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1 Introduction

In this lecture, we discuss two generalizations of C0: function pointers and nested,
anonymous functions (lambdas). As a language feature, nested functions are a nat-
ural extension of function pointers. However, because of the necessity of closures
in the implementation of nested functions, the necessary implementation strategies
are somewhat different.

2 Function pointers

The C1 language includes a concept of function pointers, which are obtained from
a function with the address-of operator &f . The dynamic semantics can treat &f as
a new type of constant, which represents the memory address where the function
f is stored.

S; η ` (∗e)(e1, e2) BK −→ S; η ` eB ((∗_)(e1, e2) , K)
S; η ` &f B ((∗_)(e1, e2),K) −→ S; η ` e1 B (f(_, e2) , K)

Again, we only show the special case of evaluation function calls with two and
zero arguments. After the second instruction, we continue evaluating the argu-
ments to the function left-to-right and then call the function as in our previous
dynamics. We do not have to model function pointers using a heap as we did for
arrays and pointers since we are not able to change the functions that is stored at a
given address.

It is relatively straightforward to extend a language with function pointers, be-
cause they are addresses. We can obtain that address at runtime by referring to
the label as a constant. Any label labl in an assembly file represents an address in
memory (since the program must be loaded into memory in order to run), and can
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be treated as a constant by writing $labl. Therefore f = &foo in a C1 program will
eventually be compiled into an instruction like MOVQ $_c0_foo %r11. It’s possible
to call a function whose address is stored in a register with the assembly instruction
like CALL *%r11.

The static semantics of function pointers are straightforward, though slightly
obfuscated because C1 inherits C’s horrendous syntax for function types. The C1
language disallows the common definition-as-use C version of declaring function
types, which looks like this:

int (*f)(int, int) = &foo;

Instead, function types in C1 must be declared as type definitions, by writing typedef

followed by a function declaration:

typedef int binop_fn(int x, int y);

typedef int unop_fn(int x);

typedef int binop_fn_2(int x, int y);

These declarations create three function types, binop_fn, unop_fn, and binop_fn_2;
the address-of operation gives us pointers to those functions.

binop_fn* f = &foo;

binop_fn_2* g = &foo;

unop_fn* h = &bar;

A further restriction on C’s syntax is that we treat function types nominally – the
types of f and g are different, and these pointers cannot be compared for equality.
This means that &foo has a status similar to NULL: it can have type binop_fn* or
type binop_fn_2*, but we don’t know until we assign it. As was the case for NULL,
both (*NULL)(e1,e2) and (*&foo)(e1,e2) are disallowed in C1.

As an aside, the reasons for treating function types nominally is a result of the
use of contracts in the C1 language, a topic we’ve ignored so far in this class. We
can attach different contracts to different type definitions by including them as part
of the type definition:

typedef int binop_fn(int x, int y);

//@requires x >= y; ensures \result > 0;

typedef int binop_fn_2(int x, int y);

//@requires x != y;

These type definitions mean that even though both f and g refer to the same func-
tion foo, C1 will signal a precondition violation if we call (*g)(3,3) but not if we
call (*f)(3,3).

The type rules for the new syntactic forms are given below.
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ft = (τ1, . . . , τn)→ τ Γ(f) = ft

Γ ` &f : ft∗

ft = (τ1, . . . , τn)→ τ Γ ` e : ft∗ Γ ` e1 : τ1 . . .Γ ` en : τn

Γ ` ∗e(e1, . . . , en) : τ

3 First-class functions

The ability to pass functions around as values is convenient, but it is insufficient
for many of the idioms usually associated with functional programming. One such
idiom is currying and partial application: the ability to take a function with two
arguments, like int foo(int x, int y) { return x + y; }, and turn it into a
function with one argument by setting the first argument x, to be a specific value.
In Standard ML, this would look like this:

let f = fn (x, y) => x + y

let g = fn x => fn y => f (x, y)

let h = g 7

Now g is a function from integers to integers that adds seven to its argument.
Syntactically, we can support these types of functions in our language by adding

a new expression form, fn (tp var) { stm }, which evaluates to a function pointer.
With this syntactic form, we can create an analogue to the function g above:

unop_fn* addn(int x) {

int z = x + 1;

return fn (int y) { return x + z + y; };

}

int main() {

unop_fn* h1 = addn(7);

unop_fn* h2 = addn(6);

return (*h1)(3) + (*h1)(5) + (*h2)(3);

}

However, the dynamic semantics of this addition are not entirely straightforward.
In functional programming languages, it is common to present the dynamic

semantics in terms of substitution. In that case, we can say that the result of call-
ing addn(7) is that we evaluate the body of addn with 7 substituted for x and 8
substituted for z, that is:

return fn (int y) { return 7 + 8 + y; }
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The substitution semantics makes it clear, in the example above, that h1 should be
a pointer to a function that adds 15 to its argument, and h2 should be a pointer to
a function that adds 13 to its argument. Substitution semantics, however, are ill-
suited for languages like C0. It’s not meaningful to substitute 7 for x in a function
that includes the assignment x = x + 1 in a loop. The reason is that what we have
been calling variables in this class are in fact assignables. In contrast to variables, the
semantics of assignables is not defined by substitution. This is not just a problem
for C0 and C, but for all “Algol-like” languages, including Java and, to some extent,
JavaScript and Python. If you take 15-312 Foundations of Programming Languages
at Carnegie Mellon, you can learn more about this.

Let’s back up. At the point in the main function where we call the function addn
through the function pointer h1 or h2, we have access to the expected value of the
argument y, but in order to evaluate the function, we also need to know the value
of x. There’s no way this information can be available at compile time: it is different
depending on whether we are calling addn through the function pointer h1 (where
x is 7) or h2 (where x is 6). Therefore, we need to be able to access, at runtime,
both the function’s code itself (the function pointer) and the stored information
about what the appropriate value of the variables x and z is. This combination
of the function pointer and the values of the captured variables is called a closure.
When we evaluate a function expression, we capture the current environment into
the closure, and when we call the function, we use the stored environment for the
function call.

S; η ` fn(x, y){s}BK −→ S; η ` 〈〈fn(x, y){s}, η〉〉BK
S; η ` 〈〈fn(x, y){s}, η′〉〉B ((∗_)(e1, e2),K) −→ S; η ` e1 B ((∗〈〈fn(x, y){s}, η′〉〉)(_, e2) , K)
S; η ` v1 B ((∗〈〈fn(x, y){s}, η′〉〉)(_, e2) , K) −→ S; η ` e2 B ((∗〈〈fn(x, y){s}, η′〉〉)(v1, _) , K)
S; η ` v2 B ((∗〈〈fn(x, y){s}, η′〉〉)(v1, _) , K) −→ S; 〈η,K〉; [η′, x 7→ v1, y 7→ v2] ` s I ·

This is only a particular implementation of closures, however, and it differs
in important ways from the way Python and JavaScript handle closures. Here, we
capture the values of variables in the closures while Python stores a reference to the
content of the variable. To understand the difference, consider what the semantics
above says about the result value of this computation, and then compare that result
to the comparable Python program:

def makeInc(x):

def inc(y):

# x = x + 1

return y + x

x = x + 1

return inc

inc5 = makeInc(5)

inc10 = makeInc(10)
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inc5(4)

The result of the execution of inc5(4) could be 9 (like in our C1 dynamics), 10,
or 15. The result in Python is 10 since the local variables of the outer functions
are shared in local function definitions. Interestingly, adding the line x = x + 1

results in the error message local variable ’x’ referenced before assignment.
One of the problems with nested functions in imperative programming lan-

guages is that it necessitates knowing a lot about the details of closures. Even a
language like ML is using closures at runtime – there’s no actual substitution hap-
pening – but it’s not necessary to undertsand the details of closure conversion like
in Python or in this variant of C0. In lecture, we discussed the possibility of using
the static semantics to disallow modifying temps that will be captured inside of
closures, which is one way of avoiding these sorts of ambiguities.

We can implement the semantics we described above by rewriting the program.
Each anonymous function can be turned into a top-level function that takes one ex-
tra argument: the struct containing the extra initialization data needed to run. Still,
we cannot rewrite the program into a valid C0 program with function pointers. A
closure for a unop_fn* may need:

• no extra data, as in fn (int y) { return y + 3; }

• only one piece of extra data, as in fn (int y) { return x + y; }

• multiple pieces of extra data, as in fn (int y) { return (*f)(x,z); }

In every case, when we evaluate the function to a value, we know at compile-time
what data needs to be associated with the pointer.

Using a union type, we can describe appropriate C code for compiling the three
examples above as follows:

typedef int unop(int y);

union unop_data {

struct {} clo1;

struct { int x; } clo2;

struct { struct binop_closure* f; int x; int z; } clo3;

};

typedef int unop_cl_fn(union unop_data* data, int y);

struct unop_closure {

unop_cl_fn* f;

union unop_data* data;

};

LECTURE NOTES APRIL 11, 2023



First-Class Functions L23.6

typedef int unop_fn(struct unop_closure* clo, int y);

int run_unop_closure (struct unop_closure* clo, int y) {

unop_cl_fn* f = clo->f;

return (*f) (clo->data, y);

}

int fn1 (union unop_data* data, int y) {

return y + 3;

}

int fn2 (union unop_data* data, int y) {

int x = data->clo2.x;

return x + y;

}

int main () {

int x = 10;

/* unop* g = fn (int y) { return y + 3; }; */

struct unop_closure* g = malloc(sizeof(struct unop_closure));

g->f = &fn1;

g->data = malloc(sizeof(struct {}));

/* unop* h = fn (int y) { return x + y; }; */

struct unop_closure* h = malloc(sizeof(struct unop_closure));

h->f = &fn2;

h->data = malloc(sizeof(struct {int x;}));

h->data->clo2.x = x;

/* result = g(4) */

int result = run_unop_closure (g,4);

printf ("%i\n",result);

/* result = h(1) */

result = run_unop_closure (h,1);

printf ("%i\n",result);

return 0;

}

As we can see in the last example, introducing closures means that we need to treat
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the runtime value of every function as a closure. We would additionally replace any
of the expression fn (int y) { return x + y; } in the program with an alloca-
tion of a struct unop_closure, storing &fn2 in the first field clo->f and storing x,
as defined in the current environment in clo->data.clo2.x.
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