15-411: Dynamic Semantics

Jan Hoffmann

Code review. Sign up today.

Dynamic Semantics

- Static semantics: definition of valid programs
- Dynamic semantics: definition of how programs are executed
- So far: Dynamic semantics is given in English on lab handouts
 - This only works since you know how C programs should behave
 - Sometimes needed to consult the reference compiler
- A description in English will always be ambiguous
- → Need precise ways of defining the meaning of programs

Types of (Formal) Dynamic Semantics

Denotational Semantics: Abstract and elegant.

Dana Scott

- Each part of a program is associated with a denotation (math. object)
- For example: a procedure is associated with a mathematical function
- Axiomatic Semantics: Strongly related to program logic.

Tony Hoare

- Gives meaning to phrases using logical axioms
- The meaning is identical to the set of properties that can be proved
- Operational Semantics: Describes how programs are executed
 - Related to interpreters and abstract machines

Gordon Plotkin

Most popular and flexible form of semantics

Operational Semantics

Many different styles

- Natural semantics (or big-step semantics or evaluation dynamics)
- Structural operational semantics

Frank Pfenning

- Substructural operational semantics
- Abstract machine (or small-step with continuation)

We will use an abstract machine

- Very general: can describe non-termination, concurrency, ...
- Low-level and elaborate

How to pick the right dynamic semantics?

Evaluating Expressions

Continuations

Want to model a single evaluation step

$$e \rightarrow e'$$

For example: $((4+5)*10+2) \rightarrow (9*10+2)$

How can we find the right place at which to make the step?

Use a continuation K:

A stack of partial computations.

$$e \rhd K$$

"Evaluate expression e and pass the result to K"

The continuation has a 'hole' for the result value of e.

Evaluation Rules: Addition

First evaluate e1.

Plug the result here.

$$e_1 + e_2 \triangleright K \longrightarrow e_1 \triangleright (\underline{} + e_2, K)$$

A constant.

Continue with evaluating e2.

Plug the result here.

$$c_1 \rhd (\underline{} + e_2, K) \longrightarrow e_2 \rhd (c_1 + \underline{}, K)$$

Continuation is an addition.

$$c_2 \triangleright (c_1 + _, K) \longrightarrow c \triangleright K \qquad (c = c_1 + c_2 \bmod 2^{32})$$

Two constants

Actual addition.

Evaluation Rules: Binary Operations

Arithmetic operations are treated like addition

$$e_1 \oplus e_2 \triangleright K$$
 \longrightarrow $e_1 \triangleright (_ \oplus e_2, K)$ $c_1 \triangleright (_ \oplus e_2, K)$ \longrightarrow $e_2 \triangleright (c_1 \oplus _, K)$ \longrightarrow $c_2 \triangleright (c_1 \oplus _, K)$ \longrightarrow $c \triangleright K$ $(c = c_1 \oplus c_2 \mod 2^{32})$

Arithmetic is modulo 2³² to match our x86 architecture

What about effects?

Evaluation Rules: Binops with Effects

In case of an arithmetic exception: Abort the computation and report and error

There is no rule for further evaluating an exception.

Example Evaluation

$$((4+5)*10)+2 > \cdot$$

Evaluation Rules: End of and Evaluation

If we reach a constant and the empty continuation then we stop

$$c
hd \cdot \longrightarrow \mathsf{value}(c)$$

Evaluation Rules: Boolean Expressions

$$e_1 \&\& e_2 \rhd K \qquad \longrightarrow \qquad e_1 \rhd (_\&\& e_2 \, , K)$$

$$\text{false} \rhd (_\&\& e_2 \, , K) \qquad \longrightarrow \qquad \text{false} \rhd K \qquad \begin{array}{c} \text{Notice the short-cutting.} \\ \text{cutting.} \end{array}$$

$$\text{true} \rhd (_\&\& e_2 \, , K) \qquad \longrightarrow \qquad e_2 \rhd K$$

true and false are also values

(We could also use 1 and 0 but distinguishing helps detect errors.)

Variables and Environments

How do we evaluate variable?

$$x \triangleright K \longrightarrow ?$$

Integers or booleans.

Need to have an environment that maps variables to values

$$\eta ::= \cdot \mid \eta, x \mapsto v$$

The machine state consists now of an expression, a continuation, and an environment

$$\eta \vdash e \rhd K$$

Variables and Environments II

The rules we have seen so far just carry over

$$\eta \vdash e_1 \oplus e_2 \rhd K \qquad \longrightarrow \qquad \eta \vdash e_1 \rhd (_ \oplus e_2 , K)
\eta \vdash c_1 \rhd (_ \oplus e_2 , K) \qquad \longrightarrow \qquad \eta \vdash e_2 \rhd (c_1 \oplus _ , K)
\eta \vdash c_2 \rhd (c_1 \oplus _ , K) \qquad \longrightarrow \qquad \eta \vdash c \rhd K \qquad (c = c_1 \oplus c_2 \bmod 2^{32})$$

Variables are simply looked up

$$\eta \vdash x \rhd K \longrightarrow \eta \vdash \eta(x) \rhd K$$

The environment never changes when evaluating expressions

Executing Statements

Executing Statements I

Executions of statements don't pass values to the continuation

Statements have usually an effect on the environment

Machine configurations:

 $\eta \vdash s \blacktriangleright K$

Continuations contain statements.

Sequences:

$$\eta \vdash \operatorname{seq}(s_1, s_2) \blacktriangleright K \longrightarrow \eta \vdash s_1 \blacktriangleright (s_2, K)$$

No ops:

$$\eta \vdash \mathsf{nop} \blacktriangleright (s , K) \longrightarrow \eta \vdash s \blacktriangleright K$$

A terminating execution ends with a nop.

Executing Statements II

Interaction with expressions is straightforward

Assignments:

$$\eta \vdash \operatorname{assign}(x,e) \blacktriangleright K \qquad \longrightarrow \qquad \eta \vdash e \rhd (\operatorname{assign}(x,_) \;,\; K)$$

$$\eta \vdash v \rhd (\operatorname{assign}(x,_) \;,\; K) \qquad \longrightarrow$$

Update the environment with new mapping.

Executing Statements III

Conditionals:

$$\eta \vdash \mathsf{if}(e, s_1, s_2) \blacktriangleright K \longrightarrow$$

Executing Statements IV

Loops:

$$\eta \vdash \mathsf{while}(e,s) \blacktriangleright K \longrightarrow ?$$

Not that the following statements are equivalent:

$$\mathsf{while}(e, s) \equiv \mathsf{if}(e, \mathsf{seq}(s, \mathsf{while}(e, s)), \mathsf{nop})$$

$$\eta \vdash \mathsf{while}(e,s) \blacktriangleright K \longrightarrow \eta \vdash \mathsf{if}(e,\mathsf{seq}(s,\mathsf{while}(e,s)),\mathsf{nop}) \blacktriangleright K$$

Non-termination:

$$s_0 \longrightarrow s_1 \longrightarrow s_2 \longrightarrow \cdots$$

We can make an infinite number of steps without reaching a final state

Executing Statements V

Assertions:

$$\eta \vdash \mathsf{assert}(e) \blacktriangleright K \longrightarrow \eta \vdash e \rhd (\mathsf{assert}(_), K)$$

$$\eta \vdash \mathsf{true} \rhd (\mathsf{assert}(_), K) \longrightarrow \eta \vdash \mathsf{nop} \blacktriangleright K$$

$$\eta \vdash \mathsf{false} \rhd (\mathsf{assert}(_), K) \longrightarrow \mathsf{exception}(\mathsf{abort})$$

Declarations:

$$\eta \vdash \operatorname{decl}(x, \tau, s) \blacktriangleright K \longrightarrow \eta[x \mapsto \operatorname{nothing}] \vdash s \blacktriangleright K$$

Final states:

exception(E) nop \blacktriangleright ·

If C0 had shadowing then we would have to be careful here.

Example: Infinite Loop

 $\mathsf{while}(x \,>\, 0, \mathsf{assign}(x, x + 1)) \qquad \eta \,=\, [x \mapsto \! 1] \qquad \mathsf{s} = \mathsf{assign}(x, x + 1)$

Functions

Function Calls

What needs to happen at a function call?

- Evaluate the arguments in left-to-right order
- Save the environment of the caller to continue the execution after the function call
- Save the continuation of the caller
- Execute the body of the callee in a new environment that maps the formal parameters to the argument values
- Pass the return value to the environment of the caller

Call Stack

We need to keep track of continuations and environment in stack frames

Call stack:

Continuation

$$S ::= \cdot \mid S, \langle \eta, K \rangle$$

Environment

Configurations:

Evaluation $S : \eta \vdash e \rhd K$

Execution $S ; \eta \vdash s \triangleright K$

Existing rules can be lifted to the new configurations by passing through the call stack

Rules for Function Calls

n args is similar.

We only show the special case of 0 and 2 arguments

Evaluate s in empty environment.

No arguments:

$$S : \eta \vdash f() \triangleright K \longrightarrow$$
 (given that f is defined as $f()\{s\}$)

$$\longrightarrow (S, \langle \eta, K \rangle); \cdot \vdash s \blacktriangleright \cdot$$

Store callee's stack frame

Two arguments:

$$S : \eta \vdash f(e_1, e_2) \rhd K \longrightarrow S : \eta \vdash e_1 \rhd (f(_, e_2), K)$$

$$S : \eta \vdash c_1 \rhd (f(\underline{\ }, e_2), K) \longrightarrow S : \eta \vdash e_2 \rhd (f(c_1, \underline{\ }), K)$$

$$S : \eta \vdash c_2 \rhd (f(c_1, _), K) \longrightarrow (S, \langle \eta, K \rangle) : [x_1 \mapsto c_1, x_2 \mapsto c_2] \vdash s \blacktriangleright \cdot$$
 (given that f is defined as $f(x_1, x_2)\{s\}$)

Rules for Returns

Need to restore continuation and environment and pass return value

$$S ; \eta \vdash \mathsf{return}(e) \blacktriangleright K$$

$$S$$
, $\langle \eta', K' \rangle$; $\eta \vdash v \rhd (\mathsf{return}(_), K)$

Special case: returning void

Will only be reached by functions without return.

$$S, \langle \eta', K' \rangle; \eta \vdash \mathsf{nop} \blacktriangleright \cdot \longrightarrow S; \eta' \vdash \mathsf{nothing} \rhd K'$$

Dummy value

Alternative: elaborate each function that returns void with return(nothing) statements.

Execution of the Main Function

How can we execute a program?

```
\cdot \; ; \; \cdot \vdash \mathsf{main}(\;) \rhd \cdot \qquad \text{(initial state)} \cdot \; ; \; \eta \vdash c \rhd \cdot \qquad \longrightarrow \qquad \mathsf{value}(c) \qquad \text{(final state)}
```

Statics, Dynamics, and Safety

Overview of Machine States (Configurations)

 $S : \eta \vdash e \rhd K$ – Evaluating the expression e with the continuation K

 $S : \eta \vdash s \triangleright K$ – Evaluating the statement s with the continuation K

value(c) – Final state, return a value

exception(E) – Final state, report an error

What do we expect from the transitions?

There shouldn't be more steps after reaching a final state

The language should be deterministic: there at most one transition per state

Well-typed programs don't go wrong!

Progress

There are many non-final states that don't have transitions, e.g.

$$S; \eta \vdash 42 \rhd (\mathsf{if}(_, s_1, s_2); K) \qquad \quad \cdot; \cdot \vdash \mathsf{nop} \blacktriangleright \cdot$$

The behavior of these states is undefined.

Stuck states.

Central relationship between static and dynamic semantics:

Programs that are well-defined according to the static semantics should be free of undefined behavior.

Theorem 1 (No undefined behavior) *If a program passes all the static semantics, and*

$$\cdot;\cdot \vdash \mathsf{main}() \longrightarrow \mathcal{ST}_1 \longrightarrow \dots \longrightarrow \mathcal{ST}_n$$

then either ST_n is a final state or else ST_n is not-stuck because there exists a state ST'such that $ST_n \longrightarrow ST'$.

How to prove this?

15-312

All ops.

```
e ::= c \mid e_1 \odot e_2 \mid \mathsf{true} \mid \mathsf{false} \mid e_1 \&\& e_2 \mid x \mid f(e_1, e_2) \mid f(\cdot) \mid e_1 \mid e_2 \mid e_1 \mid e_1 \mid e_2 \mid e_1 \mid e_2 \mid e_1 \mid e_1 \mid e_1 \mid e_1 \mid e_1 \mid e_2 \mid e_1 \mid e_1 \mid e_2 \mid e_1 \mid e
Expressions
                                                                                                                                  s ::= \operatorname{\mathsf{nop}} | \operatorname{\mathsf{seq}}(s_1, s_2) | \operatorname{\mathsf{assign}}(x, e) | \operatorname{\mathsf{decl}}(x, \tau, s)
Statements
                                                                                                                                                                                                           if(e, s_1, s_2) \mid while(e, s) \mid return(e) \mid assert(e)
 Values
                                                                                                                                  v ::= c \mid \mathsf{true} \mid \mathsf{false} \mid \mathsf{nothing}
Environments \eta ::= \cdot \mid \eta, x \mapsto c
                                                                                                                                 S ::= \cdot \mid S, \langle \eta, K \rangle
Stacks
Cont. frames
                                                                                                                     s \mid \operatorname{assign}(x, \_) \mid \operatorname{if}(\_, s_1, s_2) \mid \operatorname{return}(\_) \mid \operatorname{assert}(\_)
Continuations K ::= \cdot | \phi, K
Exceptions E ::= arith \mid abort \mid mem
```

Summary I

$$\begin{array}{lll} S : \eta \vdash e_1 \odot e_2 \rhd K & \longrightarrow & S : \eta \vdash e_1 \rhd (_ \odot e_2 \ , K) \\ S : \eta \vdash c_1 \rhd (_ \odot e_2 \ , K) & \longrightarrow & S : \eta \vdash e_2 \rhd (c_1 \odot _ \ , K) \\ S : \eta \vdash c_2 \rhd (c_1 \odot _ \ , K) & \longrightarrow & S : \eta \vdash c \rhd K & (c = c_1 \odot c_2) \\ S : \eta \vdash c_2 \rhd (c_1 \odot _ \ , K) & \longrightarrow & \text{exception(arith)} & (c_1 \odot c_2 \ \text{undefined)} \\ S : \eta \vdash e_1 \&\& e_2 \rhd K & \longrightarrow & S : \eta \vdash e_1 \rhd (_\&\& e_2 \ , K) \\ S : \eta \vdash \text{false} \rhd (_\&\& e_2 \ , K) & \longrightarrow & S : \eta \vdash \text{false} \rhd K \\ S : \eta \vdash \text{true} \rhd (_\&\& e_2 \ , K) & \longrightarrow & S : \eta \vdash e_2 \rhd K \\ \hline S : \eta \vdash x \rhd K & \longrightarrow & S : \eta \vdash e_2 \rhd K \\ \end{array}$$

Summary: Expressions

$$\begin{array}{lll} S : \eta \vdash \operatorname{seq}(s_1, s_2) \blacktriangleright K & \longrightarrow & S : \eta \vdash s_1 \blacktriangleright (s_2 \ , K) \\ S : \eta \vdash \operatorname{nop} \blacktriangleright (s \ , K) & \longrightarrow & S : \eta \vdash s \blacktriangleright K \\ S : \eta \vdash \operatorname{assign}(x, e) \blacktriangleright K & \longrightarrow & S : \eta \vdash e \rhd (\operatorname{assign}(x, _) \ , K) \\ S : \eta \vdash c \rhd (\operatorname{assign}(x, _) \ , K) & \longrightarrow & S : \eta [x \mapsto \operatorname{cl}(x, \neg)) \blacktriangleright K \\ & \longrightarrow & S : \eta [x \mapsto \operatorname{nothing}] \vdash s \blacktriangleright K \\ & \longrightarrow & S : \eta [x \mapsto \operatorname{nothing}] \vdash s \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{nop} \blacktriangleright K \\ & \longrightarrow & S : \eta \vdash \operatorname{slop} (\operatorname{if}(_, s_1, s_2) \ , K) \\ & \longrightarrow & S : \eta \vdash \operatorname{slop} (\operatorname{if}(_, s_1, s_2) \ , K) \\ & \longrightarrow & S : \eta \vdash \operatorname{slop} (\operatorname{if}(_, s_1, s_2) \ , K) \\ & \longrightarrow & S : \eta \vdash \operatorname{slop} (\operatorname{slop}(s, \operatorname{slop}(s, \operatorname{slop}(s$$

Summary: Statements

Summary: Functions