15-411 Compiler Design, Spring 2024
Lab 6 - CO and Beyond

Jan and co.

Due 11:59pm, Saturday, May 4th, 2024

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes the option of extending
your L4/L5 compiler with new language features; other writeups detail other options. The basic languages you deal
with in this lab are called L5 and L6 instead of CO or C1 because they may still lack support for some contracts and
for #use compiler directives (the latter being handle by command-line arguments as in L4).

With a preprocessor that collects and inline compiler directives, your implementation should be able to compile almost
all code from 15-122 and more.

2 The L5 Language

The point of this section is to establish a common baseline for all language extension projects by implementing two
new primitive types, char and string. Both should be treated as small types.

2.1 Characters

Characters are a special type to represent components of strings. They are written in the form ’c’, where ¢ can
be any printable ASCII character, as well as the following escape sequences \t (tab), \r (return), \f (formfeed), \a
(alert), \b (backspace), \n (newline), \v (vertical tab), * (quote), \" (doublequote), \0 (null). The default value
for characters is \0. Characters can be compared with ==, 1= <, <= >= > according to their ASCII value, which is
always in the range from 0 to 127, inclusively.

Characters should be represented in memory as a 1-byte word. They do not need to be aligned.

2.2 Strings

Strings have the form "c1...cn", where c1, ..., c, are ASCII characters as above, including the legal escape sequences
except for NUL (\0), which may not appear in strings. The double-quote character itself " must be quoted as \" so
it is not interpreted as the end of the string. The default value for type string is the empty string "". Strings can

not be compared directly with comparison operators, because in a language such as C the comparison would actually
apply to the addresses of the strings in memory, with unpredictable results. Appropriate comparison functions are
provided by the string library. Unlike C strings, L5 strings cannot be modified.

You should put some thought into how strings are represented at runtime. The C library implementation you are
given (see below) represents string values as pointers to NUL-terminated character sequences, as in C. You can change
the implementation of strings if you change the corresponding runtime. You should also be thoughtful about how you
deal with constant strings. Ideally these should be allocated in the text part of your compiled binary; check out the
way how gcc handles strings. The choices you make should be documented in your project report.

2.3 Library Interface

Several of the standard CO libraries, namely conio, string, and file, together with the earlier library, are collected
into the runtime; when we call your compiler we will supply the command-line arguments -1 ../runtime/15411-15.h0.

Because the library now contains characters, strings, and arrays, the layout of certain data structures must be more
precisely specified than in Lab 4. We have:

Co C

int int (4 bytes)

bool bool (1 byte, from stdbool.h)

char char (1 byte)

string | charx (8 byte pointer to NUL-terminated string)
t* (8 bytes)

t[] (8 bytes, see below)

Arrays are represented as described in lecture: as a pointer a to the first data element of the array, where the
number of elements in the array are stored in the four bytes beginning at the address a — 8. Please see the library
implementation in run411.c for more detail. Note that, because the library includes array-bounds checks, it can only
be used with safe mode. As a consequence, you are not required to implement the ——unsafe flag for this assignment.
If you do implement the --unsafe flag, it will need to be compiled against a different runtime.

You may include a different runtime and have your compiler link against that runtime instead. However, you must
support 156411-c1.h0, since it is used to type-check L5 sources.

3 The L6 Language

Simply implementing the L5 language is not sufficient for passing the final project. The point of this section is to
describe how to build on the L5 language to make a compelling final project.

You are expected to follow the outline described in at least two of the sections below. For a chance at a full-score,
in addition to two L6 features, we expect an additional extension which you can choose (we provide some ideas below
for each feature).

For each element missing of above (either a feature listed in a section below or the extension), you can expect roughly
a letter grade drop. Remember that you must document your design decisions well within the final L6 report as well.

Any one of these projects requires you to make decisions at every level of the language: the static and dynamic
semantics, the compilation strategies, and potentially the runtime. Your designs and design decisions will need to be
carefully documented and critically examined in your term paper.

3.1 Contracts

Contracts are an important part of CO that does not exist in any of the languages discussed in this class. Contracts
exist within either multi-line declarations /*@ ... @x/ or single line declarations that begin with //@ and end with
a newline character. Lexing is modified within contracts: the @ character is treated as whitespace. Aside from that,
contracts have the following forms:

<anno> ::= //@ <spec>* \n
/%@ <spec>* 0x/

<spec> = requires <exp> ;
| ensures <exp> ;
| loop_invariant <exp> ;
| assert <exp> ;
<stmt> = | <anno>+ <stmt>
<exp> ::= ... | \result | \length (<exp>)
<gdecl> ::=

| <type> ident <param-list> <anno>+ <block>

This grammar introduces an ambiguity, because /*@ s1 @*/ /*@ s2 @*/ s3 could either be:
e a twice-annotated statement, same as /*@ s1 s2 @x/ s3
e an annotated statement with an annotation, same as /*@ s1 @*/ { /*@ s2 @*/ s3 }
This is always resolved in favor of having a twice-annotated statement. Furthermore, the following restrictions apply:
e loop_invariant contracts are the only contracts that can annotate a loop body.
e assert contracts are the only contracts that can annotate other statements.

e requires and ensures contracts can only appear immediately before the initial “{” token in a function defini-
tion.

e The expression \result can only appear within a ensures contract; it represents the value of the function upon
exit.

e The expression \length(e) can only appear in contracts. It takes an array as its argument, and allows contract
code to access the length of an array.

Compared to CO, you probably do not want to support annotations on function declarations. Files in the testsC/
directory describe provide some examples of correct and incorrect uses of casts.

A runtime flag, -d, means that all contracts are turned into assertions in the compiled code. When this flag is omitted,
all contracts are still typechecked, but they are removed from the code after typechecking.

In addition to supporting contracts, you can do something extra (if you choose this path). Here’s a couple of examples
of what a project based on this extension might look like:

e Extend the language with new syntax designed to be used in contracts (possibly only in contracts) and give
examples to show that it is useful. One example: it is not possible to write the loop invariant “all A[s] for
0 < i < n are less than z” without writing a helper function. Array comprehension syntax might help with
this. Another example: it is not possible to write a contract in CO that checks that an in-place sorting function
returns a permutation of the original array. Can you design a language extension that addresses this?

e Implement a variant purity checking, which ensures that contracts will not modify memory that can be read
outside of the contract. You will probably need your purity checker to reject many programs that the reference
compiler accepts; your report should discuss and analyze any differences you find.

e Develop a “semi-safe” mode that assumes that all contracts succeed and uses that assumption to perform
optimizations (like removing array bounds checks) based on the presence of contracts, but then does not check
those contracts at runtime. Demonstrate performance improvements over safe mode for examples where you
can prove (on paper) that all array bounds checks succeed.

3.2 Generic Pointers

We have a new form expression, a cast, which is used only in a very specific way.
<exp> ::= ... | (<tp>) <exp>

The form (void*)e casts the expression e of type t * to be of type void*. Operationally, this new pointer references
a pair consisting of a runtime representation of the type ¢ * (the tag) and the pointer value of e.

The second form (t*)e where t # void casts an expression e of type void* to have type ¢ *. If the tag agrees with the
type t *, it strips off the tag and returns the underlying pointer of type ¢ *. If the tags do not agree, a memory error
is raised and the program is terminated. Casting does not affect the null pointer, which remains NULL and serves as
the default value of type void*. Files in the testsG/ directory provide some examples of correct and incorrect uses
of casts.

In unsafe mode (if you support it), the casts only have significance at compile-time and no tagging or untagging
will be performed, because it is assumed that the tag would match. In order to support unsafe mode, it should be
impossible for the programmer to learn what tag something has, just like it is not possible to check the length of an
array.

In addition to supporting generic pointers, if you take the path to do something extra, here are some examples of
what an project based on this extension might look like:

e The 15-122 take on object oriented programming requires both generic pointers and function pointers, so that
structs can contain both data and instructions for how to interpret that data.

Another approach to object-oriented programming is to allow functions to be associated with particular pointer
or struct types. Then, if we call the hash function on a generic pointer that was originally an struct rope*,
we can look up, at runtime, to see how ropes are supposed to be hashed. If there’s no hash function associated
with struct rope pointers, this should cause a memory error.

The really interesting feature of this approach is that it’s possible for a hash table implementation to hash
generic pointers that it contains without ever knowing what tag those generic pointers have.

Design a reasonable syntax, semantics, and implementation of generic data structures that uses these ideas.
Implement a generic hash table.

3.3 Function Pointers

We add a new unary prefix operator & pronounced “address of”, which can only be applied to functions and has the
same precedence as other unary prefix operators such as *. We can dereference a function pointer and apply it to a
sequence of arguments with a new form of function call.

<unop> ::= ... | &
<exp> ::= ... | (x <exp>) ([<exp> (, <exp>)*])

In order to use function pointers we need to be able to assign them types. For this purpose, we allow a particular
idiomatic use of typedef which is consistent with but much more restrictive than C and declares a function type
name <fnid> which occupies the same name space as (ordinary) type names.

<gdefn> ::= ..
|

typedef <tp> <fnid> ([<tp> <vid> (, <tp> <vid>)*]) ;
<tp> ::= ... | <fnid>

Note that this is exactly the same form as a function declaration (also called a function prototype) preceded by the
typedef keyword.

Function types, named by a <fnid> are large types and, moreover, function values cannot be allocated on the stack
or heap. That is, we store and pass only pointers to functions, not functions themselves. Function type names in
C1 are treated nominally, which means that two distinct function type names are considered different, even if their
definitions happen to be the same. You can support this or not, but you should explain your decision in your project
report.

Files in the testsF/ directory provide some examples of correct and incorrect uses of function pointers.

In addition to supporting function pointers, if you choose to do something extra, here is an example of what a project
based on this extension might look like:

e In addition to the & syntax for creating function pointers, allow anonymous functions to be created by defining a
new form of expression fn ([<tp> <vid> (, <tp> <vid>)*]) <block> that evaluates to a function pointer.
These anonymous functions should be allowed to refer to temps in the function(s) that they are declared within,
which means that the runtime value of a function will need to be a closure containing a function pointer, instead
of just a function pointer.

4 Deliverables

4.1 Tests

The purpose of these tests is to explore the novel features of C1 (characters, strings, generic pointers, and function
pointers), and to verify that your compiler works correctly on them.

You should turn in at least 10 tests named $name.15 that deal with characters, strings, and the new libraries, at
least 10 tests named $name .16 that deal with the basic L6 extensions to your language, and at least 10 tests named
$name.16 that deal with the L6 extensions that you designed.

It is okay if you have to modify your L6 tests as you work on your compiler. If you need to change anything besides
a typo, make sure to mention it in your project report.

4.2 Compiler
Expand your compiler to compile the L6 language described in the preceding sections.
Issuing the shell command
% make
should generate the appropriate files so that
% bin/cOc --exe <args>

will run your compiler and produce an executable. You may stop supporting all other compiler flags except —t. This
means you no longer need to support the -—unsafe flag or any optimization flags for this assignment.

After running make, issuing the shell command
% make test

should run your own tests and print out informative output. The command
% make clean

should remove all binaries, heaps, and other generated files.

You should also update the README file and insert a roadmap to your code. This will be a helpful guide for the grader.
In particular, since there are likely to be many different projects undertaken, do introduce the project at the very top
of the README.

Runtime environment

Because you may have implemented a new runtime, your compiler should have an additional flag --exe. If your
compiler is given a well-formed input file foo.11 or foo.12 as a command-line argument and is also given the --exe
argument, it should generate a target file called foo.11.s or foo.12.s (respectively) in the same directory as the
source file, and should also compile the runtime and link it with your generated assembly to create an executable
foo.1l1l.exe or foo.12.exe (respectively).

4.3 Term Paper

You need to describe and critically evaluate your L6 compiler implementation in a term paper of about 5-10 pages.
You may use more space if you need it. Your paper should follow this outline.

1. Introduction: Provide an overview of your implementation and briefly summarize the results you obtained.
2. Extensions: Carefully describe the syntax and semantics of the extensions to your language.

3. Compilation: Describe the data structures, code, and information generated by the compiler in order to support
the new language features.

4. Examples: Walk through several code examples that demonstrate the power of your language extensions.

5. Analysis: Critically evaluate the language, your compiler and runtime system and sketch future improvements
one might make to its design.

Submit your term paper in PDF form via Gradescope before the stated deadline. Early submissions are much
appreciated since it lessens the grading load of the course staff near the end of the semester.

You may not use any late days on the term paper describing your implementation of Lab 6!

	Introduction
	The L5 Language
	Characters
	Strings
	Library Interface

	The L6 Language
	Contracts
	Generic Pointers
	Function Pointers

	Deliverables
	Tests
	Compiler
	Term Paper

