
Lecture Notes on
Context-Free Grammars

15-411: Compiler Design
Frank Pfenning, Rob Simmons, André Platzer, Jan Hoffmann

Lecture 08
February 8, 2024

1 Introduction

Grammars and parsing have a long history in linguistics. Computer science built
on the accumulated knowledge when starting to design programming languages
and compilers. There are, however, some important differences which can be at-
tributed to two main factors. One is that programming languages are designed,
while human languages evolve, so grammars serve as a means of specification (in
the case of programming languages), while they serve as a means of description (in
the case of human languages). The other is the difference in the use of grammars
and parsing. In programming languages the meaning of a program should be un-
ambiguously determined so it will execute in a predictable way. Clearly, this then
also applies to the result of parsing a well-formed expression: it should be unique.
In natural language we are condemned to live with its inherent ambiguities: in
the sentence “Prachi spotted Vijay with binoculars,” it is possible that Prachi had the
binoculars (using them to spot Vijay) or that Vijay had the binoculars (which were
with him when he was spotted by Prachi).

In this lecture we review an important class of grammars, called context-free
grammars and the associated problem of parsing. Some context-free grammars are
not suitable for the use in a compiler, mostly due to the problem of ambiguity, but
also due to potential inefficiency of parsing. However, the tools we use to describe
context-free grammars remain incredibly important in practice. We use Backus-
Naur form, a way of specifying context-free grammars, to specify our languages in
technical communication: you’ve already seen this in programming assignments
for this class. We also use the language of context-free grammars to describe gram-
mars to computers. The input to parser generators such as Yacc or Happy is a con-
text free grammar (and possibly some precedence rules), and the output is efficient
parsing code written in your language of choice.

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.2

Alternative presentations of the material in this lecture can be found in the text-
book [App98, Chapter 3] and in a seminal paper by Shieber et al. [SSP95].

2 Grammars

Grammars are a general way to describe languages. You have already seen regular
expressions, which also define languages but are less expressive. A language is a
set of sentences and a sentence is a sequence drawn from a finite set Σ of terminal
symbols. Grammars also use non-terminal symbols that are successively replaced
using productions until we arrive at a sentence. Sequences that can contain non-
terminal and terminal symbols are called strings. We denote strings by α, β, γ,
non-terminals are generally denoted by X,Y, Z and terminals by a, b, c. Inside
a compiler, terminal symbols are most likely lexical tokens, produced from a bare
character string by lexical analysis that already groups substrings into tokens of
appropriate type and skips over whitespace.

A grammar is defined by set of productions α → β and a start symbol S, a
distinguished non-terminal symbol. In the productions, α and β are strings and α
contains at least one non-terminal symbol.

For a given grammar G with start symbol S, a derivation in G is a sequence of
rewritings

S → γ1 → · · · → γn = w

in which we apply productions from G. For instance, if α→ β is a production then
γi+1 might be the string that we get by replacing one occurrence of α in γi by β. We
often simply write S →∗ w instead of S → γ1 → · · · → w.

The language L(G) of G is the set of sentences that we can derive using the
productions of G.

Consider for example the following grammar.

[1] S −→ aBSc
[2] S −→ abc
[3] Ba −→ aB
[4] Bb −→ bb

To refer to the productions, we assign a label [`] to each rule. Following a common
conversion, lower-case letters are terminal symbols and upper-case denote non-
terminal symbols. The following is a derivation of the sentence a3b3c3. We annotate

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.3

Class Languages Automaton Rules Word Problem Example

type-0 recursively
enumerable Turing machine no restriction undecidable

Post’s
corresp.
problem

type-1 context
sensitive

linear-bounded
TM

α→ γ
|α| ≤ |γ|

PSPACE-
complete anbncn

type-2 context
free

pushdown
automaton A→ γ cubic anbn

type-3 regular NFA / DFA A→ a or
A→ aB

linear time a∗b∗

Figure 1: Chomsky Hierarchy

each step in the derivation with the label of the production that we applied.

S −→1 aBSc
−→1 aBaBScc
−→3 aaBBScc
−→2 aaBBabccc
−→3 aaBaBbccc
−→3 aaaBBbccc
−→4 aaaBbbccc
−→4 aaabbbccc

Grammars are very expressive. In fact, we can describe all recursively enumerable
languages with grammars. As a consequence, it is in general undecidable if w ∈
L(G) for a string w and a grammar G (the so-called word problem). Of course,
we would like our compiler to be able to quickly decide whether a given input
program matches the specification given by the grammar. So we will use a class of
grammars for which we can decide if w ∈ L(G) more efficiently.

The syntax of programming languages is usually give by a context-free gram-
mar. Context-free grammars (and languages) are also called type-2 grammars fol-
lowing the classification in the Chomsky hierarchy [Cho59]. We have already seen
type-3 languages in the lecture about lexing. Type-3 languages are regular lan-
guages. The Chomsky hierarchy is shown in Figure 1. In the table, you find the
grammar class, the alternative name of the corresponding languages, the corre-
sponding automata model that recognizes languages of the class, restrictions on
the rules, and an example language. We say a language is of type-n if it can be
described by a grammar of type-n. The example languages for type-n are not of
type-(n−1). Note that every grammar (language) of type-n+ 1 is of type-n.

The table also describes the complexity of the word problem for the respective
class of grammars, that is, given a grammar G and a word w ∈ Σ∗, decide if w ∈
L(G). Regular expressions are not expressive enough for programming languages
since they cannot describe “matching parenthesis structures” such as {anbn | n ≥

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.4

1}. So we have to use at least context-free grammars (type 1). In general, deciding
the word problem for type-1 grammars is cubic in the length of the word. However,
we will use a specific context-free grammars that can be parsed more efficiently.

3 Context-Free Grammars

A context-free grammar consists of a set of productions of the form X −→ γ, where
X is a non-terminal symbol and γ is a potentially mixed sequence of terminal and
non-terminal symbols.

For example, the following grammar generates all strings consisting of match-
ing parentheses.

S −→
S −→ [S]
S −→ S S

The first rule looks somewhat strange, because the right-hand side is the empty
string. To make this more readable, we usually write the empty string as ε.

We usually label the productions in the grammar so that we can refer to them
by name. In the example above we might write

[emp] S −→ ε
[pars] S −→ [S]
[dup] S −→ S S

The following is a derivation of the string [][[][]], where each transition is
labeled with the production that has been applied.

Step 1: S −→ SS [dup]
Step 2: −→ S[S] [pars]
Step 3: −→ S[SS] [dup]
Step 4: −→ S[[S]S] [pars]
Step 5: −→ S[[]S] [emp]
Step 6: −→ [S][[]S] [pars]
Step 7: −→ [][[]S] [emp]
Step 8: −→ [][[][S]] [pars]
Step 9: −→ [][[][]] [emp]

We have labeled each derivation step with the corresponding grammar production
that was used.

Derivations are clearly not unique, because when there is more than one non-
terminal, then we can replace it in any order in the string. If we always replace
the rightmost non-terminal then we call a derivation the rightmost derivation. If we
always replace the leftmost non-terminal then we have the leftmost derivation.

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.5

In order to avoid this kind of harmless ambiguity, we like to construct a parse
tree in which the nodes represents the non-terminals in a string, with the root being
S. In the example above we obtain the following tree:

S1

S2

S3

S6 S4 S8

S7 S5 S9

[] [[] []]

The subscripts on the grammar productions just correspond to steps in the step-
by-step derivation: S3 corresponds to step 3, where we used the production dup to
rewrite S[S] to S[SS]. The nonessential choices in our changes below correspond
to the fact that there are a large number of ways of traversing the single parse tree
above.

4 Ambiguity

While the parse tree removes some ambiguity, it turns out that the example gram-
mar is ambiguous in other, more important, ways. In fact, there are an infinite
number of parse trees of every string in the above language. This can be most
easily seen by considering the cycle

S −→ SS −→ S

where the first step is dup and the second is emp, applied either to the first or second
occurrence of S. We can get arbitrarily long parse trees for the same string with this.
(Why is this a problem?)

Resolving this ambiguity is not too difficult: we observe that the only reason
we need to have a specific production for parsing the empty string is so that ε ∈ S.
Otherwise, we only need ε in order to parse the middle of the string [], and we
can add that string specifically as the new base case for the language of non-empty
strings.

[emp] S −→ ε
[nonemp] S −→ T
[sing] T −→ []

[pars] T −→ [T]
[dup] T −→ T T

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.6

While this new grammar gets rid of the fact that all strings in the language
can be parsed an infinite number of ways, there is still another ambiguity: the
string [][][] has two distinct parsings, which are represented by two structurally-
distinct parse trees.

S S

T T

T vs. T

T T T T T T

[] [] [] [] [] []

Why does this ambiguity matter? There are reasons why it’s more efficient to parse
unambiguous grammars. More fundamentally, though, when we are writing com-
pilers we are primarily interested in the parse trees, and a parsing algorithm for
the ambiguous grammar above might generate one of two data structures:

(nonemp (dup (dup sing sing) sing))

vs.
(nonemp (dup sing (dup sing sing)))

(Note: we won’t always generate exactly the tree structure represented by our
parse trees, because parser generators allow us to define nonemp, dup, pars, and
sing either as constructors or functions. When grammar productions are associ-
ated with functions, they are sometimes called semantic actions.)

It is not immediately obvious which parse tree we ought to prefer, but the dif-
ferences might be important to the meaning of the program! If we prefer the second
parse and want to exclude the first one, we can rewrite the grammar as follows:

[emp] S −→ ε
[nonemp] S −→ T
[dup] T −→ U T
[atom] T −→ U
[sing] U −→ []

[pars] U −→ [T]

Then there is only one parse remaining, which follows the structure of the original

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.7

parse.
S

T

T

T

U U U

[] [] []

If we made the identity function the semantic action associated with the new [atom]
production, then we would end up with the same data structure that we associated
with the leftmost tree before: (nonemp (dup (dup sing sing) sing)).

We’ve progressive rewritten the grammar in a way that makes it relatively clear
that we haven’t changed the language. Sometimes, this can be done in a less obvi-
ous way.

[emp] S −→
[next] S −→ [S]S

The grammar is unambiguous, but does it really generate the same language? It is
an interesting exercise to show that this is the case.

Working through another example, let’s take an ambiguous grammar for arith-
metic:

[plus] E −→ E + E
[minus] E −→ E - E
[times] E −→ E * E
[number] E −→ num
[parens] E −→ (E)

There are very strong conventions about this sort of mathematical notation that
the grammar does not capture. It is important that we parse 3 - 4 * 5 + 6 as
((3 - (4 * 5)) + 6) and not (3 - ((4 * 5) + 6)) or (3 - (4 * (5 + 6))).

In order the rewrite it to make the parse tree unambiguous we have to analyze
how to rule out the unintended parse tree. In the expression 3 + 4 * 5 we have to
all the parse equivalent to 3 + (4 * 5) but we have to rule out the parse equivalent
to (3 + 4) * 5. In other words, the left-hand side of a product is not allowed to be
a sum (unless it is explicitly parenthesized).

Backing up one step, how about 3 + 4 + 5? We want addition to be left asso-
ciative, so this should parse as (3 + 4) + 5. In other words, we have to rule out the
parse 3 + (4 + 5). Instead of

E −→ E + E

we want
E −→ E + P

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.8

where P is a new nonterminal that does not allow a sum. Continuing the above
thought, P is allowed to be a product, so we proceed

P −→ P * A

Since multiplication is also left-associative, we have made up a new symbol A
which cannot be a product. In fact, in our language A can only be an identifier,
a number, or a parenthesized (arbitrary) expression.

[plus] E −→ E + P
[minus] E −→ E - P
[times] P −→ P * A
[number] A −→ num
[parens] A −→ (E)

This is not yet complete, because it is in fact empty: it claims an expression must
always be a sum. But it could also just be a product. Similarly, products P may just
consist of an atom A. This yields:

[plus] E −→ E + P
[minus] E −→ E - P
[e/p] E −→ P
[times] P −→ P * A
[p/a] P −→ A
[number] A −→ num
[parens] A −→ (E)

You should convince yourself that this grammar is now unambiguous. It is also
more complicated! In this case (as in many cases) we can describe the problem
unambiguously in terms of associativity and precedence: we expect multiplication
to have higher precedence than addition and subtraction, and all these operators
are left associative. Similarly, in our first example we were asking for the [dup]
production to behave in a left-associative way, similar to functional programming
languages where fxy is parsed the same way as (fx)y. In the other direction, mul-
tiple assignment, which appears in C but not C0, is right-associative:

x = y = z = w = 3;

is the same as
x = (y = (z = (w = 3)));

It is important that programming languages be unambiguous in practice. We
can usually rewrite grammars to remove ambiguity, but sometimes we extend the
language of context-free grammars to resolve ambiguity. One example is explicitly
stating precedence and associativity as a way of resolving ambiguities.

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.9

5 Parse Trees are Deduction Trees

We now present a formal definition of when a terminal string w matches a string
γ. We will treat string concatenation as associative (w1w2w3 is the same string as
w1 concatenated with w2w3 and w1w2 concatenated with w3), and write ε for the
empty string (so w, εw, and wε are the same string).

[r]X −→ γ1 . . . γn production r maps non-terminal X to string γ1 . . . γn
w : γ terminal string w matches string γ

The second judgment is defined by two rules:

a : a
D1

[r]X −→ γ1 . . . γn
w1 : γ1 . . . wn : γn

w1 . . . wn : X
D2

The rule D1 just says that the only way to match a terminal is with the string
consisting of just that terminal. The second rule says that if a series of strings wi

match the individual components γi on the right-hand side of the grammar pro-
duction X → γ1 . . . γn, then the concatenation of those strings w1 . . . wn matches
the nonterminal X .

When applied to our original example grammar (with the rules emp, pars, and
dup), we can think of D2 as being a template for three rules:

ε : S
D2(emp)

w1 : [w2 : S w3 :]

w1w2w3 : S
D2(pars)

w1 : S w2 : S

w1w2 : S
D2(dup)

If we inspect the second rule above, we can further observe that the first premise of
D2, (w1 : [), will always be satisfied by the D1 rule and can’t possibly be satisfied
by the D2 rule: [is a terminal, and X only matches nonterminals. This observation
allows us to simplify D2(pars) even further:

ε : S
D2(emp)

w2 : S

[w2] : S
D2(pars)

w1 : S w2 : S

w1w2 : S
D2(dup)

Using this specialized version of the rules, our initial parsing example is now an
upside-down version of the parse tree we used as an example in Section 3.

ε : S
D2(emp)

[] : S
D2(pars)

ε : S
D2(emp)

[] : S
D2(pars)

ε : S
D2(emp)

[] : S
D2(pars)

[][] : S
D2(dup)

[[][]] : S
D2(pars)

[][[][]] : S
D2(dup)

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.10

6 CYK Parsing

The rules above already give us an algorithm for parsing! Assume we are given
a grammar with start symbol S and a terminal string w0. Start with a database of
assertions ε : ε and a : a for any terminal symbol occurring in w0. Now arbitrarily
apply the given rules in the following way: if the premises of the rules can be
matched against the database, and the conclusion w : γ is such that w is a substring
of the input w0 and γ is a string occurring in the grammar, then add w : γ to the
database. The side conditions are used to focus the parsing process to the facts
that may matter during the parsing (i.e., that talk about the actual input string w0

being parsed and that fit to the actual grammatical productions in the grammar).
One way of managing this constraint would be specifying strings by their starting
and ending locations in the original string. This makes it readily apparent that the
string w0[i, j) and w0[j, k) can be concatenated to the string w0[i, k).

We repeat this process until we reach saturation: any further application of any
rule leads to conclusion are already in the database. We stop at this point and check
if we see w0 : S in the database. If we see w0 : S, we succeed parsing w0; if not we
fail.

This process must always terminate, since there are only a fixed number of
substrings of the grammar, and only a fixed number of substrings of the query
string w0. In fact, only O(n2) terms can ever be derived if the grammar is fixed
and n = |w|. If our grammar productions only have one or two nonterminals on
the right-hand side of the arrow, then the algorithm we have just presented is an
abstract form of the Cocke-Younger-Kasami (CYK) parsing algorithm invented in
the 1960s. (It is always possible to automatically rewrite a grammar so that it can
be used for CYK.)

Using a meta-complexity result by Ganzinger and McAllester [McA02, GM02]
we can obtain the complexity of this algorithm as the maximum of the size of the
saturated database (which is O(n2)) and the number of so-called prefix firings of the
rule. We count this by bounding the number of ways the premises of each rule
can be instantiated, when working from left to right. The crucial case is when a
grammar production has two nonterminals to the right of the arrow:

[r]X → γ1γ2 w1 : γ1 w2 : γ2

w1w2 : X
D2

There are O(n2) substrings, so there are O(n2) ways to match the middle premise
w1 : γ1 against the database of facts. Since w1w2 is also constrained to be a sub-
string of w0, there are only O(n) ways to instantiate the final premise, since the
left end of w2 in the input string is determined, but not its right end. This yields
a complexity of O(n2 ∗ n) = O(n3), which is also the complexity of traditional
presentations of CYK.

LECTURE NOTES FEBRUARY 8, 2024

Context-Free Grammars L08.11

Questions

1. What is the benefit of using a lexer before a parser?

2. Why do compilers have a parsing phase? Why not just work without it?

3. Is there a difference between a parse tree and an abstract syntax tree? Should
there be a difference?

4. What aspects of a programming language does a parser not know about?
Should it know about it?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[Cho59] Noam Chomsky. On certain formal properties of grammars. Information
and Control, 2(2):137–167, 1959.

[GM02] Harald Ganzinger and David A. McAllester. Logical algorithms.
In P.Stuckey, editor, Proceedings of the 18th International Conference on
Logic Programming, pages 209–223, Copenhagen, Denmark, July 2002.
Springer-Verlag LNCS 2401.

[McA02] David A. McAllester. On the complexity analysis of static analyses. Jour-
nal of the ACM, 49(4):512–537, 2002.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles
and implementation of deductive parsing. J. Log. Program., 24(1&2):3–36,
1995.

LECTURE NOTES FEBRUARY 8, 2024

	Introduction
	Grammars
	Context-Free Grammars
	Ambiguity
	Parse Trees are Deduction Trees
	CYK Parsing

