15-411: Compiler Design Spring 2023
Recitation 5: Calling Conventions and SSA Solutions 24 February

The L3 language adds support for function calls, type definitions, and header files with C interoperability.
In this recitation, we'll discuss some of the implications of adding these features and how your compiler
should deal with them.

Caller- and Callee-Saved Registers Function | 64-bit| 32-bit | 16-bit | 8-bit

In Lab 3, your compiler’'s code-generation and register allo- Return Value |$rax |[%eax [%ax sal
cation phases will need to distinguish between callee-saved 5|jce saved |3rbx [$ebx [2bx [2b1

and caller-saved registers:
8 4th Argument |¥rcx |%ecx [%cx %cl

e The values stored in callee-saved registers must 3rd Argument |$rdx |%edx [2dx [2dl

be preserved across function calls. This means that
_ . . o
your function must save and restore any callee-saved ~ 2nd Argument |3rsi |%esi |%si ssil

registers that it modifies. 1st Argument |%rdi [%edi |%di |%dil

o The values stored in caller-saved registers may be Calleesaved [3rbp |%ebp [%bp [5bpl

modified by any function call, so your compiler can- ~ Stack Pointer |%rsp |%esp |Ssp |Sspl
not assume that they will retain their values after g Argument [3r8 |%r8d [%rsw |2r8Db
calling a function. If you need those values to be
preserved, you must save and restore them before
and after the function call. Caller saved |%rl0 |%rl0d |$r10w|%rl10b
Caller saved |%rll |%rlld |%rllw|%rllb
Callee saved [%rl2 |%rl2d [%rl2w|%rl2b

Callee saved |%rl3 [%rl3d |$rl13w|%rl3b

6th Argument [%r9 [%r9d |%r9w |%r9b

To avoid having callee-saved registers occupy a very long
live range during register allocation, we can handle them
separately. Prioritize allocating caller-saved registers; if
they are insufficient, we assign assign callee-save registers ~ Callee saved [%rl4 [%rldd |Srldw|%rldb
before we resort to spilling, but we make sure to save them Callee saved |$rl5 |$r15d |[5r15w|%r15b
to the stack at the beginning of a function and restore them
at the end. This is more efficient than always saving and
restoring all callee-saved registers.

Tracing Function Calls in x86-64

In Lab 3, your compiler must conform to the standard C calling conventions for x86-64. As a reminder,
this means that:

e The first six arguments to a function should be stored in %rdi, %rsi, %rdx, %rcx, %r8, and %r9
(respectively).

e The remaining arguments should be placed on the stack. The seventh argument should be stored
at the address %rsp, the eighth at %rsp + 8, etc.

e The return value of a function should be stored in %rax.

e The use of %rbp as a base pointer is not required (but you may find that using it simplifies your
compiler’s logic significantly). LLVM uses the base pointer, but GCC does not.

Another interesting observation: unlike in C, every function in CO (and thus in L3) has a fixed stack
size that can be computed at compile time. This observation allows you to make your compiler’s stack-
handling much simpler than if you were unable to determine the stack size beforehand.

Checkpoint 0

Draw a stack diagram for the following L3 program at the point when execution reaches line 4. Assume
that %rbp is being used as a base pointer.

int f(int we, int dont, int care, int about, int these, int args, int a, int b) {

// assume that x is spilled on the stack

int x = a + b;

return 2 x x;

int main() {

1

2

3
4
5}
6

7

8 return f(0,0,0,0,0,0,3,5);
9

}

Solution:
Value Pointers
Return address of _main()
Previous %rbp
b; Arg. 8 of £()
a; Arg. 7 of £0)
Return address of £()
main’s %rbp < %rbp
X + %rsp

Checkpoint 1

Using your stack diagram, convert the program to x86-64 assembly following the standard calling con-
ventions. Remember to use the 64-bit and 32-bit versions of the registers appropriately and that stack
grows downward!

Solution:

_cO_f:
push %rbp
movq %rsp, Arbp
subq $8, Y%rsp
movl 24(%rbp), %eax
addl 16(%rbp), %eax
movl %eax, (%rsp)
movl (%rsp), %heax
imull $2, %eax
addq $8, Yrsp
pop %rbp
ret

_cO_main:
push %rbp
movq %rsp, %4rbp
subq $16, %rsp
movl $0, %edi
movl $0, %esi
movl $0, %edx
movl $0, %ecx

movl $0, %r8d
movl $0, %rod
movl $3, (%rsp)
movl $5, 8(%rsp)
call _cO_f

addq $16, %rsp
pop %rbp

ret

Static Single Assignment Form

Recall the Fibonacci sequence

Fp=0
=1

Check out this lil program that computes the nth Fibonacci number

int fib(int n) {
if (n == 0) return 0;
int a 0;
int b = 1;
int i = 1;
while (i < n) {
int ¢ = b;

return b;

Checkpoint 2

Translate this program into abstract assembly, organized as basic blocks with parametrized labels.

Solution:

fib(n):
if (n == 0)
then donel()
else pre_loop(n)
donel():
return O
pre_loop(n):
a<-0
b <-1
i<-1
goto loop(n, a, b, i)
loop(n, a, b, i):
if (1 < n)
then body(n, a, b, 1)
else done2(b)
body(n, a, b, i):

c <-b
b<-a+b
a<-c¢

i<-1+1
goto loop(n, a, b, 1)

done2(b):
return b

Checkpoint 3

Use generation counters to convert this basic block assembly into SSA form.

Solution:

fib(n0):
if (n0 == 0)
then donel()
else pre_loop(n0)
donel():
return O
pre_loop(nl):
a0 <- 0
b0 <- 1
i0 <- 1
goto loop(nl, a0, b0, i0)
loop(n2, al, bl, il):
if (i1 < n2)
then body(n2, al, bl, il)
else done2(bl)
body(n3, a2, b2, i2):

c0 <- b2
b3 <- a2 + b2
a3 <- c0

i3 <-i2 + 1

goto loop(n3, a3, b3, i3)
done2(b4) :

return b4

Checkpoint 4

Rewrite the SSA program using ®-functions instead of parametrized labels (except for the first basic

block fib).

If the parametrized label foo(x;) : can be jumped to from 2 different lines goto foo(z;) and goto foo(xy),
then we would switch to a non-parametrized label foo : but add the instruction x; <— ®(x;, x)) to the
start of the basic block under foo :.

Solution:
£fib(n0):
if (n0 == 0)
then donel

else pre_loop
donel:

return O

pre_loop:
nl <- Phi(n0)
a0 <- 0
b0 <- 1
i0 <- 1
goto loop
loop:

n2 <- Phi(nl, n3)
al <- Phi(a0, a3)
bl <- Phi(b0, b3)
il <- Phi(i0, i3)
if (i1l < n2)

then body

else done2

body:

n3 <- Phi(n2)
a2 <- Phi(al)
b2 <- Phi(b1)
i2 <- Phi(il)

cO0 <- b2

b3 <- a2 + b2

a3 <- ¢c0

i3 <- i2 + 1

goto loop
done2:

b4 <- Phi(bil)

return b4

Checkpoint 5

Now minimize the ®-function SSA program. Recall that we do this by repeatedly removing instructions
of the form
ti = ®(tg,, ...,txk)

whenever there exists a j such that all the x,, are either 7 or j, then replacing all instances of ¢; with ¢;.

Solution:

fib(n0):
if (n0 == 0)
then donel
else pre_loop
donel:
return O
pre_loop:
a0 <- 0
b0 <- 1
i0 <- 1

goto loop
loop:
al <- Phi(a0, a3)
bl <- Phi(b0, b3)
il <- Phi(i0, 1i3)
if (i1 < n0)
then body
else done2
body:
c0 <- bl
b3 <- al + bl
a3 <- ¢0
i3 <- i1l + 1
goto loop
done2:
return bl

Checkpoint 6

A very useful optimization that is made easy to implement by transforming programs into SSA form is
copy and constant propagation. Since by definition each variable is only defined once in the program,
whenever we see

e x < ¢, we can replace all instances of x with ¢

e x <y, we can replace all instances of z with y

Additionally, although it will not come up on the specific example we're working on for this checkpoint,
whenever we see

e O(c,c), we can replace it with ¢

o O(z,x), we can replace it with x

Now apply this optimization to the minimized ®-function SSA program from above.

Solution:
fib(n0) :
if (n0 == 0)
then domnel
else pre_loop
donel:
return O
pre_loop:
goto loop
loop:
al <- Phi(0, bl)
bl <- Phi(1, b3)
il <- Phi(1l, 1i3)
if (i1 < n0)
then body
else done2
body:
b3 <- al + bl
i3 <- il + 1
goto loop
done?2:
return bl

Checkpoint 7

Convert the optimized ®-function SSA program back into abstract assembly without ®-functions, aka
the de-SSA transformation.

For every occurence of x < ®(y, z) at the start of some basic block b, delete it, and instead insert
x < y and x < z respectively at the end of each of b's predecessor blocks. Note that this will result

in x having multiple assignment sites, hence why the program is no longer in Static Single Assignment
(SSA) form.

Solution:

fib(n0) :
if (n0 == 0)
then domnel
else pre_loop
donel:
return O
pre_loop:
al <- 0
bl <- 1
il <- 1
goto loop
loop:
if (i1 < n0)
then body
else done2
body:
b3 <- al + bl
i3 <- i1l + 1

al <- bl
bl <- b3
il <- i3
goto loop
done2:

return bil

Tips and Hints for Lab3

e Header Files in L3: Unlike in C, header files in L3 (and above) are only used to declare types
and external functions. If a function is declared in a header file, then it may not be defined in the
program — it is declared as external. External functions are defined in C source files, which are
linked together with the assembly produced by your compiler.

e RBP: You are not required to use %rbp as a base pointer, so you are allowed to treat it like a
normal callee-saved register in your compiler.

e Code Review: Code Review happens one week after Lab3 is due. So if you haven’t polished
the style of your compiler and added a README describing the design of various passes of your
compiler, now would be a good time to start. We are looking for good coding style and comments,
modular design, and that both of you are familiar with all components of the implementation.

