15-411 Compiler Design, Lab 1 (Spring 2024)

Jan and co.

Test Cases Due: 11:59 PM, Januaray 26, 2024
Compilers Due: 11:59 PM, February 2, 2024

1 Introduction

Writing a compiler is a major undertaking. In this course, you will write not just one compiler, but
several! Each compiler will build on the previous one, so careful thought and design are crucial in
the first labs. You will be reusing and rewriting code. To get you off to a good start, we provide
you with a compiler for a small language called L1. The provided compiler targets a simple abstract
assembly language with an infinite number of registers and an instruction set consisting solely of
arithmetic operations.

For this project, your task is to extend this compiler to translate L1 source programs into x86-64
assembly target programs. To do this, the main change that you will have to make is modifying
the instruction selector and dealing with the now-finite number of registers. It must be possible to
assemble and link the target programs (that is, the x86-64 assembly output from your compiler)
with our runtime environment using gcc, producing a standard executable.

The first project is neither the most difficult nor the most time consuming assignment in the
course. Thus, we highly recommend using this time to implement register allocation for the entirety
of lab1 and not just for the optional (but strongly encouraged) checkpoint.

Although the total amount of code you will have to write is relatively small, as this is your
first attempt at working with the compiler code, there is a relatively large amount of material
to understand before you can get started. Make sure you thoroughly understand the concepts of
instruction selection and register allocation before attempting to implement anything.

Keep in mind that any of the following may consume a substantial amount of time:

e Sorting out administrative problems: making sure that you have GitHub access and getting
used to git.

e Getting to know your partner. Working with a partner is an important aspect of this class.
It is important to schedule time to work, find a preferred working environment, and develop
a good team dynamic early in the semester. We strongly suggest that you schedule time for
reading and discussing each other’s code at least twice weekly.

e Reading and possibly porting the entire starter code so that you understand every bit of
what your compiler is doing. This is essential, because you will be editing every stage of the
compiler in future labs, which will include any starter code that we distribute to you.

e Getting used to the libraries available for your programming language of choice. For parsing
alone, your compiler might depend on a parser combinator library, a LL(1) parser generator,
or a LALR(1) parser generator, and possibly even on a separate lexer generator. Please make
sure that you can find the specification documents for the libraries you use.

e Lastly, but certainly not least, generating code requires attention to detail. Please be prepared
to read through the Intel Developer Manuals for precise behavior of the instructions you will
emit, and the GNU assembler documentation for the syntax that you should use. As a matter
of academic integrity, you shouldn’t be reading the code of any publicly existing compilers
during this course. However, reading any and all external resources about x86-64 assembly
and looking at the assembly emitted by compilers like gcc is both allowed and encouraged.
The latter is sometimes helpful if the x86 manual is unclear.

To emphasize again, all the projects in this course are cumulative. Therefore, falling behind in
Lab 1 could be disastrous. Please get an early start, and remember that we're here to help.

2 L1 Syntax

The compilers we provide to you translate source programs written in L1. The syntax of L1 is
defined by the context-free grammar shown in Figure 1. The language is a fragment of the CO
introductory programming language, and is similar to the “straight-line programs” language from
Chapter 1 of the textbook.

Lexical Tokens

The concrete syntax of L1 is based on ASCII character encoding.

Whitespace and Token Delimiting

In L1, whitespace is either a space, horizontal tab (\t), vertical tab (\v), carriage return (\r),
linefeed (\n), or formfeed (\f) character in ASCII encoding. Whitespace is ignored, except that it
terminates tokens. For example, += is one token, while + = is two tokens.

Comments

L1 source programs may contain C-style comments of the form /* ... */ for multi-line comments
and // for single-line comments. Multi-line comments may be nested (and of course the delimiters
must be balanced). Contracts in CO start with //@ or /*@; they are simply treated as comments
in L1.

(program) == int ident () (block) (the typechecker ensures this is “main”)

(block) m= { (stmts) }

(stmts) n= € (empty)
| (block)
| (stmt) (stmts)

(stmt) = (decl) ;
| (simp) ;

| return (exp) ;
(decl) = int ident

| int ident = (exp)
(simp) = (lvalue) (asnop) (exp)
(lvalue) = ident

| ((lvalue))
ep) = ()

| (intconst)

| ident

| {exp) (binop) (exp)

|~ (exp)
(intconst) = decnum (in the range 0 < intconst < 231)

| hexnum (in the range 0x00000000 to Oxffffffff)
o) = = 4= | o= | e | /= | e
(binop) =+ | = x| /| %

The precedence of unary and binary operators is given in Figure 2.
Non-terminals are in (brackets).
Terminals are in bold.

Figure 1: Grammar of L1

Operator Associates Class Meaning

- right unary unary negation
x /% left binary integer multiplication, division, modulo
+ - left binary integer addition, subtraction
= += -= x= /= Y= right binary assignment
Figure 2: Precedence of operators, from highest to lowest
<ident> ::= [A-Za-z_][A-Za-z0-9_]*
<num> ::= <decnum> | <hexnum>
<decnum> ::= 0 | [1-9]1[0-9]*
<hexnum> ::= 0[xX] [0-9a-fA-F]+
<unop> = -
<binop> =t = x /0
<asnop> == 4= | = | x=| /= | =
<reserved> e

Figure 3: Lexical Tokens

There is one ambiguity in the CO specification for comments: it is not specified whether the
string

5 *//one line comment
3

should be parsed as “6*3” (parsing and ignoring a line comment) or as a syntax error (since the
closing block comment marker, “*/” was not matched with a corresponding opening block comment
marker). We will not test your compiler with any programs containing the string “*//”, and you
should not submit any test cases containing this string.

Reserved Keywords

The following are reserved keywords or lexical tokens and cannot appear as a valid token in any
place not explicitly mentioned as a terminal in the grammar.

struct typedef if else while for continue break
return assert true false NULL alloc alloc_array
int bool void char string

Many of these keywords are unused in L1. However, the specification treats these as keywords
to maintain forward compatibility of valid CO programs.

Other Tokens

Future labs will have a larger set of meaningful tokens than the L1 grammar. Most of these tokens
don’t conflict with the L1 grammar and can be tokenized by the lexer even if they are not used by
the parser. For instance, << will eventually represent a left shift, but in L1 is not a valid terminal,
so any program containing << should lead to a lexer error, or if your compiler already tokenizes it,
a parser error.

A notable exception is --. In future labs, -- will be tokenized as part of the decrement state-
ment, so the string —-5 should lead to a parser error. However, the L1 grammar theoretically allows
--5 to be parsed as -(-(5)). To maintain forward compatibility, we require you to lex -- as a
single token to disallow such expressions. For this reason, the —— token appears in the <reserved>
syntax category in Figure 3.

3 L1 Static Semantics

The L1 language does not have a very interesting type system. Most constraints imposed by the
type system are for the time being imposed by the grammar instead.

Declarations

Though declarations are a bit redundant in a language with only one type and no interesting control
flow construct, we require every variable in the function to be declared (with the correct type, in
this case int) before being used, altough statements and declarations can be mixed. We do this
to ensure that the valid L1 programs are forward compatible with respect to future labs, and CO.
Variables may not be redeclared.

Initialization Checking

CO requires that along each control flow path that starts from a variable declaration, that variable
is initialized before it is used.! Using a variable before it is initialized must therefore generate a
compile-time error message. An odd case arises when there is no control flow path connecting the
use of a variable to its declaration. In L1, this can arise when a return statement separates the
declaration of a variable from its use. In such a case, the variable need not be initialized. However,
each variable must still be declared and the use lie in the scope of the declaration.

Return Checking

CO0 requires that every control flow path in the body of a function must end with a return statement
(unless the return type is void). To maintain forward compatibility, we require that L1 programs
contain a return statement, but not necessarily only one or as the last statement.

!Even if a variable declaration itself is after a return statement and therefore can’t be executed, we still treat it
as the beginning of a valid control flow path for this purpose.

4 L1 Dynamic Semantics

Statements have the obvious operational semantics, although there are subtleties regarding the
evaluation of expressions. Each statement is executed in turn. To execute a statement, the expres-
sion on the right-hand side of the assignment operator is evaluated to a value, and then the result
is assigned to the variable on the left-hand side, according to the type of assignment operator. The
meanings of the special assignment operators are given by the following table, where x stands for
any identifier and e for any expression.

T +=e = rT=x+e
T -=e = r=x-e
€T k= e = r=x*e
x/=e = r=x/¢€
T h=e = r=x%he

The result of executing an L1 program is the value that the expression in the program’s return
statement evaluates to.

Integer Operations

The integers of this language are in two’s complement representation with a word size of 32 bits.
Addition, subtraction, multiplication, and negation have their meaning as defined in arithmetic
modulo 232, In particular, they can never raise an overflow exception.

Decimal constants ¢ in a program must be in the range 0 < ¢ < 23!, where 23! = —23! according
to two’s complement modular arithmetic. Hexadecimal constants must fit into 32 bits.

The division i/k returns the truncated quotient of the division of i by k, dropping any fractional
part. This means it always rounds towards zero.

The modulus i % k returns the remainder of the division of ¢ by k. The modulus has the same
sign as 7, and therefore

(i/k)«k+ (i %k)=1i

Division i/k and modulus i % k are required to raise a divide exception if either £k = 0
or the result is outside the range of integers represented by a 32-bit word in two’s complement
representation.

Fortunately, this prescribed behavior of integer operations coincides with the hardware behavior
of the relevant instructions.

5 Lab Requirements

For this lab, you are required to hand in the following:

e A set of 10 test cases written in L1. These test cases should follow the specification described
in the Test Program section. Keep in mind that the purpose of a test case is to find bugs in
your compiler, so you should try to write test cases that cover different cases of the language.
Be creative, but also be considerate, as your test cases will be used as grading criteria for your
peers (so for example you should not write test cases that run super slow unless sophisticated
optimizations are implemented). You can read existing test cases that we provide you to find

some inspirations. Note that the deadline for test cases is different from the deadline for the
compiler itself.

e A complete working compiler for L1 that produces correct target programs written in Intel
x86-64 assembly language.

e Documentation: this includes both inline documentation and a file compiler/labl/README
that explains the design decisions underlying the implementation along with the general layout
of the source code. If you use publicly available libraries, you are required to indicate their
use and source in the README file. If you are unsure whether it is appropriate to use external
code, please discuss it with course staff.

Your test cases and compiler source files must be handed in via GitHub and Gradescope.

Test Program

Test files should have extension .11 and start with one of the following lines:

//test return i program must compile, execute without error, and return %
//test div-by-zero program must compile but raise SIGFPE in its execution
//test error program fails to comply with the L1 specification and must fail to compile

All test files should be in the directory
tests

in the root directory of the repository. This directory should contain no other files. You should
follow the naming convention <team name>-<file name>.1l1 where <team name> is your team
name in all lower case and <file name> is a descriptive name for the test case.

Compiler Source Files

The files comprising the compiler itself should be collected in a subdirectory of the compiler
directory named labl. The compiler directory contains a Makefile, which you do not need to
edit (but which you may edit!).

Issuing the shell command

% make labl
from within the compiler directory should generate the appropriate files so that
% bin/cOc <args>

will run your L1 compiler. If the input is not a valid L1 source program, your compiler should exit
with a non-zero return code. If the input is valid, the compiler should then exit with a return code
of 0 and output the generated code. The file cOc-spec.txt gives the full expected behavior of this
binary.

The command

% make clean

should remove all binaries, heap images, and other generated files.

Important: You should also update the README file and insert a description of your code and
algorithms used at the beginning of this file.

Your compiler is also expected to recognize a flag -t which, when present on the command line,
stops the compiler immediately after typechecking and before the rest of the compiler runs. The
exit code of your compiler should indicate success (0) if the code is well-formed, and failure (1)
otherwise. If your compiler indicates success when run with -t, then it should be able to compile
the file without further errors. Your compiler should also recognize the flags -ex86-64 and -00,
but these flags can be ignored for now. These flags will be used for later assignments; they are
explained in file compiler/cOc-spec.txt.

Runtime Environment

Your target code will be linked against a very simple runtime environment. The runtime contains
a function main() which calls a function _cO_main and then prints the returned value. If your
compiler is given a well-formed input file foo.11 as a command-line argument, it should generate a
target file called foo.11.s in the same directory as foo.1l1. The file foo.11.s will be linked with
the runtime into an executable using the command gcc -m64 foo.ll.s ../runtime/run4ll.c.
This means that your compiler must generate target code for a function called _cO_main, and that
the return statement at the end of the L1 source program should be compiled into an x86-64 ret
instruction. According to the calling conventions, the register %eax must hold the return value.
Your _cO_main function must preserve all callee-saved registers so that our main function can work
correctly.

Note for Mac users: When compiling on Mac, the main function must be called __cO_main
(with 2 underscores). The grading environment exports an environment variable UNAME that is set
to the result of running uname on the grading machine; on the autograding machines, its value is
Linux. You will likely make use of this platform-detection mechanism if you wish to develop on a
Mac.

Using the GitHub Repository

Once you have completed the team registration form, you should receive access to the starter code
and your team’s repository (with your team name) on GitHub.

To obtain the starter code for this lab, execute the following shell commands where <teamrepo>
is the name of your team in lowercase.

% git clone https://github.com/15-411-s24/dist.git
% cd dist
% git clone https://github.com/15-411-s24/<teamrepo>.git compiler

The first repository (dist.git) is used to distribute starter code, tools, and tests. Throughout
the course, we will push more test cases to this repo.

The second repository (teamrepo.git) is your team’s repository. We set up an working environ-
ment in which your team’s repository is in the subdirectory compiler. The implementation of this
lab is assumed to be in compiler/labl. More details can be found in the README.md file in dist. git.

Please avoid committing compiled binaries to your team repository. We provide a basic .gitignore
to this effect, but you may have to ignore more files.

The starter code for OCaml, Rust, and SML lives under the starter directory of dist.git. For
example, if you wanted to copy the OCaml starter code to your team’s repository, you would run:

% cp -R starter/ocaml compiler/labl
% cd compiler
% git add labl

before starting your work in the compiler/labl directory.

6 Submission Instructions

Using Gradescope

This semester, Gradescope will serve as the central hub for you to submit your labs and view the
autograder results.

Use the GitHub integration to submit labs on Gradescope. This allows you to choose the specific
branch of your repository that you want to submit, so you don’t necessarily have to have to your
final submission in the main branch.

What to Turn In

You may turn in code and have it autograded as many times as you like without penalty. In fact,
we encourage you to hand in to verify that the autograder agrees with the driver results that you
use for development, and also as insurance against a last-minute rush.

You will submit:

Before Friday, January 26, 11:59 PM Ten (10) test cases, at least 2 of which successfully com-
pute a result, at least 2 of which raise a runtime exception, and at least 2 of which cause a
compile-time error. You will submit to the Test 1 assessment on Gradescope. The directory
tests should only contain your test files.

Before Friday, February 2, 11:59 PM The complete compiler. You will submit to the Lab 1
assessment on Gradescope. The directory compiler/labl should contain only the sources for
your compiler. The autograder will build your compiler, run it on all existing test files, link
the resulting assembly files against our runtime system (if compilation is successful), execute
the binaries, and finally compare the actual with the expected results.

No deadline The optional, but highly recommended compiler checkpoint for implementing register
allocation. See checkpoint handout for details.

The results of autograding can be viewed on Gradescope.

Autograded Scoring

You may turn in code and have it autograded as many times as you like, without penalty. In fact,
we encourage you to hand in to verify that the autograder agrees with the driver results that you

https://www.cs.cmu.edu/~janh/courses/411/24/labs/lab1-checkpoint.pdf

use for development, and also as insurance against a last-minute rush. The submission with the
highest grade will count.
Your score for each submission is computed as follows:

btotal — 25 # passed basic tests passed large & only tests
subtotal =

total basic tests total large & only tests
compiler = subtotal — (1 point per compiler failure) — (0.1 points per executable timeout)

Your total score for the lab is computed as follows:

min (valid test cases, 10)
10
total = test cases 4+ compiler

test cases = 10 *

7 Notes and Hints

We recommend reading lecture material on instruction selection and register allocation, referring to
the optional textbook if you require further information. The written homework may also provide
some insight into and practice with the algorithms and data structures needed for the assignment.

Register Allocation

We recommend implementing a global register allocator based on graph coloring. While this may
be not be strictly necessary for such a simple source language, doing so now will save work in
later projects where high-quality register allocation will be important to avoid inefficient target
programs. The recommended algorithm is based on graph coloring as presented in lecture and
detailed in the lecture notes. We recommend that you first implement register allocation without
spilling, which would get almost full credit since few programs will need more than the registers
available on the x86-64 processor.

We do not recommend that you implement register coalescing for this lab, unless you already
have a complete, working, beautifully-written compiler and some free time on your hands.

Code Generation

It is essential that your target code strictly adhere to the calling conventions of the x86-64 architec-
ture. Failing to do so could result in weird, possibly nondeterministic errors—and, more troublingly,
these errors may only manifest in later labs. (Function calls, introduced in L3, bring many bugs
out of the woodwork.)

You can refresh your memory about x86-64 assembly and register convention using Randal
Bryant and David O’Hallaron’s textbook (second or third revision) or the published slides from
15-213. The Application Binary Interface (ABI) specification linked from the web page will also be
important, if not now, then later in the course. Finally, the processor manual contains useful data
on the details of the instructions. Note that we use the GNU Assembler, which uses a different
syntax than that given in the Intel manuals.

The tests will be run in the standard Linux environment on the lab machines; the produced
assembly code must conform to those standards. We recommend the use of gcc -S to produce

10

assembly files from C sources which can provide template code and assembly language examples.
We will post more detailed information about the grading infrastructure on Piazza, including how
you can replicate it yourself.

Development Guidelines

Format your code to a reasonable maximum line width.

Tabs, if used at all, should format well with a width of 8. Some languages like ML do not
indent very well with tabs, so we recommend against tabs altogether.

Use variable names consistently.
Use comments, but do not clutter the code too much where the meaning is clear from context.

Develop techniques for unit testing, that is, testing modules individually. This helps limit the
problem of nasty end-to-end bugs that are very difficult to track.

Use git and GitHub to your advantage—source control facilitates keeping track of the history
of your codebase, and if you’re familiar with them, GitHub pull requests provide a standard
way for performing code reviews.

Do not prematurely optimize. Write clear, simple code first and optimize only as necessary,
when bottlenecks have been identified. Timeouts for compilation times are designed to be
lenient.

Think carefully about the data structures and algorithms you want to implement before
starting to write code.

You may encounter performance problems in the course of your development. A profiler is
definitely a useful tool in identifying the bottlenecks in your compiler. However, you must be
careful in interpreting the information provided by the compiler. A particular pass in your
compiler might be taking too long either because you inefficiently implemented it, or because
it is inherently a hard problem, and a previous pass generated an unusually large input for
subsequent passes.

Do not prematurely generalize. Solve the problem at hand without looking ahead too much
at future labs. Such generalizations are unlikely to make future development easier because of
the inherent difficultly in anticipating what might be needed. Instead, they may complicate
or obfuscate the present code. We recommend that you take this chance to gain experience in
incremental software development, a useful skill that is quite orthogonal to modular software
development.

8 Supported Programming Languages

This course does not require students to use any specific programming language to implement
their compilers. However, we cannot support every programming language in existence. We have
distributed starter code for OCaml, Rust, and SML.

11

Students are free to use other programming languages, but they must contact the course staff
so that we can ensure the grading infrastructure is ready. For many languages, we can provide
incomplete starter code for reference.

We strongly recommend that you find a partner in order to avoid being overwhelmed by the
sheer volume of code. This is doubly true if you wish to use a programming language that is
significantly more verbose or less expressive than OCaml. Sources of problems may include lack
of algebraic datatypes, lack of a module system, explicit memory management, poor support for
parser generators, etc.

Please remember that your code will be the basis for future labs, and that you are working
with a partner. This means your code must be readable. This also means that the code should
be broken up along natural module boundaries. Finally, be careful in choosing your programming
language, because you effectively commit to using it for the rest of the semester.

12

	Introduction
	L1 Syntax
	L1 Static Semantics
	L1 Dynamic Semantics
	Lab Requirements
	Submission Instructions
	Notes and Hints
	Supported Programming Languages

