
15-411: Compiler Design Spring 2023

Recitation 3: Static Semantics and Lexing 10 February

Elaboration in L2

Recall the discussion about elaboration last recitation. The AST generated by your parser should re�ect

the source-code syntactic structure as closely as possible. You can then perform an elaboration pass to

generate an AST that re�ects the semantic structure of L2.

During L1, because all programs were simply a list of statements, they could for the most part be

elaborated into seq and nop in a simple right-associative nesting:

s1; s2; s3; =⇒ elab seq(s1, seq(s2, seq(s3, nop)))

The main tricky part of elaboration was handling declarations, for which our AST node decl(x, τ, s)
contains s to clearly mark the scope of x. So if s2 above was actually some declaration τ x, the

elaboration would instead be seq(s1, decl(x, τ, seq(s3, nop))).

In L2 however, programs can get more complex. A block, which is a list of statements surrounded by

braces, is itself a statement. Yet, our (post-elaboration) AST does not require an additional variant for

blocks. We can represent them with only seq and nop.

Checkpoint 0

Write out the post-elaboration AST of the following program. Be careful about the nesting of seq's and

decl's.

int main () {

int a;

{

int b;

b = 5;

a = b;

}

int b;

b = a;

return b;

}

Of course, you are not required to elaborate in this speci�c manner. The way we have presented decl,

seq, and nop makes it easier for us to de�ne judgements for their static semantics, but it may a�ect

the debugability of the post-elaboration AST in your compiler. You are free to not elaborate blocks and

keep them as lists of statements.



Static Semantics of Initialization

For a C0 program to be valid, all variables must be declared and initialized before use. A compiler should

con�rm this property of a user program. To formally check this, we need to come up with a set of

judgements and their associated inference rules. In class, we saw 2 di�erent presentations of judgements

that could achieve this. One of them used the following judgements:

� use(e, x): the variable x might be used when evaluating expression e.

� def(s, x): the variable x must be initialized after executing statement s.

� live(s, x): x might be used before initialization when executing s.

� init(s): all variables declared in s must be initialized before use in s.

While this presentation might be more intuitive, we will focus on another version which explicitly tracks

the set of initialized variables. We denote a set of variables with δ and de�ne the following two judgments:

� δ ` s⇒ δ′

Assuming all the variables in δ are de�ned when s is reached, no uninitialized variable will be

referenced and after its execution all the variables in δ′ will be de�ned.

� δ ` e
e will only reference variables de�ned in δ.

Here are some of the rules that de�ne the judgement δ ` s⇒ δ′:

δ ` nop⇒ δ

δ ` s1 ⇒ δ1 δ1 ` s2 ⇒ δ2
δ ` seq(s1, s2)⇒ δ2

δ ` e
δ ` assign(x, e)⇒ δ ∪ {x}

δ ` e δ ` s⇒ δ′

δ ` while(e, s)⇒ δ

δ ` s⇒ δ′

δ ` decl(y, τ, s)⇒ δ′ − {y}
δ ` e

δ ` return(e)⇒ {x | x in scope}

In these judgments we have traded the complexity of traversing statements multiple times with the

complexity of maintaining variables sets.

Checkpoint 1

Write the missing inference rule for δ ` if(e, s1, s2)⇒ δ′.

Checkpoint 2

Using the inference rules as given, try to derive {} ` s⇒ δ for the following program:

decl(x, int, seq(assign(x, 3), return(x)))



Unifying Static Semantics of Initialization and Typing

If you looked carefully earlier, or if you read the lecture notes, you'll notice that the rule for return is a

bit strange, as it deals with scope in an informal way. The lecture notes suggest getting around this by

also tracking a set γ of variables currently in scope. It turns out we can actually just use the typechecking

context Γ that maps variables to types, as its domain dom Γ will be exactly the variables that are in

scope. Incidentally, this means we can even combine it with the typing judgement for statements to

create the following new judgment

Γ; ∆ ` s : [τ ]⇒ ∆′

The statement s

� is in the scope of the variables in Γ, which were declared with their corresponding types

� only uses initialized variables from ∆

� leaves the variables in ∆′ initialized after execution

� returns a value of type τ if it returns

We can similarly de�ne Γ; ∆ ` e : τ to mean �e uses only variables in ∆ and has type τ given the

context Γ�. Here are some of the rules that de�ne the judgement Γ; ∆ ` s : [τ ]⇒ ∆′:

Γ; ∆ ` s1 : [τ ]⇒ ∆′ Γ; ∆′ ` s2 : [τ ]⇒ ∆′′

Γ; ∆ ` seq(s1, s2) : [τ ]⇒ ∆′′ Γ; ∆ ` nop : [τ ]⇒ ∆

Γ, x : τ ′; ∆ ` s : [τ ]⇒ ∆′

Γ; ∆ ` declare(x, τ ′, s) : [τ ]⇒ ∆′ \ {x}

Γ; ∆ ` e : bool Γ; ∆ ` s1 : [τ ]⇒ ∆′ Γ; ∆ ` s2 : [τ ]⇒ ∆′′

Γ; ∆ ` if(e, s1, s2) : [τ ]⇒ ∆′ ∩∆′′

Γ; ∆ ` e : bool Γ; ∆ ` s : [τ ]⇒ ∆′

Γ; ∆ ` while(e, s) : [τ ]⇒ ∆

Checkpoint 3

Write the missing inference rules for Γ; ∆ ` assign(x, e) : [τ ]⇒ ∆′ and Γ; ∆ ` return(e) : [τ ]⇒ ∆′.

Checkpoint 4

Write the inference rule for Γ; ∆ ` x : τ .

We have shown that it is quite possible, and not too inelegant, to implement static semantics for

initialization and typing as a single judgement. It is up to you whether to do this in your own compiler

� you could de�nitely check initialization and typing in separate passes.



Grab Bag of Hints

� For the expression if (a < 0) if (b < 0) x = 4 else x = 5, x is not assigned if a ≥ 0
(else binds to the most recent if)

� You have to add support for Boolean variables now, and you will have to add support for pointers

in lab 4. Plan ahead when making design decisions to support di�erent types in type checking and

instruction selection.

� We suggest adding support for a -O0 �ag that disables register allocation and places all temps on

the stack. Interference bugs fail in subtle, hard to understand ways.

� You can step through your programs with gdb. Place a breakpoint with break _c0_main, then

use step to advance the program.


