15-411: Dynamic Semantics

Jan Hoffmann

Code review.
Sign up today.



Dynamic Semantics

- Static semantics: definition of valid programs
- Dynamic semantics: definition of how programs are executed

« So far: Dynamic semantics is given in English on lab handouts
> This only works since you know how C programs should behave

> Sometimes needed to consult the reference compiler
A description in English will always be ambiguous

= Need precise ways of defining the meaning of programs



Types of (Formal) Dynamic Semantics

- Denotational Semantics: Abstract and elegant. Dana Scott

> Each part of a program is associated with a denotation (math. object)

> For example: a procedure is associated with a mathematical function

» Axiomatic Semantics: Strongly related to program logic. = Tony Hoare
> (Gives meaning to phrases using logical axioms

> The meaning is identical to the set of properties that can be proved

- Operational Semantics: Describes how programs are executed
> Related to interpreters and abstract machines Gordon Plotkin

> Most popular and flexible form of semantics



Operational Semantics

- Many different styles

> Natural semantics (or big-step semantics or evaluation dynamics)

> Structural operational semantics _
Frank Pfenning
> Substructural operational semantics

> Abstract machine (or small-step with continuation)

 We will use an abstract machine

> Very general: can describe non-termination, concurrency, ...

> Low-level and elaborate
How to pick the right

dynamic semantics?



Evaluating Expressions



Continuations

Want to model a single evaluation step

/
e — €

For example: ((4+5)*10+2) — (9% 10+ 2)
How can we find the right place at which to make the step?

A stack of partial

Use a continuation K: ;
computations.

e > K

“Evaluate expression e and pass the result to K”

The continuation has a ‘hole’ for the result value of e.



Evaluation Rules: Addition

. Plug the result
First evaluate e1. here.

e1+ea> K — e (_+ey, K)

A constant. Continue with Plug the result
evaluating e2. here.
ci1>(_+e, K) — ea > (c1+_, K)

Continuation is an addition.

co> (1 +_, K) — c> K (¢ = 1 + ca mod 2%2)

Two constants Actual addition.



Evaluation Rules: Binary Operations

Arithmetic operations are treated like addition
e1 Dey> K — 61[>(_@62,K)
ci1>(_Pey, K) — es > (1 ®_, K)

ca> (1 & -, K) — c> K (C:Cl@CQmOdQSQ)

Arithmetic is modulo 232 to match our x86 architecture

What about
effects?



Evaluation Rules: Binops with Effects

In case of an arithmetic exception: Abort the computation and
report and error

e1 ey > K 61[>(_@62,K)

ci>(_0er, K) ea > (c1 @ _, K)

o> (c10_, K) c> K (c=c1 ©co)

Lo

co>(c10_, K) exception(arith)  (c¢1 @ co undefined)

There is no rule for further evaluating an exception.



Example Evaluation

(4+5)%10)+2 > -



Evaluation Rules: End of and Evaluation

If we reach a constant and the empty continuation then we stop

c>- —> value(c)



Evaluation Rules: Boolean Expressions

e1 && eo > K — €1>(_&&62,K)

Notice the short-
false > (_ && €2 , K) — false > K Cut'“ng

true > (_ && ey , K) — es > K

true and false are also values

(We could also use 1 and 0 but distinguishing helps detect errors.)



Variables and Environments

How do we evaluate variable?
Integers or

?
z > K ! booleans.
Need to have an environment that maps variables to values

na=-|nxr—v

The machine state consists now of an expression, a continuation, and an
environment

nkEep> K



Variables and Environments ||

The rules we have seen so far just carry over

nkEe dGe > K — 77|—€1D(_@62,K)
nl—clb(_@eg,K) — 77|—62D(C1@_,K)

nkc>(cg®_, K) — nkex> K (c = ¢1 ® ca mod 232)

Variables are simply looked up

nFx>K —  nkEnlz)> K

The environment never changes when evaluating expressions



Executing Statements



Executing Statements |

Executions of statements don’t pass values to the continuation
Statements have usually an effect on the environment

Machine configurations: Continuations contain
nkEs» K statements.

Sequences:
ntseq(si,s2) > K —  nksip(s2, K)

A terminating
execution ends
nknop» (s, K) — nkEsw» K with a nop.

No ops:



Executing Statements |

Interaction with expressions is straightforward

Assignments:
n b assign(z,e) » K —>  nkeb>(assign(x,_) , K)

n kv > (assign(x,_) , K) —

Update the
environment with
new mapping.



Executing Statements |l

Conditionals:

nkif(e,s1,s2) » K



Executing Statements [V

Loops:
n - while(e,s) » K  — ?

Not that the following statements are equivalent:

while(e, s) = if(e, seq(s, while(e, s)), nop)
n = while(e, s) » K —  nFif(e,seq(s,while(e, s)),nop) » K

Non-termination:
S0 — 81 — 89 —

We can make an infinite number of steps without reaching a final state



Executing Statements V

Assertions:
n k- assert(e) » K —
n = true > (assert(_), K) —
ﬁ - false > (assert(;), K) —

Declarations:

n - decl(xz,7,s) » K —

Final states:

exception(FE) nop » -

n ke (assert(_), K)

n = nop » K

exception (abort)

n|x — nothing] F s » K

If CO had shadowing
then we would have to
be careful here.



Example: Infinite Loop

while(x > 0, assign(x,x + 1)) n = |z—1] s = assign(z,z + 1)

PLLLLLLLLELE L



Functions



Function Calls

What needs to happen at a function call?
- Evaluate the arguments in left-to-right order

« Save the environment of the caller to continue the execution after the
function call

« Save the continuation of the caller

- Execute the body of the callee in a new environment that maps the
formal parameters to the argument values

« Pass the return value to the environment of the caller



Call Stack

We need to keep track of continuations and environment in stack frames

Continuation
S u= ’37<777K>

Call stack:

Environment

Configurations:

Evaluation S:nke> K

Execution S:nksp» K

Existing rules can be lifted to the new configurations by
passing through the call stack



Rules for Function Calls | args is similar.

We only show the special case of 0 and 2 arguments | Eyaluate s in empty

environment.
No arguments:

SintEfO)> K — (&, K));-Fse-

(given that f is defined as f(){s}) Ty ——

stack frame
Two arguments:

Sint fler,e2) > K —  Sintea>(f(oe), K)

S;nl_clb(f(—vfﬂ)v[() — S;n|_€2[>(f(clv—)7K)

Si;nkFc> (flc,_), K) o (S, (n,K));|x1— c1,x9 > col s -
(given that f is defined as f(x1,x2){s})



Rules for Returns

Need to restore continuation and environment and pass return value
S ;ntreturn(e) » K

S, (n, K" ;nF v (retun(_) , K)

Will only be reached by

Special case: returning void functions without return.

S, {n,K" ;nk nopp» - — S ; n' + nothing > K’

Dummy value

Alternative: elaborate each function that returns void with
return(nothing) statements.



Execution of the Main Function

How can we execute a program?
-5+ = main() > - (initial state)

ke — value(c) (final state)



Statics, Dynamics, and Safety



Overview of Machine States (Configurations)

S;nkFer> K — Evaluating the expression e with the continuation K
S;nkFsw» K — Evaluating the statement s with the continuation K
value(c) — Final state, return a value

exception(E) — Final state, report an error

What do we expect from the transitions?
There shouldn’t be more steps after reaching a final state

The language should be deterministic: there at most one transition
per state



Well-typed programs
PrOg ress don’t go wrong!

There are many non-final states that don’t have transitions, e.g.

S, n |— 42 > (|f(_7 S1, 82); K) ;- I NOop > - The behaVIOI’ Of
these states Is
Stuck states. undefined.

Central relationship between static and dynamic semantics:

Programs that are well-defined according to the static semantics
should be free of undefined behavior.

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
- Fmain() — ST1 — ... — ST,

then either ST, is a final state or else ST, is not-stuck because there exists a state ST’
such that ST, — ST .

How to prove this? 15-312



All ops.

Expressions e = cle®eo|true|false|e; &&es| x| fler,ea)| f()
Statements s = nop |seq(s1,s2) |assign(x,e) | decl(x,T,s)

| if(e, s1,52) | while(e, s) | return(e) | assert(e)
Values v = c|true | false | nothing
Environments n 1= - |n,x+—c
Stacks S = S, (n, K)
Cont. frames ¢ = _Oel|lcO_|_&&el f(_,e)]| flc,_)

| s |assign(z,_) | if(_,s1,52) | return(_) | assert(_)
Continuations K == -|¢, K

Exceptions E = arith | abort | mem

Summary |



SinkFe ®ey> K

S;n|—cll>(_@€2,K)
SinkFcb>(co_, K)
S;nkFca>(cg®_, K)

S:nke && es > K
S;nkfalse> (_&& ex, K)
S;nktrue> (L && ey, K)

S:nkFxz> K

Summary: Expressions

A A

S;nl—elb(_Qeg,K)
S;UFGQD(Cl@_,K)

S;nkFc> K (c=c1 ®ca)
exception(arith) (c1 ® co undefined)

SinkFe>(_&& ey, K)
S ;ntkfalse> K
S:nkFe> K

Sinknle)> K



S ;nkseq(sy,ss) » K
S;nEnopw» (s, K)

S ;ntassign(z,e) » K

S ;nkcr> (assign(z,_) , K)

Sinksi»(s2, K)
Sinksw» K

S ;ntk e (assign(x, ), K)
SinlxrcFnopp K

S ;ntdecl(x,7,s5) » K S ; n|x — nothing| - s » K

S ;nF assert(e) » K
S ;n true > (assert(_) , K)
S ;n F false > (assert(_) , K)

S;nker (assert(_) , K)
S:nkFnopp» K
exception(abort)

S;nkif(e,s1,s9) » K
S ;nt true > (if(_, s1, s2), K)
S ; nF false > (if(_, s1, s2), K)

S;nkerx (if(_,s1,s2), K)
S:nksi» K
S:nkEsop K

L A

S ; n bk while(e, s) » K S ; nFif(e, seq(s, while(e, s)), nop) » K

Summary: Statements



S nk fler,es) > K
Sintear(f(oe), K)
Sinkecar>(fle,-), K)

SinkEf()>K

S ;nFreturn(e) » K
(S, ', K"));nt v (return(_) , K)
smbE e (return() , K)

Summary: Functions

N

N

Sinker(f(Le), K)
Sinter>(fla,.), K)
(S, n,K));|lri—cr,za—>ca)Fsp -
(given that f is defined as  f(x1,x2){s})

(Sa<777K>)7|_S>
(given that f is defined as f(){s})

S;nker> (return(_) , K)
S:nkFovp> K’
value(c)



