
15-411: Compiler Design Spring 2023

Recitation 6: Dynamic Semantics Solutions 3 March

About Code Review Week

As you �nish up Lab 3, you should spend some time on improving your codebase and making up for

technical debt. If you used any terrible hacks to get register allocation or calling conventions to work,

�x them. If you think any part of your code is a jumbled mess, refactor it. You'll want to have a solid

base upon which to build Lab 4.

If you haven't already, you should sign up for a code review timeslot using the link on Piazza. Additionally,

please also �ll in this form with the commit hash or branch that you would like us to review. We will

read your code beforehand and ask you questions about it during your team's code review meeting.

While we will give you pointers on your style and structure, what we really want to assess how well you

understand the code you and your partner have written. We will be using your git commit log to guide

our understanding of who implemented what.

If there's any signi�cant section of your compiler that your partner implemented and you did not read, you

should read it. If you don't understand how part of your compiler works, you should ask your partner to

explain it to you. That said, we don't expect you to remember every detail of your implementation�we

just want to make sure that both team members are participating roughly equally and have a thorough

understanding of the compiler's structure.

Recap: Dynamic Semantics for L2

A con�guration of an L2 program could be modeled as one of the two forms

� η ` s I K for executing statement s

� η ` e . K for evaluating expression e

where η represents a map from variables to values and K represents the continuation (what to do next

with the result of evaluating the current expression, or the next statement).

We're interested in the judgment c→ c′, indicating that a con�guration c of the form above steps to a

con�guration c′. Here are a few rules for L2:

η ` assign(x, e) I K −→ η ` e . (assign(x,_),K)

η ` v . (assign(x,_),K) −→ η[x 7→ v] ` nop I K

η ` nop I (s,K) −→ η ` s I K

We omit many rules�for a more complete set, refer to Lecture 13.

Let c1 be the initial con�guration, and suppose ci → ci+1. If cn is a �nal con�guration of the form

η ` v . (return(_),K), then we say that c1, c2, . . . cn is the execution trace of c1.

Checkpoint 0

Draw the execution trace of con�gurations starting from:

· ` seq(assign(x, 3), return(x+ 1)) I ·

https://forms.gle/mTqPVmGA96R8gwXDA
https://www.cs.cmu.edu/~janh/courses/411/23/lec/13-dynamic.pdf


Solution:

· ` seq(assign(x, 3), return(x)) I · −→ · ` assign(x, 3) I (return(x), ·)
−→ · ` 3 . (assign(x,_), (return(x), ·))
−→ [x 7→ 3] ` nop I (return(x), ·)
−→ [x 7→ 3] ` return(x) I ·
−→ [x 7→ 3] ` x . (return(_), ·)
−→ [x 7→ 3] ` 3 . (return(_), ·)

Dynamic Semantics for L3

L3's dynamic semantics is slightly more interesting in that returning from a function call should restore

state and control to the con�guration prior to the call. We amend our con�guration to hold a fourth

element, the call stack S, which consists of tuples of the form 〈η,K〉. We reproduce the rules for

single-argument functions below:

S; η ` f(e) . K −→ S; η ` e . (f(_),K)

S; η ` v . (f(_),K) −→ (S, 〈η,K〉); [x 7→ v] ` sf I ·
supposing that f is de�ned as f(x){sf ; }

(S, 〈η,K〉); η′ ` v . (return(_),K ′) −→ S; η ` v . K

Checkpoint 1

Draw the execution trace of the following program, starting execution at the beginning of main:

int f(int x) { return x; }

void g() { 4; }

int main() { int y = f(3); g(); return y; }



Solution: · ` seq(assign(y, call(f, 3)), seq(call(g), return(y))) I ·

−→ · ` assign(y, call(f, 3)) I (seq(call(g), return(y)), ·)
−→ · ` call(f, 3) . (assign(y,_), (seq(call(g), return(y)), ·))
−→ · ` 3 . (call(f,_), (assign(y,_), (seq(call(g), return(y)), ·)))
−→ 〈(·, (assign(y,_), (seq(call(g), return(y)), ·)))〉; [x 7→ 3] ` return(x) I ·
−→ 〈(·, (assign(y,_), (seq(call(g), return(y)), ·)))〉; [x 7→ 3] ` x . (return(_), ·)
−→ 〈(·, (assign(y,_), (seq(call(g), return(y)), ·)))〉; [x 7→ 3] ` 3 . (return(_), ·)
−→ · ` 3 . (assign(y,_), (seq(call(g), return(y)), ·))
−→ [y 7→ 3] ` nop I (seq(call(g), return(y)), ·)
−→ [y 7→ 3] ` seq(call(g), return(y)) I ·
−→ [y 7→ 3] ` call(g) I (return(y), ·)
−→ [y 7→ 3] ` call(g) . (discard, return(y), ·)
−→ 〈([y 7→ 3], (discard, return(y), ·))〉; · ` seq(4, return(nothing)) I ·
−→ 〈([y 7→ 3], (discard, return(y), ·))〉; · ` 4 I (return(nothing), ·)
−→ 〈([y 7→ 3], (discard, return(y), ·))〉; · ` 4 . (discard, return(nothing), ·)
−→ 〈([y 7→ 3], (discard, return(y), ·))〉; · ` nop I (return(nothing), ·)
−→ 〈([y 7→ 3], (discard, return(y), ·))〉; · ` return(nothing) I ·
−→ 〈([y 7→ 3], (discard, return(y), ·))〉; · ` nothing . (return(_), ·)
−→ [y 7→ 3] ` nothing . (discard, return(y), ·)
−→ [y 7→ 3] ` nop I (return(y), ·)
−→ [y 7→ 3] ` return(y) I ·
−→ [y 7→ 3] ` y . (return(_), ·)
−→ [y 7→ 3] ` 3 . (return(_), ·)


