
Lecture Notes on
Static Single Assignment Form

15-411: Compiler Design
Frank Pfenning, Rob Simmons, Jan Hoffmann

Lecture 11
February 20, 2024

1 Introduction

In abstract machine code of the kind we have discussed so far, a variable of a given
name can refer to different values even in straight-line code. For example, in a code
fragment such as

1 : i← 0
. . .
k : if (i < 0) then error else continue

we can apply constant propagation of 0 to the condition (turning into a goto continue)
only if we know that the definition of i in line 1 is the only one that reaches line k.
It is possible that i is redefined either in the region from 1 to k, or somewhere in
the rest of the program followed by a backwards jump. It was the purpose of the
reaching definitions analysis in to determine whether this is the case. If lines 1-k are
part of a single basic block, then our task is simpler: we only need to check whether
there is an intervening definition of i within the basic block.

An alternative is to relabel variables in the code so that each variable is defined
only once in the program text. If the program has this form, called static single
assignment (SSA), then we can perform constant propagation immediately in the
example above without further checks. There are other program analyses and op-
timizations for which it is convenient to have this property, so it has become a de
facto standard intermediate form in many compilers and compiler tools such as
LLVM.

In this lecture we develop SSA, first for straight-line code and then for code
containing loops and conditionals. Our approach to SSA is not entirely standard,
although the results are the same on control flow graphs that can arise from source
programs in the language we compile.

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.2

2 Basic Blocks

As before, a basic block is a sequence of instructions with one entry point and one
exit point. In particular, from nowhere in the program do we jump into the middle
of the basic block, nor do we exit the block from the middle. In our language, the
last instruction in a basic block should therefore be a return, goto, or if. On the
inside of a basic block we have what is called straight-line code, namely, a sequence
of moves or binary operations.

It is easy to put basic blocks into SSA form. For each variable, we keep a genera-
tion counter to track which definition of a variable is currently in effect. We initialize
this to 0 for any variable live at the beginning of a block. Then we traverse the block
forward, replacing every use of a variable with its current generation. When we see
a redefinition of variable we increment its generation and proceed.

As an example, we consider the following C0 program on the left and its trans-
lation into a single basic block on the right.

int dist(int x, int y) { dist(x,y):

x = x * x; x <- x * x

y = y * y; y <- y * y

return isqrt(x+y); t0 <- x + y

} t1 <- isqrt(t0)

return t1

Here isqrt is an integer square root function. We use the instruction

d← f(s1, . . . , sn)

for function calls, where each of the sources si is a constant or variable, and the
destination d is a variable. We have also marked the beginning of the function with
a parameterized label that tracks the variables that may be live in the body of the
function.

The parameters x and y start at generation 0. They are defined implicitly because
they obtain a value from the arguments to the call of dist.

dist(x0,y0):

------------- x/0, y/0

x <- x * x

y <- y * y

t0 <- x + y

t1 <- isqrt(t0)

return t1

We mark where we are in the traversal with a line, and indicate there the current
generation of each variable. The next line uses x, which becomes x0, but is also
defines x, which therefore becomes the next generation of x, namely x1.

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.3

dist(x0,y0):

x1 <- x0 * x0

------------- x/1, y/0

y <- y * y

t0 <- x + y

t1 <- isqrt(t0)

return t1

The next line is processed the same way.

dist(x0,y0):

x1 <- x0 * x0

y1 <- y0 * y0

------------- x/1, y/1

t0 <- x + y

t1 <- isqrt(t0)

return t1

At the following line, t0 is a new temp. The way we create instructions, temps are
defined only once. We therefore do not have to create a new generation for them.
If we did, it would of course not change the outcome of the conversion. Skipping
ahead now, we finally obtain

dist(x0,y0):

x1 <- x0 * x0

y1 <- y0 * y0

t0 <- x1 + y1

t1 <- isqrt(t0)

return t1

We see that, indeed, each variable is defined (assigned) only once, where the pa-
rameters x0 and y0 are implicitly defined when the function is called and the others
explicitly in the body of the function. It is easy to see that the original program and
its SSA form will behave identically.

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.4

3 Loops

To appreciate the difficulty and solution of how to handle more complex programs,
we consider the example of the exponential function, where pow(b, e) = be for e ≥
0.

int pow(int b, int e)

//@requires e >= 0;

{

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

// r*b^e remains invariant

{

r = r * b;

e = e - 1;

}

return r;

}

We translate this to the following abstract machine code, which is comprised of
basic blocks:

pow(b,e):

r <- 1

loop:

if (e > 0) then body else done

body:

r <- r * b

e <- e - 1

goto loop

done:

return r

There are two ways to reach the label loop: when we first enter the loop, or from
the end of the loop body. This means the variable e in the conditional branch really
could refer to either the procedure argument, or the value of e after the decrement
operation in the loop body. Therefore, our straightforward idea for SSA conversion
of straight line code no longer works.

The key idea is to parameterized labels (the jump targets) with the variables
that are live in the block that follows. The variant of liveness necessary here can
be calculated with respect to the block-structured AST – it is not necessary to use
the more potentially expensive liveness analysis based on dataflow. One can also
safely, but redundantly, just use all variables, or all variables that are declared and

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.5

defined at that point in the program. We use this approach in the following exam-
ple. Labels l occurring as targets in goto l or if (−) then l else l′ are then given
matching arguments.

pow(b,e):

r <- 1

goto loop(b,e,r)

loop(b,e,r):

if (e > 0)

then body(b,e,r)

else done(b,e,r)

body(b,e,r):

r <- r * b

e <- e - 1

goto loop(b,e,r)

done(b,e,r):

return r

Next, we convert each block into SSA form with the previous algorithm, but us-
ing a global generation counter throughout. An occurrence in a label in a jump
goto l(. . . , x, . . .) is seen as a use of x, while an occurrence of a variable in in a jump
target l(. . . , x, . . .) is seen as a definition of x. Applying this to the first block we
obtain

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

-------------------- b/0, e/0, r/0

loop(b,e,r):

if (e > 0)

then body(b,e,r)

else done(b,e,r)

body(b,e,r):

r <- r * b

e <- e - 1

goto loop(b,e,r)

done(b,e,r):

return r

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.6

Since we encounter a new definition of b, e, and r we advance all three generations
and proceed with the next two blocks.

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 > 0)

then body(b1,e1,r1)

else done(b1,e1,r1)

body(b2,e2,r2):

r3 <- r2 * b2

e3 <- e2 - 1

goto loop(b2,e3,r3)

-------------------- b/2, e/3, r/3

done(b,e,r):

return r

Continuing through both the last block, we obtain:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 > 0)

then body(b1,e1,r1)

else done(b1,e1,r1)

body(b2,e2,r2):

r3 <- r2 * b2

e3 <- e2 - 1

goto loop(b2,e3,r3)

done(b3,e4,r4):

return r4

First, we verify that this code does indeed have the SSA property: each variable
is assigned at most once, even counting implicit definitions at the parameterized
labels pow(b0, e0), loop(b1, e1, r1), body(b2, e2, r2), and done(b3, e4, r4).

The operational reading of this program should be evident. For example, if we
reach goto loop(b2, e3, r3) we pass the current values of b2, e3 and r3 and move them

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.7

into variables b1, e1, and r1. That fact that labeled jumps correspond to moving
values from arguments to label parameters will be the essence of how to generate
assembly code from the SSA intermediate form in Section 7.

4 SSA and Functional Programs

We can notice that at this point the program above can be easily interpreted as a
functional program if we read assignments as bindings and labeled jumps as function
calls. We show the functional program below on the right in ML-like form.

pow(b0,e0): fun pow (b0, e0) =

r0 <- 1 let val r0 = 1

goto loop(b0,e0,r0) in loop (b0, e0, r0)

end

loop(b1,e1,r1): and loop (b1, e1, r1) =

if (e1 > 0) if e1 > 0

then body(b1,e1,r1) then body (b1, e1, r1)

else done(b1,e1,r1) else done (b1, e1, r1)

body(b2,e2,r2): and body (b2, e2, r2) =

r3 <- r2 * b2 let val r3 = r2 * b2

e3 <- e2 - 1 val e3 = e2 - 1

goto loop(b2,e3,r3) in loop (b2, e3, r3)

end

done(b3,e4,r4): and done (b3, e4, r4) =

return r4 r4

There are several reasons this works in general. First, in SSA form each variable is
defined only once, which means it can be modeled by a let binding in a functional
language. Second, each goto is at the end of a block, which translates into a tail
call in the functional language. Third, because all jumps become tail calls, a return
instruction can be modeled simply be returning the corresponding value.

We conclude that translation into SSA form is just translating abstract machine
code to a functional program! Because our language does not have first-class func-
tions, the target of this translation also does not have higher-order functions. Inter-
estingly, this observation also works in reverse: a (first-order) functional program
with tail calls can be translated into abstract machine code where tail calls become
jumps.

While this is clearly an interesting observation, it does not directly help our
compiler construction effort (although it might if we were interested in compiling
a functional language).

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.8

5 Optimization and Minimal SSA Form

At this point we have constructed clean and simple abstract machine code with
parameterized labels. But are all the parameters really necessary? Let’s reconsider:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 > 0)

then body(b1,e1,r1)

else done(b1,e1,r1)

body(b2,e2,r2):

r3 <- r2 * b2

e3 <- e2 - 1

goto loop(b2,e3,r3)

done(b3,e4,r4):

return r4

There is no need to pass b1, e1, and r1 to body and assign their values to b2, e2, and
r2 (respectively). Instead, we could remove these arguments and instead substitute
b1 for b2, e1 for e2, and r1 for r2. The same goes for the arguments to done, though
we could also conclude that b3 and e4 are unnecessary because those temps are
never even live. This yields:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 > 0)

then body()

else done()

body():

r3 <- r1 * b1

e3 <- e1 - 1

goto loop(b1,e3,r3)

done():

return r1

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.9

We see this is still in SSA form. Next we can ask if all the arguments to loop are
really necessary. We have two gotos and one definition:

goto loop(b0,e0,r0)

goto loop(b1,e3,r3)

loop(b1,e1,r1):

Let’s consider the first argument. In the first call it is b0 and in the second b1. Since
we have SSA form, we know that the b1 will always hold the same value. In fact,
the only call with a different value is with b0, so b1 will in fact always have the
value b0. This means the first argument to loop is not needed and we can erase it,
substituting b0 for b1 everywhere in the program. This yields:

pow(b0,e0):

r0 <- 1

goto loop(e0,r0)

loop(e1,r1):

if (e1 > 0)

then body()

else done()

body():

r3 <- r1 * b0

e3 <- e1 - 1

goto loop(e3,r3)

done():

return r1

It is easy to check this is still in SSA form. The remaining arguments to loop are all
different, however (e0 and e3 for e1 and r0 and r2 for r1), so we cannot optimize
further.

This code is now in minimal SSA form in the sense that we cannot remove any
label arguments by purely syntactic considerations.

The general case for this optimization is as follows. Given a parameterized label

l(. . . , xi, . . .) : ,

assume that there exists a k such that all gotos targeting l have the form

• goto l(. . . , xi, . . .) (for the same generation i as in the label) or

• goto l(. . . , xk, . . .) (all at the same generation k).

Then the xi argument to l is redundant, and xi can be replaced by xk everywhere
in the program.

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.10

6 φ Functions

Let’s take a look at the pre-minimization version of our program again. Every use
of a parameterized label has been labeled with an uppercase letter:

pow(b0,e0): // A

r0 <- 1

goto loop(b0,e0,r0) // B

loop(b1,e1,r1): // C

if (e1 > 0)

then body(b1,e1,r1) // D

else done(b1,e1,r1) // E

body(b2,e2,r2): // F

r3 <- r2 * b2

e3 <- e2 - 1

goto loop(b2,e3,r3) // G

done(b3,e4,r4):

return r4

The information we need to minimize this SSA program is, unfortunately, rather
scattered about. In order to check whether we can remove the b1 argument to loop,
we have to check lines B, C, and F. But this is just a problem of how information is
organized in the program: first, we have to look at a line (example: E), then we can
see which label we’re jumping to (example: goto), then we can look and see which
source temps (example: b1, e1, r1) will get substituted for which destination temps
(example: b3, e4, r4).

Put differently, the SSA part of the program is representable as a bunch of facts
of the form jump(line, label, src, dst), and in the example program above these facts
are arranged in the following order:

jump(B, loop, b0, b1) jump(E, done, b1, b3)

jump(B, loop, e0, e1) jump(E, done, e1, e4)

jump(B, loop, r0, r1) jump(E, done, r1, r4)

jump(D, body, b1, b2) jump(G, loop, b2, b1)

jump(D, body, e1, e2) jump(G, loop, e3, e1)

jump(D, body, r1, r2) jump(G, loop, r3, r1)

But to perform SSA minimization, we want to arrange all these facts in a differ-
ent way. Specifically, we want to gather all the facts with the same parameterized
label and the same destination together, because if there is only one src that is asso-
ciated with a given dst , or if there are two sources but one of them is equal to dst ,
then the parameter is unnecessary.

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.11

Rearranged for minimization, our program facts look like this, and it is imme-
diately apparent that we can get rid of all the labels to body and done.

jump(B, loop, b0, b1) jump(D, body, b1, b2) <-- unneeded, b1=b2

jump(G, loop, b2, b1) jump(D, body, e1, e2) <-- unneeded, e1=e2

jump(B, loop, e0, e1) jump(D, body, r1, r2) <-- unneeded, r1=r2

jump(G, loop, e3, e1) jump(E, done, b1, b3) <-- unneeded, b1=b3

jump(B, loop, r0, r1) jump(E, done, e1, e4) <-- unneeded, e1=e4

jump(G, loop, r3, r1) jump(E, done, r1, r4) <-- unneeded, r1=r4

(Observe that it is not immediately apparent that we can get rid of b1, because there
are two sources b0 and b2 and neither one is equal to b1. We only learn that we can
get rid of the parameter b1 after we perform the substitution of b1 for b2.)

What would the program look like if we presented it in a way that made min-
imization easier? We would need, associated with every parameter and every pa-
rameterized label, a list of the the lines that might jump to the parameterized label
and the temp that should get substituted for the parameter when we jump from
that line. The loop block would look like this:

loop:

b1 <- b0 if coming here from line B,

b2 if coming here from line G

e1 <- e0 if coming here from line B,

e3 if coming here from line G

r1 <- r0 if coming here from line B,

r3 if coming here from line G

This organization is actually the traditional way of presenting SSA form, except
that SSA is usually presented in a more compact form called φ-functions. The idea
is the same, but we don’t mention call sites explicitly, instead we say b1 ← φ(b0, b2)
to represent that b1 should, at the beginning of the loop block, be assigned to ei-
ther b0 or b2 (whichever one we most recently wrote to). Applied to our pre-
minimization example program, we get this:

pow(b0,e0):

r0 <- 1

goto loop

loop:

b1 <- phi(b0,b2)

e1 <- phi(e0,e3)

r1 <- phi(r0,r3)

if (e1 > 0) then body else done

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.12

body:

b2 <- phi(b1)

e2 <- phi(e1)

r2 <- phi(r1)

r3 <- r2 * b2

e3 <- e2 - 1

goto loop

done:

b3 <- phi(b1)

e4 <- phi(e1)

r4 <- phi(e1)

return r4

With this form, we can state the algorithm for SSA minimization described by
Aycock and Horspool [AH00] the way they described it. It’s quite simple: repeat-
edly remove φ-functions of the form

ti = φ(tx1 , tx2 , . . . txk
)

whenever there exists a j such that all the xi are either i or j. After minimization,
our φ-function SSA looks like this:

pow(b0,e0):

r0 <- 1

goto loop

loop:

e1 <- phi(e0,e3)

r1 <- phi(r0,r3)

if (e1 > 0) then body else done

body:

r3 <- r1 * b0

e3 <- e1 - 1

goto loop

done:

return r1

The only remaining φ-functions correspond to the two parameters remaining in
our functional SSA program loop(e1, r1).

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.13

In conclusion, φ-function SSA is important for a number of reasons:

• It organizes information about parameters in a way that makes SSA mini-
mization easier.

• It can be easier to understand some of the SSA-based optimizations that we’ll
talk about later in terms of φ-function SSA.

• It is the standard way of presenting SSA. If you want to read the textbook or
any paper presenting SSA, you’ll need to understand this form. This includes
the Aycock and Horspool paper [AH00], which discusses useful implemen-
tation details and optimizations of the algorithm described here.

7 Assembly Code Generation from SSA Form

Of course, actual assembly code does not allow parameterized labels. To recover
lower level code, we need to implement labeled jumps by moves followed by plain
jumps. We show this again on the first example, with functional SSA and the left
and the de-SSA form on the right.

pow(b0,e0): pow(b0,e0):

r0 <- 1 r0 <- 1

goto loop(e0,r0) e1 <- e0

r1 <- r0

goto loop

loop(e1,r1): loop:

if (e1 > 0) if (e1 > 0)

then body() then body

else done() else done

body(): body:

r3 <- r1 * b0 r3 <- r1 * b0

e3 <- e1 - 1 e3 <- e1 - 1

goto loop(e3,r3) e1 <- e3

r1 <- r3

goto loop

done(): done:

return r1 return r1

In some cases of conditional jumps, there may be no natural place for the addi-
tional move instructions. This can be addressed by switching to an extended basic

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.14

block format, or by adding a new basic block that performs the moves required by
SSA. Either way, we retain here the parameters at the function boundary; we will
talk about the implementation of function calls in a later lecture.

The new form on the right is, of course, no longer in SSA form. Therefore one
cannot apply any SSA-based optimization. Conversion out of SSA should therefore
be one of the last steps before code emission. At this point register allocation, pos-
sibly with register coalescing, can do a good job of eliminating redundant moves.

8 Conclusion

Static Single Assignment (SSA) form is a quasi-functional form of abstract machine
code, where variable assignments are variable bindings, and jumps are tail calls.
It was devised by Cytron et al. [CFR+89] and simplifies many program analyses
and optimization. Of course, you have to make sure that program transforma-
tions maintain the property. The particular algorithm for conversion into SSA form
we describe here is to due Aycock and Horspool [AH00]. A final note about Ay-
cock and Horspool’s algorithm: it works for arbitrary SSA programs, but it only
produces the minimal SSA for some programs. (Programs for which Aycock and
Horspool’s algorithm finds the minimal SSA are called reducible. All C0 programs
are reducible, so the algorithm will always find the minimal SSA if you use it in
your compiler.)

Hack has shown that programs in SSA form generate chordal interference graphs
which means register allocation by graph coloring is particularly efficient [Hac07].
For further reading and some different algorithms related to SSA, you can also
consult the Chapter 19 of the textbook [App98].

Questions

1. Can you think of an example of minimal SSA that nevertheless has redundant
label arguments?

2. Can you think of situations where the control flow graph for a conditional
does not have a subsequent basic block with two incoming control flow edges?

3. Give an example of a program with a non-reducible control flow graph where
Aycock and Horspool’s algorithm still finds the minimal SSA form.

4. Give an example of a program with a non-reducible control flow graph where
Aycock and Horspool’s algorithm fails to find the minimal SSA form. What
is the minimal SSA form for that graph?

LECTURE NOTES FEBRUARY 20, 2024



Static Single Assignment Form L11.15

References

[AH00] John Aycock and R. Nigel Horspool. Simple generation of static single-
assignment form. In D. Watt, editor, Proceedings of the 9th International
Conference on Compiler Construction (CC’00), pages 110–124. Springer
LNCS 1781, 2000.

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. An efficient method of computing static single as-
signment form. In Conference Record of the 16th Annual Symposium on
Principles of Programming Languages (POPL 1989), pages 25–35, Austin,
Texas, January 1989. ACM Press.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD thesis,
Universität Karlsruhe, October 2007.

LECTURE NOTES FEBRUARY 20, 2024


	Introduction
	Basic Blocks
	Loops
	SSA and Functional Programs
	Optimization and Minimal SSA Form
	 Functions
	Assembly Code Generation from SSA Form
	Conclusion

