
15-411 Compiler Design, Lab 5 (Spring 2024)

Jan and co.

Compiler Due: 11:59pm, Wednesday, April 10th, 2024
Report Due: 11:59pm, Tuesday, April 16th, 2024

1 Introduction

In Lab 5, you will be implementing optimizations for the language L4, which remains unchanged
from Lab 4. Your goal is to minimize the running time of the executable generated by your compiler
on a set of benchmarks.

1.1 Preview of Deliverables

You are expected to submit a working compiler for the L4 language, as with Lab 4. Your compiler
will still be tested for correctness against the L1-L4 test suites. However, in addition to testing
for correctness, we will be scoring your compiler’s output assembly on a suite of benchmark tests
created by the course staff.

You are also required to submit a write-up which describes the optimizations you implemented,
and evaluates the performance improvement each one provided.

1.2 Unsafe Compilation

Your compiler is now expected to accept an --unsafe flag. When compiling in --unsafe mode,
your compiler can ignore any exceptions that might be raised during the execution of the program,
except ones due to assert. This means you can eliminate most safety checks from the code you
generate. For tests which do not encounter runtime errors, your generated assembly should still
return the correct value (we will be checking this).

You are not required to eliminate all (or, indeed, any) checks, but your compiled code will
be significantly slower if you do not take advantage of this flag. Eliminating runtime checks also
puts your compiler on a fair playing field when comparing your performance to gcc (see “Testing”
section).

In addition to the --unsafe flag, your compiler must take a new option, -On, where -O0 means
no optimizations, and -O1 performs the most aggressive optimizations. -O0 should minimize the
compilation time, while -O1 should prioritize the emitted code’s running time. We will pass the -O1
flag when timing your compiler on the benchmarks. The -O0 flag is mainly for your own debugging
purposes.

1



2 Optimizations

In the following sections, we provide you with a list of suggested analysis and optimization passes
you can add to your compiler. This is a long list and we do NOT expect you to complete all of the
optimizations. We suggest that you pick the optimizations that you are most interested in, and do
enough optimizations so that your compiler is competitive with gcc -O1. To help you decide which
passes to implement first, we also list the course staff’s impression of how difficult each optimization
is, and how useful you can expect it to be (though your mileage may vary).

If you have already implemented any of these optimizations, you can still include them in your
written report, but you will need to empirically evaluate their impact. You may also want to
revisit your optimizations to improve them. In this case, your report can include a description of
the improvements you made (and their empirical impact).

Feel free to add other optimizations and analyses outside of this list as you see fit, although
we strongly recommend first completing basic ones before you go for more advanced ones. It is a
good idea to consult the course staff first to ensure that your planned optimizations are feasible to
complete before the deadline.

There is abundant literature on all the following optimizations, and we have listed some good
resources that might be helpful for this lab. We specifically recommend:

• The Dragon Book (Compilers: Principles, Techniques, and Tools, 2nd Edition)

• The Cooper Book (Engineering a Compiler, 2nd Edition)

• The SSA Book (SSA-Based Compiler Design)

all of which have sections on compiler optimizations. Additionally, the recitations, lecture slides,
and lecture notes are great resources. We also encourage you to read relevant papers and adapt
their algorithm for your compiler, as long as you cite your sources in your written report.

2.1 Analysis Passes

Analysis passes provide the infrastructure upon which you can do optimizations. For example
purity/loop/alias analysis computes information that optimization passes can use. The quality of
your analysis passes can affect the effectiveness of your optimizations.

1. Control flow graph (CFG)
Difficulty: ☀☆☆☆☆ Usefulness: ☀☀☀☀☀
Almost all global optimizations (intraprocedural optimizations) will use the CFG and ba-
sic blocks. We recommend implementing CFG as a standalone module/class with helper
functions such as reverse postorder traversal and splitting critical edges.

2. Dataflow Framework
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☀☆
A dataflow framework is not only useful for liveness analysis, but also for passes such as
partial redundancy elimination (which uses 4 separate Dataflow passes, see section below),
among others. You probably want your Dataflow framework to work with general facts (a
fact could be a temp/expression/instruction, etc.).

2



3. Dominator Tree
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☆☆
Resources: SSA Recitation Notes
You can build a Dominator Tree on top of your CFG. The Dominator Tree could be useful for
constructing SSA (depending on your implementation algorithm), loop analysis, and many
other optimizations.

4. Single Static Assignment (SSA)
Difficulty: ☀☀☀☀☆ Usefulness: ☀☀☀☀☀
Resources: SSA Recitation Notes
A program in SSA form has the nice guarantee that each variable/temp is only defined once.
This means we no longer need to worry about a temp being redefined, which makes a lot of
optimizations straightforward to implement on SSA form, such as SCCP, ADCE, Global Copy
Propagation, Safety Check Eliminations, and various Loop Optimizations, among others. In
fact, modern compilers such as LLVM uses SSA form for all scalar values and optimizations
before register allocation. Your SSA representation will need to track which predecessor block
is associated with each phi argument.

Warning: SSA is immensely helpful, but implementing SSA alone might bloat up your as-
sembly with moves and extra splitted basic blocks, while not giving you much performance
benefits. You must implement optimizations on SSA to reap its benefits. Additionally, it will
help to compress your CFG and doing coalescing after deconstructing SSA.

5. Purity Analysis
Difficulty: ☀☆☆☆☆ Usefulness: ☀☀☀☆☆
Purity analysis identifies functions that are pure (pure can mean side-effect free, store-free,
etc.), and can enhance the quality of numerous optimization passes. This is one of the simplest
interprocedural analysis you can perform, probably using a call graph.

6. Loop Analysis
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☀☆
Resources: LLVM Loop Terminology
A Loop Analysis Framework is the foundation of loop optimizations, and is also useful for
other heuristics-based optimizations such as inlining and register allocation. Generally, you
will do loop analysis based on the CFG, and identify for each loop its header block, exit
blocks, subloops, parent loop, nested depth, among other loop features. You might also
consider adding preheader blocks during this pass.

7. Value Range Analysis
Difficulty: ☀☀☀☆☆ Usefulness: ☀☀☆☆☆
Resources: Compiler Analysis of the Value Ranges for Variables (Harrison 77)
Value Range Analysis identifies the range of values a temp can take on at each point of your
program. We recommend an SSA-based approach. Value Range Analysis can make other
optimizations more effective, such as SCCP (eliminating dead branches), Strength Reduction
(knowing that a temp is non-negative), and Safety Check Elimination (removing array bounds
checks). Identification of the range of loop indices will make this pass more effective.

3



2.2 Optimization Passes

Below is a list of suggested optimization passes. All these optimizations are doable - they have
been successfully performed by students in past iterations of this course.

1. Cleaning Up Lab3 & Lab4
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☀☀☀
When implementing Lab3 and Lab4, you likely focused on getting your compiler working
rather than outputting perfect assembly. This means that there are likely many things that
can be cleaned up. We highly recommend inspecting the x86 assembly from your compiler,
and identify any places where you can see obvious improvment. For example, you would want
to optimize for calling conventions in lab3 (try not to push/pop every caller/callee register),
and you would want to make use of the x86 disp(base, index, scale) memory addressing
scheme to reduce the number of instructions needed for each memory operation in lab4.
Another common mistake is a poor choice of instructions in instruction selection, especially
for branch/jump statements (try comparing your assembly to gcc/clang output), or fixing
too many registers in codegen and not making full use of your register allocator.

2. Strength Reductions
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☀☆
Resources: Division by Invariant Integers using Multiplication (Granlund 91)

Hacker’s Delight 2nd Edition Chapter 10
Strength reductions modifies expressions to equivalent, cheaper ones. This includes unneces-
sary divisions, modulus, multiplications, other algebraic simplifications, and memory loads.
Though simple to implement, this optimization can bring a huge performance improvement
(a division/modulus takes dozens of cycles on a modern CPU). Deriving the magic number
formulas for division and modulus is tricky, and we recommend you read the above resources,
or look at how GCC/LLVM implements strength reductions.

3. Peephole & Local Optimizations
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☀☀
Peephole and local optimizations are performed in a small window of several instructions or
within a basic block. Similar to strength reductions, these are easy to implement but can
bring a large performance improvement. We recommend comparing your assembly code to
gcc/clang assembly code to find various peephole opportunities and efficient x86 instructions.

4. Improved Register Allocation
Difficulty: ☀☀☆☆☆ –☀☀☀☀☆ Usefulness: ☀☀☀☀☀☀
Resources: Pre-spilling - Register Allocation via Coloring of Chordal Graphs (Pereira 05)

Live Range Splitting - Lecture notes on Register Allocation
SSA-based Register Allocation - SSA Book Chapter 17

Accessing memory over a memory can often lead to a 4x slow down in execution. So, a good
register allocator is essential for optimised code. Since a simple register allocator is likely not
sufficient, we provide a list of possible extensions (ordered roughly in increasing difficulty) to
your current register allocator1, which is likely far from perfect. We highly recommend at

1hopefully you have a register allocator

4



least implementing coalescing. You may find that pre-spilling is also important for improving
your allocator’s performance. The rest is up to you:

(a) Coalescing We recommend greedy coalescing, which integrates seamlessly into the
graph coloring approach taught in lecture. However, there is abundant literature in this
area so feel free to explore other coalescing approaches, such as optimistic coalescing.

(b) Pre-spilling Pre-spilling identifies maximum cliques in the graph and attempts to pick
the best temps to spill before coloring the interference graph. You can also integrate
this with your current post-spilling approach.

(c) Heuristics for MCS and Coalescing Using some heuristics to break ties in Maximum
Cardinality Search and decide the order of coalescing might enhance the quality of your
register allocator.

(d) Live Range Splitting The naive graph coloring approach assigns each temp to the
same register or memory location throughout its whole lifetime, but if the temp has
“lifetime holes” between its uses, one can split its live range to reduce register pressure,
especially at the beginning and ending of loops. This optimization is more naturally
integrated with a linear scan register allocator, but is still possible with a graph coloring
allocator. See the lecture notes on register allocation for details.

(e) Register Allocation on CSSA Doing register allocation and spilling on SSA might
be faster and might be more effective. However, it turns out that getting out of SSA
is very difficult after doing register allocation on SSA. You should probably spend your
time doing some of the other (more interesting and fun) optimizations if you haven’t
already decided to do this. If you’re still interested, the paper SSA Elimination after
Register Allocation might be useful. Warning: this could be challenging to get right,
and might not provide significant benefits.

5. Code Layout
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☆☆
Optimizations for code layout include deciding the order of basic blocks in your code, mini-
mizing jump instructions and utilizing fall throughs, and techniques such as loop inversion.

(a) Code alignment Most modern processors can benefit from alignment of loops and
functions in the executable, because these instructions are executed multiple times and
alignment helps keep instructions within the L1 instruction cache and ITLB. Aligning
blocks adds no-ops, which bloats the code size and can impact instruction caching, so
you may want to have heuristics for which blocks to align.

The assembler provides a directive to do this: .align n will align the next instruction
to n bytes (where n is a power of 2).

6. Sparse Conditional Constant Propagation (SCCP)
Difficulty: ☀☀☀☆☆ Usefulness: ☀☀☀☆☆
Resources: Constant Propagation with conditional branches (Wegman and Zadeck)
It is possible to do local constant propagation within basic blocks, but we recommend this
SSA-based global constant propagation approach. Additionally, SCCP can also trim dead
conditional branches that will never be visited. SCCP might not bring a large improvement

5



in code performance, but would significantly reduce code size and improve readability. This
is one of the first optimizations to consider after you implement SSA.

(a) Copy Propagation One related optimization is copy propagation, which is straight-
forward to implement on SSA, and can also serve to eliminate redundant phi functions.
Note that much of copy propagation’s functionality is covered by register coalescing, and
aggressively doing copy propagation might increase register pressure. However, copy
propagation can serve to reduce the number of instructions which speeds up subsequent
passes and makes your code easier to debug.

7. Aggressive Deadcode Elimination (ADCE)
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☆☆
Resources: Cooper Book Section 10.2.1
Similar to SCCP, aggressive deadcode elimination is made easier by SSA, and can bring
improvement to both code size and performance. ADCE can be made more effective by
purity analysis. This is also one of the first optimizations to consider after you implement
SSA. It might also help to get rid of the many unnecessary ϕs in your SSA.

(a) DCE While ADCE deals with dead blocks and treats conditional jumps as non-critical,
you can also implement a much easier yet still quite effective DCE pass that treats
conditional jumps as critical instructions.

8. Partial Redundancy Elimination (PRE)
Difficulty: ☀☀☀☀☆ Usefulness: ☀☀☀☀☀
Resources: Dragon Book Section 9.5, or Cooper Book Section 10.3
PRE eliminates partially redundant computations, and provides the additional benefits of
Common Subexpression Elimination (CSE) and Loop Invariant Code Motion (LICM). The
latter is especially important to reduce loop execution overhead. You can implement the
SSAPRE algorithm, but we recommend the simpler alternative using 4 dataflow passes which
you read about in the Dragon Book or Cooper Book. A dataflow framework will come in
handy here. An alternative to implementing PRE is to implement CSE and LICM as 2
separate passes. Some benefits of LICM over PRE, is that you can hoist expressions to top
level loops, and you can hoist effectful operations in order.

(a) Global value numbering (GVN) GVN can identify equivalent computations in the
code, and can either be a standalone pass or be incorporated into PRE to eliminate
more redundant computation. Note that GVN might eliminate some expressions that
CSE cannot.

(b) PRE implementation tips

i. In some circumstancecs, memory loads and function calls can be PRE candidates
too! Think carefully about when these are allowed.

ii. If you did not implement SSAPRE or GVN, your PRE might have trouble finding
common subexpressions, so try doing local copy propagation.

iii. To make the dragon book algorithm work you might want to split your basic blocks
such that all PRE candidate expressions are locally transparent.

6



9. Function Inlining
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☀☆
Inlining a function can reduce the overhead of a call and potentially open up opportunities
for more optimizations. The real strength of inlining comes with its interaction with other
optimizations. However, inlining can bring problems such as increased code size and register
pressure. Choosing which functions calls to inline is often a tradeoff between code size and
performance, and you will need some good heuristics. For example, common heuristics include
size of the functions, and loop depth of the function call.

10. Tail Call Optimization (TCO)
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☀☆
Resources: LLVM TailRecursionElimination pass
TCO turns recursive calls at the end of functions into jumps to reduce the overhead of function
calls. You can do TCO on both self recursive tall calls and calls to other functions. You might
also find other benefits of turning recursive calls into jumps, such as enabling more inlining
opportunities.

(a) Basic accumulation You can also perform accumulation transformations on tail-call
expressions when required, thus turning functions such as factorial into a tail-recursive
form. This is harder but much more effective on certain benchmarks than basic TCO.

11. Redundant Safety Check Elimination
Difficulty: ☀☀☆☆☆ Usefulness: ☀☀☀☆☆
You can implement an SSA-based or dataflow-based approach to eliminate redundant null-
checks and array bounds-checks when dereferencing pointers or accessing arrays at runtime.
This optimization is specifically tailored towards speedup in safe mode, as these checks can
be removed entirely when running with --unsafe.

12. Loop Optimizations
Difficulty: ☀☀☀☀☀ Usefulness: crucial for programs abundant with loops
Again, we order these in order of difficulty.

(a) Loop unrolling Loop unrolling can reduce the overhead of loops and increase the
portion of time running useful computation within a loop. While important on its
own, unrolling also makes other optimizations such as vectorization and instruction
scheduling more effective. Your loop analysis framework will come in handy here, as
well as a framework to detect loop indices and basic induction variables. If the unroll
factor cannot divide the number of loop iterations, you would need to insert a prologue
or epilogue loop (which perhaps could be completely unrolled). You should pick a good
unrolling factor and design an unrolling cost model because blindly unrolling loops will
bloat up the code size.

(b) Induction Variable Elimination (IVE) You need to first perform Induction Variable
Detection which detects induction variables in a loop, and dependence analysis. Then
you could perform strength reduction, scalar replacement, and deadcode elimination
based on the induction variables. We recommend doing SSA-based IVE. See the lecture
slides for more details.

7



(c) Loop tiling/fusion/interchange/... You need good heuristics to perform these opti-
mizations, and their effectiveness is target specific (dependent on the hardware).

2.3 Advanced Analysis and Optimization Passes

Below we list some optimizations that might be beyond the scope of this lab – they are either too
hard, or might not affect your score enough to justify the time investment. However, they are all
fascinating topics to explore. We recommend you implement these only if you have most of the
optimizations in the above section working.

1. Alias Analysis
Difficulty: ☀☀☀☀☀ Usefulness: ☀☀☀☀☀
Resources: Andersen’s or Steensgaard’s Points-To Analysis
Making context-sensitive points-to analysis practical for the real world (Lattner 07)
We recommend Andersen’s or Steensgaard’s approach as it is simpler to implement, espe-
cially Steengaard’s approach as it is cheapest. C0 has the additional benefit of being a typed
language, where pointer arithmetic is not allowed, and structs and arrays are fundamen-
tally different types. Thus the type information might help you form a better alias analysis
algorithm than Steengaard’s. Alias analysis will enhance the quality of many of your opti-
mizations, including PRE, LICM, instruction scheduling, among many others.

2. Interprocedural Optimizations
Difficulty: varies, hard in general Usefulness: depends
Most optimizations in the above section are intraprocedural, but some passes such as register
allocation and alias analysis, can be made more effective when applied across functions.
Interprocedural Optimizations generally involve traversing the call graph.

3. Vectorization using Streaming SIMD Extensions (SSE)
Difficulty: ☀☀☀☀☀ Usefulness: useful for programs with a lot of parallelism
You can take advantage of the X86 SSE, SSE2, or AVX-512 extensions to vectorize loops, like
gcc -O3 does. For L4 grammar, vectorization is much more effective when combined with
loop unrolling. This can also be an interesting project for lab6.

4. Instruction Scheduling (Software Pipelining / Hyperblock or Trace Scheduling)
Difficulty: ☀☀☀☀☀☀ Usefulness: depends on the program and the processor
Code scheduling involves moving instructions around to increase instruction level parallelism
and reduce pipeline stalls. You might also perform if-conversions (using x86 cmovs to form
larger blocks. These optimizations are very tricky to get right and are target-specific. Our
grading instances use an out-of-order processor which limits the benefit of local scheduling
within small basic blocks.
The scheduling algorithm we recommend is list scheduling, which occurs within a basic block.
This optimization is made more effective by alias analysis, and loop unrolling.

8



3 Testing

As you are implementing optimizations, it is extremely important to carry out regression testing
to make sure your compiler remains correct. We heavily recommend that your optimizations
be modular, and that correctness does not depend on a particular previous optimization. We
will call your compiler with and without the --unsafe flags at various levels of optimization to
ascertain its continued correctness, though your performance will be evaluated primarily through
our benchmarks.

To enable you to perform more compiler optimizations, we increased COMPILER TIMEOUT
of the autograding harness to 20 seconds. We also increased the RUN TIMEOUT of the executable
produced by your compiler to 120 seconds.

To help you test your performance, you’ll see some new files in the dist repository:

• tests/bench/, which contain the benchmark programs.

• timecompiler, a script which counts the cycles of your compiler on these benchmarks.

• score_table.py, a script which you can use to generate a table of your score. You can also
see the times and code sizes of the executables produced by cc0 and gcc, and the formula we
use to compute your multiplier on Gradescope. Read the comments within score_table.py

on how to use this script.

To use the timecompiler script, you should follow these steps:

1. Ensure your compiler supports --unsafe and -O1.

2. If you wish, add additional benchmarks to the benchmark folder.

3. Run ../timecompiler from your compiler’s directory. timecompiler accepts the same flags
that gradecompiler does – however, we don’t recommend running the benchmarks in parallel.

Here is a cheatsheet of useful commands:
timecompiler bench:
this will time your compiler on the benchmarks in the ../tests/bench folder, and print out the
cycles and code sizes for each benchmark
timecompiler -q --autograde:
the -q flag suppresses unhelpful output, and --autograde will print a json array of the cycles and
code sizes at the end, which you can pass to score_table.py

bin/c0c -ex86-64 -O1 --unsafe ../tests/bench/daisy.l4:
this generates a .s file from your compiler
gcc -m64 -no-pie ../runtime/run411.o ../tests/bench/daisy.l4.s:
using the .s file, you can link to our runtime file to generate an executable
gcc -m64 -no-pie ../runtime/bench.o ../tests/bench/daisy.l4.s:
alternatively, you could link to bench.o to generate an executable that will run the benchmark
numerous times, and print out the average of the k best times
gcc -O1 -fno-asynchronous-unwind-tables -S ../tests/bench/unsafe/daisy.c:
this uses gcc to generate a .s file in the current directory, which you can use to compare your own
assembly against
gcc -O1 ../runtime/run411.o ../tests/bench/unsafe/daisy.c:
alternatively, you can let gcc directly generate an executable

9



4 Deliverables and Deadlines

For this project, you are required to hand in a complete working compiler for L4 that produces
correct target programs written in Intel x86-64 assembly language, and a description and assessment
of your optimizations. The compiler must accept the flags --unsafe and -On with n = 0, 1. When
we grade your work, we will use the gcc compiler to assemble and link the code you generate into
executables using the provided runtime environment on the lab machines.

Note that for the benchmarks, we will call not just the _c0_main function in the assembly file
you generate, but also four other functions in order to obtain cycle counts that are as precise as
possible. These are _c0_init, _c0_prepare, _c0_run, and _c0_checksum, each corresponding to
their un-prefixed counterparts in the benchmark source. Given this, it is critical that your code
follow the standard calling conventions and function naming conventions from Labs 1–4 for these
functions.

Compiler

The sources for your compiler should be handed in via Gradescope as usual, and must contain
documentation that is up to date. Particularly, your compiler should document each of your
performed optimizations in both a README file and the source itself. The course staff will be
reading your code as part of the submission for this lab. You may use up to five late days for the
compiler.

Project Report

The project report should be a PDF file of approximately 4–5 pages (possibly more, particularly
with figures), and should be handed in on Gradescope. Your report should describe the effect of
--unsafe as well as your optimizations and other improvements,and assess how well they worked
in improving the code, over individual tests and the benchmark suite.

At the absolute minimum, your project should present a description and quantitative evaluation
of the optimizations you performed at the -O0, -O1, and default levels. A good report must also
discuss the way your individual optimizations interact, backed up by quantitative evidence. (Tables
are a good idea. Graphs are an even better idea.) Make sure to carefully document how your got
your numbers; someone with access to your code should, if they’re willing to buy whatever hardware
and operating system you were using, be able to replicate your results. A good report should also
spend some time describing the effect of individual optimizations on the code you produce.

Your report should contain a specific commit hash for the course staff to review2, and a com-
prehensive descriptions of where in your source files each optimization you have described is imple-
mented. If you use algorithms that have not been covered in class, cite any relevant sources, and
briefly describe how they work. If the algorithms have been covered in class, cite the appropriate
lecture notes or paper, and focus on any implementation choices you made that are not described
in those resources.

Other (optional) discussions that might be included in a high-quality report include:

• Effects of the ordering of different optimization passes.

2It is not necessary that this be the same commit hash that you submit to Gradescope. In fact, we encourage you
to perform any code-cleanup that may be required.

10



• Time versus space tradeoffs in emitted code.

• Effects of various optimizations on the running time of your compiler.

• Examples of programs that your optimizations would interact particularly well with.

• Examples of programs that your optimizations would interact particularly poorly with.

Grading

This assignment is worth 150 points. The written report is worth 50 points. The remaining 100
points will be based on the correctness of your compiler and on the performance of your emitted
code relative to our benchmarks, as reflected by your Gradescope score.

Your performance will be measured as a factor of how far between gcc’s -O0 and -O1 your
generated assembly is. We do not expect you to achieve true parity with -O1 in a single semester,
which would be a tremendous feat. But you may be surprised by how close your compilers already
are. We hope the comparison offers you a sense of how much you have done this semester! :)

We will run your compiler numerous times in all of the optimization modes, and take the k-best
times of all of these. We will use the benchmark score as a multiplier for your correctness score,
and we derive your multiplier by averaging your score over all of the benchmark tests. The scheme
is designed so that you do not have to exceed -O0 on all tests, and may benefit from a score greater
than 1 if your optimizations provide excellent speedup in certain cases.

The exact formula for each test is as follows: tc is the average of the k-best times from your
compiler3, t0 and t1 denote the times of the cc0 reference compiler using -O0 and -O1 respectively.
The u variables denote the same times, but with --unsafe and using gcc as reference. The variable
f = 0.10 is a difficulty reduction factor selected by the course staff. Both Ps and Pu is clamped
between 0 and 2.0. T is our benchmark suite, and M is your multiplier for the lab.
For running time of a benchmark:

Ps = 1 + f − tc − t1
t0 − t1 Pu = 1 + f − uc − u1

u0 − u1 Ptime = Ps + Pu

2

Overall score multiplier:

M = Σbench∈T Ptime

∣T ∣
C is a correctness score based on your performance in the general Labs 1–4 testsuite. Your

compiler will be evaluated with your O1 optimisations, and will be given a 20 second compilation
timeout (but no change to the runtime timeout).

We will also be running your compiler both with and without the --unsafe flag. We will run
--unsafe on tests with directives //test return i, //test abort, and //test compile. We
will run --safe on tests with directives //test div-by-zero and //test memerror. Tests with
//test typecheck and //test error will be skipped and not be considered.

Your correctness score C will be calculated using a similar formula to prior labs:

subtotal = 30 ∗ passed basic tests

total basic tests
+ 70 ∗ passed large & only tests

total large & only tests

total = C = subtotal − (1 point per compiler failure) − (0.1 points per executable timeout)
3where k = 1

11



Your final score is then simply MC.
You will be able to get extra credit on this assignment! If your final score is above 100 points,

you will receive min(20, MC−100
2 ) extra credit points for building an excellent optimizing compiler.

12



5 Tips and Hints

1. You have less than three weeks to work on this lab, and implementing optimizations is a lot
of work, so start early!

2. The Godbolt Compiler Explorer (godbolt.org) is a really helpful tool for comparing your
compiler against gcc/clang.

3. You should make a habit of closely inspecting the assembly outputted by your compiler,
comparing it to gcc/clang’s output, identifying inefficiencies in your code, and thinking about
the possible optimizations to address those inefficiencies.

4. Early in your implementation process, you will likely find most of the benefit to come from
removing local inefficiencies, accumulated from previous labs. However, the more interesting
and rewarding experiences lie in implementing the global optimizations.

5. Some of you might find certain global optimizations to be not useful in improving your score.
This is almost always because your implementation is either flawed, buggy, fails to cover
important cases, or needs to interact properly with another optimization. We have carefully
designed our benchmarks so that all global optimizations mentioned in this handout, when
designed and implemented correctly, can provide a boost to your score.

6. In the final stages, when you are done with most of your optimizations, you can try optimizing
for the hot path of benchmarks. Often, a few functions or loops on the hot path of programs
dominates the program’s run time, and the largest benefit will come from optimizing them.

7. Since you will likely perform most optimizations on some IR form, compiler utilities and flags
to print out code in that IR can be really helpful for debugging, as is using graphviz and
dot to generate visual representations of control flow graphs, which will also help you when
writing your report (you can use graphviz online here).

8. The ordering of optimizations and analysis passes can be extremely important, and you should
explore how different optimizations interact. It is often worth it to perform a certain pass
multiple times (before and after related passes).

13

https://dreampuf.github.io/GraphvizOnline/

	Introduction
	Preview of Deliverables
	Unsafe Compilation

	Optimizations
	Analysis Passes
	Optimization Passes
	Advanced Analysis and Optimization Passes

	Testing
	Deliverables and Deadlines
	Tips and Hints

