0;

}

As we can see in the last example, introducing closures means that we need to treat
the runtime value of every function as a closure. We would additionally replace any
of the expression fn (int y) { return x + y; } in the program with an alloca-

LECTURE NOTES NOV 27, 2018

Implementing Functions Closures

• Need to store variable environment and function body

• Difficulty: We cannot determine statically what the shape of the
environment is

• Similar to adding a struct to the function body

• Store all variables that are captured by the function closure on the heap

• Every function needs to be treated like a closure

