
15-411: Compiler Design Spring 2023

Recitation 5: Calling Conventions and SSA Solutions 24 February

The L3 language adds support for function calls, type de�nitions, and header �les with C interoperability.

In this recitation, we'll discuss some of the implications of adding these features and how your compiler

should deal with them.

Caller- and Callee-Saved Registers

In Lab 3, your compiler's code-generation and register allo-

cation phases will need to distinguish between callee-saved

and caller-saved registers:

� The values stored in callee-saved registers must

be preserved across function calls. This means that

your function must save and restore any callee-saved

registers that it modi�es.

� The values stored in caller-saved registers may be

modi�ed by any function call, so your compiler can-

not assume that they will retain their values after

calling a function. If you need those values to be

preserved, you must save and restore them before

and after the function call.

To avoid having callee-saved registers occupy a very long

live range during register allocation, we can handle them

separately. Prioritize allocating caller-saved registers; if

they are insu�cient, we assign assign callee-save registers

before we resort to spilling, but we make sure to save them

to the stack at the beginning of a function and restore them

at the end. This is more e�cient than always saving and

restoring all callee-saved registers.

Tracing Function Calls in x86-64

In Lab 3, your compiler must conform to the standard C calling conventions for x86-64. As a reminder,

this means that:

� The �rst six arguments to a function should be stored in %rdi, %rsi, %rdx, %rcx, %r8, and %r9

(respectively).

� The remaining arguments should be placed on the stack. The seventh argument should be stored

at the address %rsp, the eighth at %rsp + 8, etc.

� The return value of a function should be stored in %rax.

� The use of %rbp as a base pointer is not required (but you may �nd that using it simpli�es your

compiler's logic signi�cantly). LLVM uses the base pointer, but GCC does not.

Another interesting observation: unlike in C, every function in C0 (and thus in L3) has a �xed stack

size that can be computed at compile time. This observation allows you to make your compiler's stack-

handling much simpler than if you were unable to determine the stack size beforehand.

Checkpoint 0

Draw a stack diagram for the following L3 program at the point when execution reaches line 4. Assume

that %rbp is being used as a base pointer.

1 int f(int we, int dont, int care, int about, int these, int args, int a, int b) {
2 // assume that x is spilled on the stack
3 int x = a + b;
4 return 2 * x;
5 }
6

7 int main() {
8 return f(0,0,0,0,0,0,3,5);
9 }

Solution:

Value Pointers

Return address of _main()

Previous %rbp

b; Arg. 8 of f()

a; Arg. 7 of f()

Return address of f()

main's %rbp ← %rbp

x ← %rsp

Checkpoint 1

Using your stack diagram, convert the program to x86-64 assembly following the standard calling con-

ventions. Remember to use the 64-bit and 32-bit versions of the registers appropriately and that stack

grows downward!

Solution:

_c0_f:

push %rbp

movq %rsp, %rbp

subq $8, %rsp

movl 24(%rbp), %eax

addl 16(%rbp), %eax

movl %eax, (%rsp)

movl (%rsp), %eax

imull $2, %eax

addq $8, %rsp

pop %rbp

ret

_c0_main:

push %rbp

movq %rsp, %rbp

subq $16, %rsp

movl $0, %edi

movl $0, %esi

movl $0, %edx

movl $0, %ecx

movl $0, %r8d

movl $0, %r9d

movl $3, (%rsp)

movl $5, 8(%rsp)

call _c0_f

addq $16, %rsp

pop %rbp

ret

Static Single Assignment Form

Recall the Fibonacci sequence:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 n > 1

Check out this lil program that computes the nth Fibonacci number:

int fib(int n) {

if (n == 0) return 0;

int a = 0;

int b = 1;

int i = 1;

while (i < n) {

int c = b;

b = a + b;

a = c;

i++;

}

return b;

}

Checkpoint 2

Translate this program into abstract assembly, organized as basic blocks with parametrized labels.

Solution:

fib(n):

if (n == 0)

then done1()

else pre_loop(n)

done1():

return 0

pre_loop(n):

a <- 0

b <- 1

i <- 1

goto loop(n, a, b, i)

loop(n, a, b, i):

if (i < n)

then body(n, a, b, i)

else done2(b)

body(n, a, b, i):

c <- b

b <- a + b

a <- c

i <- i + 1

goto loop(n, a, b, i)

done2(b):

return b

Checkpoint 3

Use generation counters to convert this basic block assembly into SSA form.

Solution:

fib(n0):

if (n0 == 0)

then done1()

else pre_loop(n0)

done1():

return 0

pre_loop(n1):

a0 <- 0

b0 <- 1

i0 <- 1

goto loop(n1, a0, b0, i0)

loop(n2, a1, b1, i1):

if (i1 < n2)

then body(n2, a1, b1, i1)

else done2(b1)

body(n3, a2, b2, i2):

c0 <- b2

b3 <- a2 + b2

a3 <- c0

i3 <- i2 + 1

goto loop(n3, a3, b3, i3)

done2(b4):

return b4

Checkpoint 4

Rewrite the SSA program using Φ-functions instead of parametrized labels (except for the �rst basic

block �b).

If the parametrized label foo(xi) : can be jumped to from 2 di�erent lines goto foo(xj) and goto foo(xk),
then we would switch to a non-parametrized label foo : but add the instruction xi ← Φ(xj , xk) to the

start of the basic block under foo :.

Solution:

fib(n0):

if (n0 == 0)

then done1

else pre_loop

done1:

return 0

pre_loop:

n1 <- Phi(n0)

a0 <- 0

b0 <- 1

i0 <- 1

goto loop

loop:

n2 <- Phi(n1, n3)

a1 <- Phi(a0, a3)

b1 <- Phi(b0, b3)

i1 <- Phi(i0, i3)

if (i1 < n2)

then body

else done2

body:

n3 <- Phi(n2)

a2 <- Phi(a1)

b2 <- Phi(b1)

i2 <- Phi(i1)

c0 <- b2

b3 <- a2 + b2

a3 <- c0

i3 <- i2 + 1

goto loop

done2:

b4 <- Phi(b1)

return b4

Checkpoint 5

Now minimize the Φ-function SSA program. Recall that we do this by repeatedly removing instructions

of the form

ti = Φ(tx1 , ..., txk
)

whenever there exists a j such that all the xn are either i or j, then replacing all instances of ti with tj .

Solution:

fib(n0):

if (n0 == 0)

then done1

else pre_loop

done1:

return 0

pre_loop:

a0 <- 0

b0 <- 1

i0 <- 1

goto loop

loop:

a1 <- Phi(a0, a3)

b1 <- Phi(b0, b3)

i1 <- Phi(i0, i3)

if (i1 < n0)

then body

else done2

body:

c0 <- b1

b3 <- a1 + b1

a3 <- c0

i3 <- i1 + 1

goto loop

done2:

return b1

Checkpoint 6

A very useful optimization that is made easy to implement by transforming programs into SSA form is

copy and constant propagation. Since by de�nition each variable is only de�ned once in the program,

whenever we see

� x← c, we can replace all instances of x with c

� x← y, we can replace all instances of x with y

Additionally, although it will not come up on the speci�c example we're working on for this checkpoint,

whenever we see

� Φ(c, c), we can replace it with c

� Φ(x, x), we can replace it with x

Now apply this optimization to the minimized Φ-function SSA program from above.

Solution:

fib(n0):

if (n0 == 0)

then done1

else pre_loop

done1:

return 0

pre_loop:

goto loop

loop:

a1 <- Phi(0, b1)

b1 <- Phi(1, b3)

i1 <- Phi(1, i3)

if (i1 < n0)

then body

else done2

body:

b3 <- a1 + b1

i3 <- i1 + 1

goto loop

done2:

return b1

Checkpoint 7

Convert the optimized Φ-function SSA program back into abstract assembly without Φ-functions, aka

the de-SSA transformation.

For every occurence of x ← Φ(y, z) at the start of some basic block b, delete it, and instead insert

x ← y and x ← z respectively at the end of each of b's predecessor blocks. Note that this will result

in x having multiple assignment sites, hence why the program is no longer in Static Single Assignment

(SSA) form.

Solution:

fib(n0):

if (n0 == 0)

then done1

else pre_loop

done1:

return 0

pre_loop:

a1 <- 0

b1 <- 1

i1 <- 1

goto loop

loop:

if (i1 < n0)

then body

else done2

body:

b3 <- a1 + b1

i3 <- i1 + 1

a1 <- b1

b1 <- b3

i1 <- i3

goto loop

done2:

return b1

Tips and Hints for Lab3

� Header Files in L3: Unlike in C, header �les in L3 (and above) are only used to declare types

and external functions. If a function is declared in a header �le, then it may not be de�ned in the

program � it is declared as external. External functions are de�ned in C source �les, which are

linked together with the assembly produced by your compiler.

� RBP: You are not required to use %rbp as a base pointer, so you are allowed to treat it like a

normal callee-saved register in your compiler.

� Code Review: Code Review happens one week after Lab3 is due. So if you haven't polished

the style of your compiler and added a README describing the design of various passes of your

compiler, now would be a good time to start. We are looking for good coding style and comments,

modular design, and that both of you are familiar with all components of the implementation.

