
15-411: Compiler Design Spring 2023

Recitation 4: Lexing and Parsing Solutions 17 February

Lexing

Checkpoint 0
Remember that the lexer is responsible for reading in an input program/string and producing a stream
of tokens/symbols that are then later consumed by the parser. As an exercise, try lexing the following
segment of a C0 program. You may choose whatever textual representation you deem best for each
symbol (i.e "(" → "LPAREN").

1 if (score < 100) {
2 return 1;
3 }

Solution:

if (score < 100) { return 1 ; }

IF LPAREN IDENT LESSTHAN DECCONST RPAREN LBRACE RETURN DECCONST SEMI RBRACE

Grammars & Parsing
Now once you have a stream of tokens from the lexer, the parser can now construct a parse tree from the
stream of tokens. Recall from lecture a grammar G for a language L(G) is defined by a set of productions
α → β and a start symbol S, a distinguished non-terminal symbol.

For a given grammar G with start symbol S, a derivation in G is a sequence of rewritings S → γ1 →
→ γn = w ∈ L(G) in which we apply productions from G. Parsing uses this derivation process to
produce a parse tree (derivation) for w, in which the nodes represent the non-terminal symbols and the
root being S.

We run into ambiguities when there are multiple possible parse trees for the same token stream. Below
we’ll take a closer look at possible ambiguities.

Grammar Ambiguities
Ambiguities can result as a consequence of the production rules and symbols chosen in defining a grammar
G. An ambiguity in the grammar arises when there are multiple possible valid parse trees for the same
token stream.

Checkpoint 1
Given the context-free grammar G containing productions of the form:

γ1 : A → A + A
γ2 : A → A - A
γ3 : A → int
γ4 : A → id

Prove that the grammar G is ambiguous by showing two parse trees for the stream 1+ 2− idx.

Solution:
Parse Tree 1: A → A+A → 1 + (A−A) → 1 + (2−A) → 1 + (2− idx)
Parse Tree 2: A → A−A → (A+A)−A → (1 + 2)−A → (1 + 2)− idx

Conflicts in a LR(k) Parser
Now we will discuss shift-reduce and reduce-reduce conflicts common in LR(k) parsers. Remember from
lecture that a bottom-up LR(k) parser parses from left-to-right in a single-pass with right-most derivation
using k look-ahead tokens. A shift-reduce parser holds viable prefixes on a stack along with k lookahead
symbols with the input stream containing remaining symbols.

LR(k) parsers at each step must determine whether the parser should shift or reduce. Shifting saves the
current token on the maintained stack and reads another token while reducing applies some rule from
the grammar to the front of the current token stack. As such, LR(k) parsers are prone to two common
issues when dealing with certain grammars: shift-reduce and reduce-reduce conflicts.

Shift-Reduce Conflicts
A shift-reduce conflict occurs when it is ambiguous whether the parser should shift or reduce.

Checkpoint 2
Show that the following grammar has a shift-reduce conflict by showing two different ways to parse the
string 200 * 2 + 11.

Then, explain how you would resolve this conflict.

E → E + E

E → E ∗ E
E → [0− 9]∗
E → (E)

Solution:
|| 200 * 2 + 11

200 || * 2 + 11
E || * 2 + 11

E * || 2 + 11
E * 2 || + 11
E * E || + 11

(Reduce E*E to E) or (Shift ’+’)
E || + 11 or E * E + || 11

... ...

There are multiple ways to resolve this conflict, but
a simple one is to assign a higher precedence to the
multiplication operator.

Reduce-Reduce Conflicts
A reduce-reduce conflict occurs when more than one rule in the grammar can be applied.

Checkpoint 3
Show that the following grammar has a reduce-reduce conflict by showing a successful and an unsuccessful
parse of the string bbbc.

Then, explain how you would resolve this conflict.

S → Cc

S → Dd

C → ϵ

C → Cb

D → ϵ

D → Db

Solution:
|| bbbc

C || bbbc or D || bbbc
Cb || bbc Db || bbc
C || bbc D || bbc

Cb || bc Db || bc
C || bc D || bc

Cb || c Db || c
C || c D || c

Cc || Dc ||
S || ??

There are multiple ways to resolve this conflict, but
in a LR(1) parser, one must modify the grammar
by getting rid of one of the conflicting productions.
Using a parser with arbitrary lookahead would also
solve this issue.

