
Lecture Notes on
Liveness Analysis

15-411: Compiler Design
Frank Pfenning, André Platzer, Rob Simmons, and Jan Hoffmann

Lecture 5
January 30, 2024

1 Introduction

We will see different kinds of program analyses in the course, most of them for the
purpose of program optimization. The first one, liveness analysis, is used for register
allocation. A variable is live at a given program point if it may be used during the
remainder of the computation, starting at this point. We use this information to
decide if two variables could safely be mapped to the same register, as detailed in
the last lecture.

Like many other properties of programs, it is undecidable if a variable will
be used in the remainder of the computation if the language we are analyzing is
Turing-complete. Liveness is a standard over approximation. However, the pre-
sentation in these notes is not standard. Chapter 10 of the textbook [App98] has a
classical presentation.

2 Liveness by Backward Propagation

Consider a 3-address instruction applying a binary operator ⊕:

x ← y ⊕ z

There are two reasons a variable may be live at this instruction, by which we mean
live just before the instruction is executed (we’ll also say live-in, which is slightly less
ambiguous). The first reason is immediate: if a variable (here: y and z) is used
at an instruction, it is used in the computation starting from here. The second is
slightly more subtle: since we execute the following instruction next, anything we
determine is live at the next instruction is also live here. There is one exception to
this second rule: because we assign to x, the value of x coming into this instruction

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.2

does not matter (unless it is y or z), even if it is live at the next instruction. In
summary,

1. y and z are live at an instruction x← y ⊕ z.

2. u is live at x← y ⊕ z if u is live at the next instruction and u 6= x.

Similarly, for an instruction x← c with a constant c, we find that u is live at this
instruction if u is live at the next instruction and u 6= x.

As a last example, the return register rret is live at a return instruction ret, and
nothing else is live there.

If we have a straight-line program, it is easy to compute liveness information
by going through the program backwards, starting from the return instruction at
the end. In that case, it is also precise rather than an approximation. As an exam-
ple, one can construct the set of live variables at each line in this simple program
bottom-up, using the two rules above.x

Instructions Live-in Variables
l1 : x1 ← 1 ·
l2 : x2 ← x1 + x1 x1
l3 : x3 ← x2 + x1 x1, x2
l4 : y2 ← x1 + x2 x1, x2, x3
l5 : rret ← y2 + x3 y2, x3
l6 : ret rret

For example, looking at the 4th line, we see that x1 and x2 are live because of the
first rule (they are used) and x3 is live because it is live at the next instructions and
different from y2.

3 Liveness Analysis in Logical Form

Before we generalize to a more complex language of instructions, we try to specify
the rules for liveness analysis in a symbolic form to make them more concise and
to avoid any potential ambiguity. For this we give each instruction in a program a
line number or label. If an instruction has label l, we write l + 1 for the label of the
next instruction.

We also introduce the predicate live(l, x) which should be true when variable
x is live at line l. We then turn the rules stated informally in English into logical
rules.

l : x← y ⊕ z

live(l, y)
live(l, z)

L1

l : x← y ⊕ z
live(l + 1, u)
x 6= u

live(l, u)
L2

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.3

This way of writing rules down is called an inference rule: if all premises (the
facts above the line) are true, we know all conclusions (the facts below the line)
must be true. We will use these rules as very concise way of stating what we mean
by liveness analysis: the complete liveness analysis for a program is all the facts
live(l, x) that can be proven true based on those inference rules.

It’s also possible to look at these rules as describing the computation we use to
determine liveness. Because of line l5 and rule L1, we compute the following facts:

live(l5, y2), live(l5, x3)

Using rule L1 again on lines l3 and l4, we add more facts to our list of facts:

live(l3, x2), live(l3, x1)
live(l4, x1), live(l4, x2)
live(l5, y2), live(l5, x3)

We can also use the second rule, L2, along with the fact l4 : y2 ← x1 + x2 and the
fact, present above, that live(l5, x3), to derive live(l4, x3). We cannot use rule L2 to
determine live(l4, y2), though, because y2 takes the place of both x and u in the rule
L2, and they are not distinct.

live(l3, x2), live(l3, x1)
live(l4, x1), live(l4, x2), live(l4, x3)
live(l5, y2), live(l5, x3)

While we could use L2 to derive live(l3, x1) and live(l3, x2), we already derived those
facts using rule L1, so we don’t need to derive them again. It doesn’t matter how
we derive something; we just have to derive it some way or another.

This way of thinking about liveness is more abstract than the backward propa-
gation algorithm. It does not specify in which order to apply these rules. We can
now add more rules for different kinds of instructions.

l : ret

live(l, rret)
L3

l : x← c
live(l + 1, u)
x 6= u

live(l, u)
L4

l : x← y

live(l, y)
L5

l : x← y
live(l + 1, u)
x 6= u

live(l, u)
L6

If we only have binary operators, moves, and return instructions, then these six
rules constitute a complete specification of when a variable should be live at any
point in a program.

This specification also gives rise to an immediate, yet somewhat nondetermin-
istic implementation. We start with a set of facts, consisting only of the original
program, with each line properly labeled. Then we apply rules in an arbitrary
order — whenever the premises are all in the set of known facts, we add the con-
clusion to the set as well. Applying one rule may enable the application of another
rule and so on, but eventually this process will not gain us any more information,
so we will be left with a set of facts that we cannot grow any further:

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.4

live(l2, x1)
live(l3, x2), live(l3, x1)
live(l4, x1), live(l4, x2), live(l4, x3)
live(l5, y2), live(l5, x3)
live(l6, y3)

At this point, we can still apply rules but all conclusions are already in the set of
facts (which we’ll also refer to as a database). We say that the database is saturated.
Since the rules are a complete specification of our liveness analysis: a variable x is
deemed lived at line l if and only if the fact live(l, x) is in the saturated database.

Chaotic iteration may seem like an unreasonably expensive way to compute
liveness. In fact it can be quite efficient, both in theory and practice. For example,
the backward propagation algorithm we started with can be seen as a particular
way of applying these rules: we apply both L1 and L2 using line l6, then line l5,
then line l4, and so on.

To determine the theoretical complexity of computing the liveness database,
we can look at the rules and determine their theoretical complexity by (a) count-
ing so-called prefix firings of each rule, and (b) bounding the size of the completed
database. We may return to prefix firings, a notion due to McAllester [McA02], in
a later lecture. Bounding the size of the completed database is easy. We can infer at
most L · V distinct facts of the form live(l, x), where L is the number of lines and V
is the number of variables in the program. Counting prefix firings does not change
anything here, and we get the bound L · V on the number of iterations.

In practice, there are a number of ways logical rules and saturation can be
implementation efficiently. One uses Binary Decision Diagrams (BDD’s). Wha-
ley, Avots, Carbin, and Lam [WACL05] have shown scalability of global program
analyses using inference rules, transliterated into so-called Datalog programs. See
Smaragdakis and Bravenboer’s work on Doop [SB10] for a different technique. Un-
fortunately, there is no Datalog library that we can easily tie into our compilers, so
while we specify and analyze the structure of our program analyses via the use of
inference rules, we generally do not implement them in this manner. Instead, we
use other implementations that follow the ideas that are identified precisely and
concisely by the logical rules. Because our logical rules identify the fundamental
principles, this presentation makes it easier to understand the important issues of
liveness analysis. This also helps capturing the implementation-independent com-
monality among different styles of implementation. We will see throughout this
whole course that logical rules can capture many other important concepts in a
similarly concise and straightforward way.

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.5

4 Loops and Conditionals

The nature of liveness analysis changes significantly when the language permits
loops. This will also be the case for most other program analyses.

Here, we add two new forms of instructions, and unconditional jump l : goto l′,
and a conditional branch l : if (x ? c) then lt else lf , where “?” is a relational
operator such as equality or inequality.

We now discuss how liveness analysis should be extended for these two forms
of instructions. A variable u is live at l : goto l′ if it is live at l′. We capture this with
the following inference rule, which is the only rule pertaining to goto

l : goto l′

live(l′, u)

live(l, u)
L7

When executing a conditional branch l : if (x ? c) then lt else lf we have two
potential successor instructions: we may go to the next lt if the condition is true or
to lf if the condition is false. In general, we will not be able to predict at compile
time whether the condition will be true or false and usually it will sometimes be
true and sometimes be false during the execution of the program. Therefore we
have to consider a variable live at l if it is live at either lt or lf . Also, the instruction
uses x, so x is live. Summarizing this as rules, we obtain:

l : if (x ? c) then lt else lf

live(l, x)
L8

l : if (x ? c) then lt else lf
live(lt, u)

live(l, u)
L9

l : if (x ? c) then lt else lf
live(lf , u)

live(l, u)
L10

These rules are straightforward enough, but if we have backwards branches
we will not be able to analyze in a single backwards pass. As an example to illus-
trate this point, we will use a simple program for calculating the greatest common
divisor of two positive integers. We assume that at the first statement labeled 1,
variables x1 and x2 hold the input, and we are supposed to calculate and return
gcd(x1, x2).

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.6

x

Live variables,
Instructions initially

l1 : if (x2 6= 0) then l2 else l8
l2 : q ← x1/x2
l3 : t← q ∗ x2
l4 : r ← x1 − t
l5 : x1 ← x2
l6 : x2 ← r
l7 : goto l1
l8 : rret ← x1
l9 : ret

If we start at line 8 we see x1 is live there, but we can conclude nothing (yet) to
be live at line 7 because nothing is known to be live at line 1, the target of the jump.
After one pass through the program, listing all variables we know to be live so far
we arrive at: x

Live variables,
Instructions after pass 1

l1 : if (x2 6= 0) then l2 else l8 x1, x2
l2 : q ← x1/x2 x1, x2
l3 : t← q ∗ x2 x1, x2, q
l4 : r ← x1 − t x1, x2, t
l5 : x1 ← x2 x2, r
l6 : x2 ← r r
l7 : goto l1 ·
l8 : rret ← x1 x1
l9 : ret rret

At this point, we can apply the rule for goto to line 7, once with variable x1 and
once with x2, both of which are now known to be live at line 1. We list the variables
that are now further to the right, and make another pass through the program,
applying more rules.

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.7

x

Live-in variables,
Instructions after pass 1 after pass 2 saturate

l1 : if (x2 6= 0) then l2 else l8 x1, x2
l2 : q ← x1/x2 x1, x2
l3 : t← q ∗ x2 x1, x2, q
l4 : r ← x1 − t x1, x2, t
l5 : x1 ← x2 x2, r
l6 : x2 ← r r x1
l7 : goto l1 · x1, x2 (from 1)
l8 : rret ← x1 x1
l9 : ret rret

At this point our rules have saturated and we have identified all the live vari-
ables at all program points. Now we can build the interference graph and from
that proceed with register allocation.

5 Building the Interference Graph

Remember our key observation for interference: two temps need to interfere (and
thereby be assigned to two different registers) if they must hold two different val-
ues at the same time. Liveness gives us information about when we care about the
value in a temp.

As a first approximation, we can try saying that two registers interfere when
their live ranges overlap, which we could try to capture with the following rule:

live(l, x)
live(l, y)
x 6= y

inter(x, y)

This is close, but it ignores an important point: the way we are capturing live-
ness information, there may not be any liveness facts about a particular temp. In
the following code, we would derive live(l2, a) and live(l3, a), but we would derive
no liveness facts about b.

l1 : rret ← 7
l2 : b← 3
l3 : ret

Nevertheless, it is critical that a and b interfere: if they do not, we could assign them
both to the register rret, ending up with a non-equivalent program that returns 3
instead of 7.

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.8

l1 : rret ← 7
l2 : rret ← 3
l3 : ret

Remark: Overlapping live ranges is the method for constructing the interference graph
that is used by Hack [Hac07] to show that interference graphs of programs in SSA
from are chordal. This method is sound for programs in which dead code has been
eliminated before register allocation (see the lecture on dataflow analysis). In the
above program, b is not needed in the code and the instruction l2 : b ← 3 can be
eliminated.

We could do something artificial to solve this problem, like saying that l : x← c
automatically forces x to be live on line l+1. Instead, we’ll rephrase the problem a
bit. The languages we are using, C0, always define variables before they are used,
so if two destinations have overlapping live ranges, the definition of one destina-
tion must fall inside the live range of the other. When we write to a destination, we
need to make sure that this destination interferes with everything that we still need
after the write. The values we still need on the next line are precisely the destina-
tions that are live after the assignment.

Therefore, if we write to a destination, we must mark it as interfering with
all the destinations that are live-out of that instruction. We don’t ever want to talk
about live-out destinations, so we instead refer to all the destinations that are live-in
to the next line.

l : x← y ⊕ z
live(l + 1, u)
x 6= u

inter(x, u)
I1

l : x← y
live(l + 1, u)
x 6= u

inter(x, u)
I2

l : x← c
live(l + 1, u)
x 6= u

inter(x, u)
I3

This re-phrasing of interference avoids the problem with our original description
of overlapping live ranges. It also lets us make a further optimization: when we
have a move t ← s, we do not need to create an interference edge between t and
s: if these two destinations end up being the same register, this is not a problem.
In fact, it’s a good thing! In that case, we can just get rid of the move entirely.
This optimization corresponds to adding the premise u 6= y to the inference rule I2
above.

l : x← y
live(l + 1, u)
x 6= u
u 6= y

inter(x, u)
I ′2

Remark: If you use the optimized rule I ′2 then programs in SSA from can have non-
chordal graphs.

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.9

It may be apparent, looking at I1, I2, and I3 above, that there’s a lot of redun-
dancy in our presentation. This specification will only become more redundant
(and more error prone) as we add more ways of writing to destinations, like read-
ing from memory, calculating a memory offset, or reading an array’s length.

6 Refactoring Liveness

Figure 1 has a summary of the ten rules specifying liveness analysis.

l : x← y ⊕ z

live(l, y)
live(l, z)

L1

l : x← y ⊕ z
live(l + 1, u)
x 6= u

live(l, u)
L2

l : ret

live(l, rret)
L3

l : x← c
live(l + 1, u)
x 6= u

live(l, u)
L4

l : x← y

live(l, y)
L5

l : x← y
live(l + 1, u)
x 6= u

live(l, u)
L6

l : goto l′

live(l′, u)

live(l, u)
L7

l : if (x ? c) then lt else lf

live(l, x)
L8

l : if (x ? c) then lt else lf
live(lt, u)

live(l, u)
L9

l : if (x ? c) then lt else lf
live(lf , u)

live(l, u)
L10

Figure 1: Summary: Rules specifying liveness analysis (non-refactored)

This style of specification, like the rules for calculating interference we saw
above, is rather repetitive. For example, L2, L4 and L5 are very similar rules, prop-
agating liveness information from l + 1 to l, and L1, L3 and L7 are similar rules
recording the usage of a variable. If we had specified liveness procedurally, we
would try to abstract common patterns by creating new auxiliary procedures. But
what is the analogue of this kind of restructuring when we look at specifications via
inference rules? The idea is to identify common concepts and distill them into new
predicates, thereby abstracting away from the individual forms of instructions.

Here, we arrive at three new predicates.

1. use(l, x): the instruction at l uses variable x.

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.10

2. def(l, x): the instruction at l defines (that is, writes to) variable x.

3. succ(l, l′): the instruction executed after l may be l′.

Now we split the set of rules into two. The first set analyzes the program and
generates the use, def and succ facts. We run this first set of rules to saturation.
Afterwards, the second set of rules employs these predicates to derive facts about
liveness. It does not refer to the program instructions directly—we have abstracted
away from them.

We write the second program first. It translates the following two, informally
stated rules into logical language:

1. If a variable is used at l it is live at l.

2. If a variable is live at a possible next instruction and it is not defined at the
current instruction, then it is live at the current instruction.

use(l, x)

live(l, x)
K1

live(l′, u)
succ(l, l′)
¬def(l, u)

live(l, u)
K2

Here, we use ¬ to stand for negation, which is an operator that deserves more at-
tention when using saturation via logic rules. For this to be well-defined we need to
know that def does not depend on live. Any implementation must first saturate the
facts about def before applying any rules concerning liveness, because the absence
of a fact of the form def(l,−) does not imply that such a fact might not be discov-
ered in a future inference—unless we first saturate the def predicate. Here, we can
easily first apply all rules that could possibly conclude facts of the form def(l, u)
exhaustively until saturation. If, after saturation with those rules (J1 . . . J6 below),
def(l, u) has not been concluded, then we know¬def(l, u), because we have exhaus-
tively applied all rules that could ever conclude it. Thus, after having saturated all
rules for def(l, u), we can saturate all rules for live(l, u). This simple saturation in
stages would break down if there were a rule concluding def(l, u) that depends on
a premise of the form live(l′, v), which is not the case.

We return to the first set of rules. It must examine each instruction and extract
the use, def, and succ predicates. We could write several subsets of rules: one subset
to generate def, one to generate use, etc. Instead, we have just one rule for each

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.11

instruction with multiple conclusions for all required predicates.

l : x← y ⊕ z

def(l, x)
use(l, y)
use(l, z)
succ(l, l + 1)

J1
l : ret

use(l, rret)
J2

l : x← c

def(l, x)
succ(l, l + 1)

J3
l : x← y

def(l, x)
use(l, y)
succ(l, l + 1)

J4

l : goto l′

succ(l, l′)
J5

l : if (x ? c) then lt else lf

use(l, x)
succ(l, lt)
succ(l, lf )

J6

It is easy to see that even with any number of new instructions, this specification
can be extended modularly. The main definition of liveness analysis in rules K1

and K2 will remain unchanged and captures the essence of liveness analysis.
The theoretical complexity does not change, because the size of the database

after each phase is still O(L · V ). The only point to observe is that even though
the successor relation looks to be bounded by O(L · L), there can be at most two
successors to any line l so it is only O(L).

7 Implementing Liveness by Line or by Variable

When we implement the analysis, in the absence of a saturating datalog engine, we
have to decide how to compute the information on the given program directly.

One option is to use sets of live variables associated with each line of the pro-
gram. We start with the empty set everywhere and then walk backward along the
control flow edges (from l′ to l if succ(l, l′)) computing the current approximation
to the live-in set for line l from the live-in set for line l′ and the variables defined
at l. We must take care that if a line has multiple predecessors, we explore all the
alternatives. We stop on any particular branch when the new live set computed for
a line is equal to the one already stored there. We refer to this as a line-oriented
traversal, which we used earlier when we walked through an example. The line-
oriented traversal has the disadvantage of potentially redundant set operations
when loops are traversed multiple times, and it can be extremely inefficient as a
result.

Alternatively, we can perform a variable-oriented traversal. When we arrive at
a line and see which variables are used there. For each such variable, we see if it is
already live, in which case we do nothing. If it is not live, we declare it so and then
walk backwards along the control flow edges propagating only the information for
the single variable, stopping if it is already known to be live when we reach a line,

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.12

or if it is defined at that line. This strategy actually achieves the O(L · V ) bound,
because for each variable we traverse at most O(L) lines.

Here is how this would work in our examplex

Instructions
l1 : if (x2 6= 0) then l2 else l8
l2 : q ← x1/x2
l3 : t← q ∗ x2
l4 : r ← x1 − t
l5 : x1 ← x2
l6 : x2 ← r
l7 : goto l1
l8 : rret ← x1
l9 : ret

We start at line 9 and derive that the return register rret is live there. Since rret is
defined in line 8 we do not propagate the liveness of rret to other lines. Now we
consider line 8 and propagate the liveness of x1 to lines 1, 7, 6, in this order. We
stop at 6 because x1 is defined in line 5. The resulting liveness info is recorded
in the column labeled (8). Line 7 does not use any variables, line 6 uses r which
propagates only to line 5 (see column (6)). Line 5 uses x2 which propagates around
the loop, etc. At the end, all variables used by lines 1 and 2 are already known to
be live, so no further propagation takes place.x

Instructions (9) (8) (6) (5) (4) (4) (3)

1 : if (x2 6= 0) then l2 else l8 x1 x2
2 : q ← x1/x2 x2 x1
3 : t← q ∗ x2 x2 x1 q
4 : r ← x1 − t x2 x1 t
5 : x1 ← x2 r x2
6 : x2 ← r x1 r
7 : goto l1 x1 x2
8 : rret ← x1 x1
9 : ret rret

8 Summary

Liveness analysis is a necessary component of register allocation. It can be specified
in two logical rules which depend on the control flow graph, succ(l, l′), as well as
information about the variables used, use(l, x), and defined, def(l, x), at each pro-
gram point. These rules can be run to saturation in an arbitrary order to discover all
live variables. On straight-line programs, liveness analysis can be implemented in
a single backwards pass, on programs with jumps and conditional branches some

LECTURE NOTES JANUARY 30, 2024



Liveness Analysis L5.13

iteration is required until no further facts about liveness remain to be discovered.
Liveness analysis is an example of a backward dataflow analysis; we will see more
analyses with similar styles of specifications throughout the course.

Questions

1. Can liveness analysis be faster if we execute it out of order, i.e., not strictly
backwards?

2. Is there a program where liveness analysis gives imperfect information?

3. Is there a class of programs where this does not happen? What is the biggest
such class?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD thesis,
Universität Karlsruhe, October 2007.

[McA02] David A. McAllester. On the complexity analysis of static analyses.
Journal of the ACM, 49(4):512–537, 2002.

[SB10] Yannis Smaragdakis and Martin Bravenboer. Using Datalog for fast
and easy program analysis. In O. de Moor, G. Gottlob, T. Furche, and
A. Sellers, editors, Datalog Reloaded, pages 245–251, Oxford, UK, March
2010. Springer LNCS 6702. Revised selected papers.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Us-
ing Datalog and binary decision diagrams for program analysis. In
K.Yi, editor, Proceedings of the 3rd Asian Symposium on Programming Lan-
guages and Systems (APLAS’05), pages 97–118. Springer LNCS 3780,
November 2005.

LECTURE NOTES JANUARY 30, 2024


	Introduction
	Liveness by Backward Propagation
	Liveness Analysis in Logical Form
	Loops and Conditionals
	Building the Interference Graph
	Refactoring Liveness
	Implementing Liveness by Line or by Variable
	Summary

