
15-411: Dynamic Semantics

Jan Hoffmann

Code review.
Sign up today.

Dynamic Semantics

• Static semantics: definition of valid programs

• Dynamic semantics: definition of how programs are executed

• So far: Dynamic semantics is given in English on lab handouts

‣ This only works since you know how C programs should behave

‣ Sometimes needed to consult the reference compiler

• A description in English will always be ambiguous

➡ Need precise ways of defining the meaning of programs

Types of (Formal) Dynamic Semantics

• Denotational Semantics: Abstract and elegant.

‣ Each part of a program is associated with a denotation (math. object)

‣ For example: a procedure is associated with a mathematical function

• Axiomatic Semantics: Strongly related to program logic.

‣ Gives meaning to phrases using logical axioms

‣ The meaning is identical to the set of properties that can be proved

• Operational Semantics: Describes how programs are executed

‣ Related to interpreters and abstract machines

‣ Most popular and flexible form of semantics

Dana Scott

Tony Hoare

Gordon Plotkin

Operational Semantics

• Many different styles

‣ Natural semantics (or big-step semantics or evaluation dynamics)

‣ Structural operational semantics

‣ Substructural operational semantics

‣ Abstract machine (or small-step with continuation)

• We will use an abstract machine

‣ Very general: can describe non-termination, concurrency, …

‣ Low-level and elaborate

Frank Pfenning

How to pick the right
dynamic semantics?

Evaluating Expressions

Continuations

Want to model a single evaluation step

For example: ((4 + 5) ⇤ 10 + 2) ! (9 ⇤ 10 + 2)

e ! e0

How can we find the right place at which to make the step?

Use a continuation K:

Dynamic Semantics L13.2

dynamic semantics in any way that conforms to the specification, rather than being
tied to a specific implementation strategy they have specified.

Defining both our formal dynamic semantics and static semantics over the same
elaborated AST also facilitates mathematically proving properties of the program-
ming language. Much of the theory of programming languages is concerned with
just that and therefore requires an dynamics semantics. Furthermore, if we de-
fine an operational specification of our language both before and after compilation,
we can consider proving that they always compute the same result. These topics,
however, are outside the scope of this course.

2 Evaluating Expressions

When trying to specify the operational semantics of a programming language,
there are a bewildering array of choices regarding the style of presentation. Some
choices are natural semantics, structural operational semantics, abstract machines,
substructural operational semantics, and many more. We use the mechanism of
abstract machines, despite some of its shortcomings.

In an abstract machine semantics, which is a form of so-called small-step operational
semantics, we step through the evaluation of an expression e until we have reached
a value v. So the basic judgment might be written e �! e0. However, this is
much too simplistic. For example, it does not represent the call stack, or the current
value of the variables that are recorded in an environment, or what to do with the
eventual value. We will introduce such semantic artifacts one by one, as they are
needed.

Consider the expression e1 + e2. By the left-to-right evaluation rule, we first
have to evaluate e1 and then e2. So why we evaluate e1 we have to “remember”
that we still have to evaluate e2 then sum up the value. The information on what
we still have to do is collected in a so-called continuation K. We write the judgment
as

eBK

which we read as “evaluate expression e and pass the result to the continuation K”. In
the continuation there is a “hole” (written as an underscore character _) in which
we plug in the value passed to it. So:

e1 + e2 BK �! e1 B (_+ e2 , K)

When e1 has been reduced to a value c1, we plug it into the hole and evaluate e2
next;

c1 B (_+ e2 , K) �! e2 B (c1 + _ , K)

Finally, when e2 has been reduced to a value c2 we perform the actual addition and
pass the result to K.

c2 B (c1 + _ , K) �! cBK (c = c1 + c2mod232)

LECTURE NOTES OCTOBER 13, 2015

“Evaluate expression e and pass the result to K”

The continuation has a ‘hole’ for the result value of e.

A stack of partial
computations.

Evaluation Rules: Addition

Dynamic Semantics L13.2

dynamic semantics in any way that conforms to the specification, rather than being
tied to a specific implementation strategy they have specified.

Defining both our formal dynamic semantics and static semantics over the same
elaborated AST also facilitates mathematically proving properties of the program-
ming language. Much of the theory of programming languages is concerned with
just that and therefore requires an dynamics semantics. Furthermore, if we de-
fine an operational specification of our language both before and after compilation,
we can consider proving that they always compute the same result. These topics,
however, are outside the scope of this course.

2 Evaluating Expressions

When trying to specify the operational semantics of a programming language,
there are a bewildering array of choices regarding the style of presentation. Some
choices are natural semantics, structural operational semantics, abstract machines,
substructural operational semantics, and many more. We use the mechanism of
abstract machines, despite some of its shortcomings.

In an abstract machine semantics, which is a form of so-called small-step operational
semantics, we step through the evaluation of an expression e until we have reached
a value v. So the basic judgment might be written e �! e0. However, this is
much too simplistic. For example, it does not represent the call stack, or the current
value of the variables that are recorded in an environment, or what to do with the
eventual value. We will introduce such semantic artifacts one by one, as they are
needed.

Consider the expression e1 + e2. By the left-to-right evaluation rule, we first
have to evaluate e1 and then e2. So why we evaluate e1 we have to “remember”
that we still have to evaluate e2 then sum up the value. The information on what
we still have to do is collected in a so-called continuation K. We write the judgment
as

eBK

which we read as “evaluate expression e and pass the result to the continuation K”. In
the continuation there is a “hole” (written as an underscore character _) in which
we plug in the value passed to it. So:

e1 + e2 BK �! e1 B (_+ e2 , K)

When e1 has been reduced to a value c1, we plug it into the hole and evaluate e2
next;

c1 B (_+ e2 , K) �! e2 B (c1 + _ , K)

Finally, when e2 has been reduced to a value c2 we perform the actual addition and
pass the result to K.

c2 B (c1 + _ , K) �! cBK (c = c1 + c2mod232)

LECTURE NOTES OCTOBER 13, 2015

First evaluate e1.
Plug the result

here.

Dynamic Semantics L13.2

dynamic semantics in any way that conforms to the specification, rather than being
tied to a specific implementation strategy they have specified.

Defining both our formal dynamic semantics and static semantics over the same
elaborated AST also facilitates mathematically proving properties of the program-
ming language. Much of the theory of programming languages is concerned with
just that and therefore requires an dynamics semantics. Furthermore, if we de-
fine an operational specification of our language both before and after compilation,
we can consider proving that they always compute the same result. These topics,
however, are outside the scope of this course.

2 Evaluating Expressions

When trying to specify the operational semantics of a programming language,
there are a bewildering array of choices regarding the style of presentation. Some
choices are natural semantics, structural operational semantics, abstract machines,
substructural operational semantics, and many more. We use the mechanism of
abstract machines, despite some of its shortcomings.

In an abstract machine semantics, which is a form of so-called small-step operational
semantics, we step through the evaluation of an expression e until we have reached
a value v. So the basic judgment might be written e �! e0. However, this is
much too simplistic. For example, it does not represent the call stack, or the current
value of the variables that are recorded in an environment, or what to do with the
eventual value. We will introduce such semantic artifacts one by one, as they are
needed.

Consider the expression e1 + e2. By the left-to-right evaluation rule, we first
have to evaluate e1 and then e2. So why we evaluate e1 we have to “remember”
that we still have to evaluate e2 then sum up the value. The information on what
we still have to do is collected in a so-called continuation K. We write the judgment
as

eBK

which we read as “evaluate expression e and pass the result to the continuation K”. In
the continuation there is a “hole” (written as an underscore character _) in which
we plug in the value passed to it. So:

e1 + e2 BK �! e1 B (_+ e2 , K)

When e1 has been reduced to a value c1, we plug it into the hole and evaluate e2
next;

c1 B (_+ e2 , K) �! e2 B (c1 + _ , K)

Finally, when e2 has been reduced to a value c2 we perform the actual addition and
pass the result to K.

c2 B (c1 + _ , K) �! cBK (c = c1 + c2mod232)

LECTURE NOTES OCTOBER 13, 2015

A constant.

Continuation is an addition.

Continue with
evaluating e2.

Plug the result
here.

Two constants Actual addition.

Dynamic Semantics L13.2

dynamic semantics in any way that conforms to the specification, rather than being
tied to a specific implementation strategy they have specified.

Defining both our formal dynamic semantics and static semantics over the same
elaborated AST also facilitates mathematically proving properties of the program-
ming language. Much of the theory of programming languages is concerned with
just that and therefore requires an dynamics semantics. Furthermore, if we de-
fine an operational specification of our language both before and after compilation,
we can consider proving that they always compute the same result. These topics,
however, are outside the scope of this course.

2 Evaluating Expressions

When trying to specify the operational semantics of a programming language,
there are a bewildering array of choices regarding the style of presentation. Some
choices are natural semantics, structural operational semantics, abstract machines,
substructural operational semantics, and many more. We use the mechanism of
abstract machines, despite some of its shortcomings.

In an abstract machine semantics, which is a form of so-called small-step operational
semantics, we step through the evaluation of an expression e until we have reached
a value v. So the basic judgment might be written e �! e0. However, this is
much too simplistic. For example, it does not represent the call stack, or the current
value of the variables that are recorded in an environment, or what to do with the
eventual value. We will introduce such semantic artifacts one by one, as they are
needed.

Consider the expression e1 + e2. By the left-to-right evaluation rule, we first
have to evaluate e1 and then e2. So why we evaluate e1 we have to “remember”
that we still have to evaluate e2 then sum up the value. The information on what
we still have to do is collected in a so-called continuation K. We write the judgment
as

eBK

which we read as “evaluate expression e and pass the result to the continuation K”. In
the continuation there is a “hole” (written as an underscore character _) in which
we plug in the value passed to it. So:

e1 + e2 BK �! e1 B (_+ e2 , K)

When e1 has been reduced to a value c1, we plug it into the hole and evaluate e2
next;

c1 B (_+ e2 , K) �! e2 B (c1 + _ , K)

Finally, when e2 has been reduced to a value c2 we perform the actual addition and
pass the result to K.

c2 B (c1 + _ , K) �! cBK (c = c1 + c2mod232)

LECTURE NOTES OCTOBER 13, 2015

Evaluation Rules: Binary Operations
Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Arithmetic operations are treated like addition

Arithmetic is modulo 232 to match our x86 architecture

What about
effects?

Evaluation Rules: Binops with Effects

In case of an arithmetic exception: Abort the computation and 
report and error

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

There is no rule for further evaluating an exception.

Example Evaluation

Dynamic Semantics L13.4

Example Consider the expression ((4 + 5) ⇤ 10) + 2. Using our evaluation rules,
we obtion the following evaluation.

((4 + 5) ⇤ 10) + 2 B ·
�! (4 + 5) ⇤ 10 B _+ 2
�! (4 + 5) ⇤ 10 B _+ 2
�! 4 + 5 B _ ⇤ 10 , _+ 2
�! 4 B _+ 5 , _ ⇤ 10 , _+ 2
�! 5 B 4 + _ , _ ⇤ 10 , _+ 2
�! 9 B _ ⇤ 10 , _+ 2
�! 10 B 9 ⇤ _ , _+ 2
�! 90 B _+ 2
�! 2 B 90 + _

�! 92 B ·

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

LECTURE NOTES OCTOBER 10, 2016

Evaluation Rules: End of and Evaluation

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

If we reach a constant and the empty continuation then we stop

Evaluation Rules: Boolean Expressions

true and false are also values

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.3

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations � are handled in a similar way, so we summarize them as

e1 � e2 BK �! e1 B (_� e2 , K)
c1 B (_� e2 , K) �! e2 B (c1 � _ , K)
c2 B (c1 � _ , K) �! cBK (c = c1 � c2mod232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 ↵ e2 BK �! e1 B (_↵ e2 , K)
c1 B (_↵ e2 , K) �! e2 B (c1 ↵ _ , K)
c2 B (c1 ↵ _ , K) �! cBK (c = c1 ↵ c2)
c2 B (c1 ↵ _ , K) �! exception(arith) (c1 ↵ c2 undefined)

Here, some care must be taken to define the value c1 ↵ c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · �! value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK �! e1 B (_ && e2 , K)
falseB (_ && e2 , K) �! falseBK
trueB (_ && e2 , K) �! e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we
now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK �! 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

LECTURE NOTES OCTOBER 13, 2015

Notice the short-
cutting.

(We could also use 1 and 0 but distinguishing helps detect errors.)

Variables and Environments

xBK �! ?

How do we evaluate variable?

Dynamic Semantics L13.4

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have

LECTURE NOTES OCTOBER 13, 2015

Need to have an environment that maps variables to values

Dynamic Semantics L13.4

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have

LECTURE NOTES OCTOBER 13, 2015

The machine state consists now of an expression, a continuation, and an
environment

Integers or
booleans.

Variables and Environments II

The rules we have seen so far just carry over

Dynamic Semantics L13.4

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.4

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.4

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have

LECTURE NOTES OCTOBER 13, 2015

Dynamic Semantics L13.4

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have

LECTURE NOTES OCTOBER 13, 2015

Variables are simply looked up

The environment never changes when evaluating expressions

Executing Statements

Executing Statements I

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just value(c) and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Executions of statements don’t pass values to the continuation

Statements have usually an effect on the environment

Machine configurations: Continuations contain
statements.

Sequences:

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just value(c) and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

No ops:

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just value(c) and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

A terminating
execution ends

with a nop.

Executing Statements II

Interaction with expressions is straightforward

Assignments:

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just value(c) and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just value(c) and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Update the
environment with

new mapping.

Executing Statements III

Conditionals:

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2),K) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2),K) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 11, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2),K) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2),K) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 11, 2016

Executing Statements IV

Loops:

Dynamic Semantics L13.4

Example Consider the expression ((4 + 5) ⇤ 10) + 2. Using our evaluation rules,
we obtion the following evaluation.

((4 + 5) ⇤ 10) + 2 B ·
�! (4 + 5) ⇤ 10 B _+ 2
�! (4 + 5) ⇤ 10 B _+ 2
�! 4 + 5 B _ ⇤ 10 , _+ 2
�! 4 B _+ 5 , _ ⇤ 10 , _+ 2
�! 5 B 4 + _ , _ ⇤ 10 , _+ 2
�! 9 B _ ⇤ 10 , _+ 2
�! 10 B 9 ⇤ _ , _+ 2
�! 90 B _+ 2
�! 2 B 90 + _

�! 92 B ·

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment ⌘ that maps variables to their
values. We write

⌘ ::= · | ⌘, x 7! v

and ⌘[x 7! v] for either adding x 7! v to ⌘ or overwriting the current value of x by
v (if ⌘(x) is already defined). The state of the abstract machine now contains the
environment ⌘. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

⌘ ` eBK

The rules so far just carry this along. For example:

⌘ ` e1 � e2 BK �! ⌘ ` e1 B (_� e2 , K)
⌘ ` c1 B (_� e2 , K) �! ⌘ ` e2 B (c1 � _ , K)
⌘ ` c2 B (c1 � _ , K) �! ⌘ ` cBK (c = c1 � c2mod232)

Variables are just looked up in the environment.

⌘ ` xBK �! ⌘ ` ⌘(x)BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that ⌘(x) will be defined (all
variables must be initialized before they are used).

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Not that the following statements are equivalent:

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Non-termination:

We can make an infinite number of steps without reaching a final state

Executing Statements V

Assertions:

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Final states:

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

⌘ ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

⌘ ` seq(s1, s2) I K �! ⌘ ` s1 I (s2 , K)
⌘ ` nop I (s , K) �! ⌘ ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

⌘ ` assign(x, e) I K �! ⌘ ` eB (assign(x, _) , K)
⌘ ` v B (assign(x, _) , K) �! ⌘[x 7! v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

⌘ ` if(e, s1, s2) I K �! ⌘ ` eB (if(_, s1, s2) , K)
⌘ ` trueB (if(_, s1, s2)) �! ⌘ ` s1 I K
⌘ ` falseB (if(_, s1, s2)) �! ⌘ ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ⌘ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

⌘ ` while(e, s) I K �! ⌘ ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 �! s1 �! s2 �! · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

⌘ ` assert(e) I K �! ⌘ ` eB (assert(_),K)
⌘ ` trueB (assert(_),K) �! ⌘ ` nop I K
⌘ ` falseB (assert(_),K) �! exception(abort)

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Declarations:

If C0 had shadowing
then we would have to

be careful here.

Example: Infinite Loop

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

Example Consider the statement while(x > 0, assign(x, x + 1)) and ⌘ = [x 7!1].
Using rules for statement execution, we obtion the following execution; where s ⌘
x = x+ 1.

[x 7!1] ` while(x > 0, s) I ·
�! [x 7!1] ` if(x>0, seq(s,while(x>0, s)), nop) I ·
�! [x 7!1] ` x > 0 B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` x B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 1 B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 0 B 1 > _; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` true B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` seq(s,while(x > 0, s)) I ·
�! [x 7!1] ` assign(x, x+ 1)) I while(x > 0, assign(x, x+ 1))
�! [x 7!1] ` x+ 1 B assign(x, _));while(x > 0, s)
�! [x 7!1] ` x B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B 1 + _; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 2 B assign(x, _));while(x > 0, s)
�! [x 7!2] ` nop I while(x > 0, s)
�! [x 7!2] ` while(x > 0, s) I ·
· · ·

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a

LECTURE NOTES OCTOBER 11, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

Example Consider the statement while(x > 0, assign(x, x + 1)) and ⌘ = [x 7!1].
Using rules for statement execution, we obtion the following execution; where s ⌘
x = x+ 1.

[x 7!1] ` while(x > 0, s) I ·
�! [x 7!1] ` if(x>0, seq(s,while(x>0, s)), nop) I ·
�! [x 7!1] ` x > 0 B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` x B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 1 B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 0 B 1 > _; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` true B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` seq(s,while(x > 0, s)) I ·
�! [x 7!1] ` assign(x, x+ 1)) I while(x > 0, assign(x, x+ 1))
�! [x 7!1] ` x+ 1 B assign(x, _));while(x > 0, s)
�! [x 7!1] ` x B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B 1 + _; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 2 B assign(x, _));while(x > 0, s)
�! [x 7!2] ` nop I while(x > 0, s)
�! [x 7!2] ` while(x > 0, s) I ·
· · ·

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a

LECTURE NOTES OCTOBER 11, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

Example Consider the statement while(x > 0, assign(x, x + 1)) and ⌘ = [x 7!1].
Using rules for statement execution, we obtion the following execution; where s ⌘
x = x+ 1.

[x 7!1] ` while(x > 0, s) I ·
�! [x 7!1] ` if(x>0, seq(s,while(x>0, s)), nop) I ·
�! [x 7!1] ` x > 0 B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` x B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 1 B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 0 B 1 > _; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` true B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` seq(s,while(x > 0, s)) I ·
�! [x 7!1] ` assign(x, x+ 1)) I while(x > 0, assign(x, x+ 1))
�! [x 7!1] ` x+ 1 B assign(x, _));while(x > 0, s)
�! [x 7!1] ` x B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B 1 + _; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 2 B assign(x, _));while(x > 0, s)
�! [x 7!2] ` nop I while(x > 0, s)
�! [x 7!2] ` while(x > 0, s) I ·
· · ·

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a

LECTURE NOTES OCTOBER 11, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

Example Consider the statement while(x > 0, assign(x, x + 1)) and ⌘ = [x 7!1].
Using rules for statement execution, we obtion the following execution; where s ⌘
x = x+ 1.

[x 7!1] ` while(x > 0, s) I ·
�! [x 7!1] ` if(x>0, seq(s,while(x>0, s)), nop) I ·
�! [x 7!1] ` x > 0 B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` x B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 1 B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 0 B 1 > _; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` true B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` seq(s,while(x > 0, s)) I ·
�! [x 7!1] ` assign(x, x+ 1)) I while(x > 0, assign(x, x+ 1))
�! [x 7!1] ` x+ 1 B assign(x, _));while(x > 0, s)
�! [x 7!1] ` x B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B 1 + _; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 2 B assign(x, _));while(x > 0, s)
�! [x 7!2] ` nop I while(x > 0, s)
�! [x 7!2] ` while(x > 0, s) I ·
· · ·

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a

LECTURE NOTES OCTOBER 11, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

Example Consider the statement while(x > 0, assign(x, x + 1)) and ⌘ = [x 7!1].
Using rules for statement execution, we obtion the following execution; where s ⌘
x = x+ 1.

[x 7!1] ` while(x > 0, s) I ·
�! [x 7!1] ` if(x>0, seq(s,while(x>0, s)), nop) I ·
�! [x 7!1] ` x > 0 B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` x B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 1 B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 0 B 1 > _; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` true B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` seq(s,while(x > 0, s)) I ·
�! [x 7!1] ` assign(x, x+ 1)) I while(x > 0, assign(x, x+ 1))
�! [x 7!1] ` x+ 1 B assign(x, _));while(x > 0, s)
�! [x 7!1] ` x B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B 1 + _; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 2 B assign(x, _));while(x > 0, s)
�! [x 7!2] ` nop I while(x > 0, s)
�! [x 7!2] ` while(x > 0, s) I ·
· · ·

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a

LECTURE NOTES OCTOBER 11, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

Example Consider the statement while(x > 0, assign(x, x + 1)) and ⌘ = [x 7!1].
Using rules for statement execution, we obtion the following execution; where s ⌘
x = x+ 1.

[x 7!1] ` while(x > 0, s) I ·
�! [x 7!1] ` if(x>0, seq(s,while(x>0, s)), nop) I ·
�! [x 7!1] ` x > 0 B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` x B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 1 B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` 0 B 1 > _; if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` true B if(_, seq(s,while(x > 0, s)), nop)
�! [x 7!1] ` seq(s,while(x > 0, s)) I ·
�! [x 7!1] ` assign(x, x+ 1)) I while(x > 0, assign(x, x+ 1))
�! [x 7!1] ` x+ 1 B assign(x, _));while(x > 0, s)
�! [x 7!1] ` x B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B _+ 1; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 1 B 1 + _; assign(x, _));while(x > 0, s)
�! [x 7!1] ` 2 B assign(x, _));while(x > 0, s)
�! [x 7!2] ` nop I while(x > 0, s)
�! [x 7!2] ` while(x > 0, s) I ·
· · ·

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a

LECTURE NOTES OCTOBER 11, 2016

Functions

Function Calls

What needs to happen at a function call?

• Evaluate the arguments in left-to-right order

• Save the environment of the caller to continue the execution after the
function call

• Save the continuation of the caller

• Execute the body of the callee in a new environment that maps the
formal parameters to the argument values

• Pass the return value to the environment of the caller

Call Stack
We need to keep track of continuations and environment in stack frames

Call stack:

Environment

Continuation

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Configurations:

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Evaluation

Execution

Existing rules can be lifted to the new configurations by 
passing through the call stack

Rules for Function Calls
We only show the special case of 0 and 2 arguments

n args is similar.

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Store callee’s
stack frame

Evaluate s in empty
environment.

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

No arguments:

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

⌘ ` decl(x, ⌧, s) I K �! ⌘[x 7! nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of ⌘ as a list where ⌘(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame h⌘,Ki consists of an environment ⌘ and a
continuation K.

Call stack S ::= · | S , h⌘,Ki

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; ⌘ ` eBK
Execution S ; ⌘ ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment ⌘ and continuation K.

LECTURE NOTES OCTOBER 10, 2016

Two arguments:

Rules for Returns
Need to restore continuation and environment and pass return value

Will only be reached by
functions without return.

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

LECTURE NOTES OCTOBER 10, 2016

Dummy value

Alternative: elaborate each function that returns void with 
return(nothing) statements.

Special case: returning void

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

LECTURE NOTES OCTOBER 10, 2016

Execution of the Main Function
How can we execute a program?

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) final state

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) final state

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) final state

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) final state

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) (final state)

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

Statics, Dynamics, and Safety

Overview of Machine States (Configurations)

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) (final state)

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

What do we expect from the transitions?

There shouldn’t be more steps after reaching a final state

The language should be deterministic: there at most one transition 
per state

Progress

Stuck states.

There are many non-final states that don’t have transitions, e.g.

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) (final state)

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

Dynamic Semantics L13.7

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
S , h⌘0,K 0i ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , h⌘0,K 0i ; ⌘ ` nop I · �! S ; ⌘0 ` nothing BK 0

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main()B · (initial state)
· ; ⌘ ` cB · �! value(c) (final state)

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

• S ; ⌘ ` eBK – Evaluating the expression e with the continuation K

• S ; ⌘ ` s I K – Evaluating the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST �! ST 0. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) �! value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST 0 such that ST �! ST 0.

In the other direction, there are many examples of non-final states that have no
transition: S; ⌘ ` 42B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

LECTURE NOTES OCTOBER 10, 2016

Well-typed programs
don’t go wrong!

The behavior of
these states is

undefined.

Programs that are well-defined according to the static semantics 
should be free of undefined behavior.

Central relationship between static and dynamic semantics:

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

How to prove this? 15-312

Summary I

Dynamic Semantics L13.8

Theorem 1 (No undefined behavior) If a program passes all the static semantics, and
·; · ` main() �! ST 1 �! . . . �! ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST 0

such that ST n �! ST 0.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

7 Summary

We use � to stand for either a pure operation �, or a potentially effectful operation
↵ as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()
Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, ⌧, s)

| if(e, s1, s2) | while(e, s) | return(e) | assert(e)
Values v ::= c | true | false | nothing
Environments ⌘ ::= · | ⌘, x 7! c

Stacks S ::= · | S , h⌘,Ki
Cont. frames � ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)

| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)
Continuations K ::= · | � , K

Exceptions E ::= arith | abort | mem

LECTURE NOTES OCTOBER 10, 2016

All ops.

Summary: Expressions

Dynamic Semantics L13.9

S ; ⌘ ` e1 � e2 BK �! S ; ⌘ ` e1 B (_� e2 , K)
S ; ⌘ ` c1 B (_� e2 , K) �! S ; ⌘ ` e2 B (c1 � _ , K)
S ; ⌘ ` c2 B (c1 � _ , K) �! S ; ⌘ ` cBK (c = c1 � c2)
S ; ⌘ ` c2 B (c1 � _ , K) �! exception(arith) (c1 � c2 undefined)

S ; ⌘ ` e1 && e2 BK �! S ; ⌘ ` e1 B (_ && e2 , K)
S ; ⌘ ` falseB (_ && e2 , K) �! S ; ⌘ ` falseBK
S ; ⌘ ` trueB (_ && e2 , K) �! S ; ⌘ ` e2 BK

S ; ⌘ ` xBK �! S ; ⌘ ` ⌘(x)BK

S ; ⌘ ` nop I (s , K) �! S ; ⌘ ` s I K
S ; ⌘ ` assign(x, e) I K �! S ; ⌘ ` eB (assign(x, _) , K)
S ; ⌘ ` cB (assign(x, _) , K) �! S ; ⌘[x 7! c] ` nop I K

S ; ⌘ ` decl(x, ⌧, s) I K �! S ; ⌘[x 7! nothing] ` s I K

S ; ⌘ ` assert(e) I K �! S ; ⌘ ` eB (assert(_) , K)
S ; ⌘ ` trueB (assert(_) , K) �! S ; ⌘ ` nop I K
S ; ⌘ ` falseB (assert(_) , K) �! exception(abort)

S ; ⌘ ` if(e, s1, s2) I K �! S ; ⌘ ` eB (if(_, s1, s2) , K)
S ; ⌘ ` trueB (if(_, s1, s2)) �! S ; ⌘ ` s1 I K
S ; ⌘ ` falseB (if(_, s1, s2)) �! S ; ⌘ ` s2 I K

S ; ⌘ ` while(e, s) I K �! S ; ⌘ ` if(e, seq(s,while(e, s)), nop) I K

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
(S , h⌘0,K 0i) ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

· ; ⌘ ` cB (return(_) , K) �! value(c)

LECTURE NOTES OCTOBER 10, 2016

Summary: Statements

Dynamic Semantics L13.10

S ; ⌘ ` e1 � e2 BK �! S ; ⌘ ` e1 B (_� e2 , K)
S ; ⌘ ` c1 B (_� e2 , K) �! S ; ⌘ ` e2 B (c1 � _ , K)
S ; ⌘ ` c2 B (c1 � _ , K) �! S ; ⌘ ` cBK (c = c1 � c2)
S ; ⌘ ` c2 B (c1 � _ , K) �! exception(arith) (c1 � c2 undefined)

S ; ⌘ ` e1 && e2 BK �! S ; ⌘ ` e1 B (_ && e2 , K)
S ; ⌘ ` falseB (_ && e2 , K) �! S ; ⌘ ` falseBK
S ; ⌘ ` trueB (_ && e2 , K) �! S ; ⌘ ` e2 BK

S ; ⌘ ` xBK �! S ; ⌘ ` ⌘(x)BK

S ; ⌘ ` seq(s1, s2) I K �! S ; ⌘ ` s1 I (s2 , K)
S ; ⌘ ` nop I (s , K) �! S ; ⌘ ` s I K
S ; ⌘ ` assign(x, e) I K �! S ; ⌘ ` eB (assign(x, _) , K)
S ; ⌘ ` cB (assign(x, _) , K) �! S ; ⌘[x 7! c] ` nop I K

S ; ⌘ ` decl(x, ⌧, s) I K �! S ; ⌘[x 7! nothing] ` s I K

S ; ⌘ ` assert(e) I K �! S ; ⌘ ` eB (assert(_) , K)
S ; ⌘ ` trueB (assert(_) , K) �! S ; ⌘ ` nop I K
S ; ⌘ ` falseB (assert(_) , K) �! exception(abort)

S ; ⌘ ` if(e, s1, s2) I K �! S ; ⌘ ` eB (if(_, s1, s2) , K)
S ; ⌘ ` trueB (if(_, s1, s2),K) �! S ; ⌘ ` s1 I K
S ; ⌘ ` falseB (if(_, s1, s2),K) �! S ; ⌘ ` s2 I K

S ; ⌘ ` while(e, s) I K �! S ; ⌘ ` if(e, seq(s,while(e, s)), nop) I K

⌘ ` e I K �! ⌘ ` eB (discard,K)
⌘ ` v B (discard,K) �! ⌘ ` nop I K

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
(S , h⌘0,K 0i) ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

· ; ⌘ ` cB (return(_) , K) �! value(c)

LECTURE NOTES FEBRUARY 28, 2023

Summary: Functions

Dynamic Semantics L13.9

S ; ⌘ ` e1 � e2 BK �! S ; ⌘ ` e1 B (_� e2 , K)
S ; ⌘ ` c1 B (_� e2 , K) �! S ; ⌘ ` e2 B (c1 � _ , K)
S ; ⌘ ` c2 B (c1 � _ , K) �! S ; ⌘ ` cBK (c = c1 � c2)
S ; ⌘ ` c2 B (c1 � _ , K) �! exception(arith) (c1 � c2 undefined)

S ; ⌘ ` e1 && e2 BK �! S ; ⌘ ` e1 B (_ && e2 , K)
S ; ⌘ ` falseB (_ && e2 , K) �! S ; ⌘ ` falseBK
S ; ⌘ ` trueB (_ && e2 , K) �! S ; ⌘ ` e2 BK

S ; ⌘ ` xBK �! S ; ⌘ ` ⌘(x)BK

S ; ⌘ ` nop I (s , K) �! S ; ⌘ ` s I K
S ; ⌘ ` assign(x, e) I K �! S ; ⌘ ` eB (assign(x, _) , K)
S ; ⌘ ` cB (assign(x, _) , K) �! S ; ⌘[x 7! c] ` nop I K

S ; ⌘ ` decl(x, ⌧, s) I K �! S ; ⌘[x 7! nothing] ` s I K

S ; ⌘ ` assert(e) I K �! S ; ⌘ ` eB (assert(_) , K)
S ; ⌘ ` trueB (assert(_) , K) �! S ; ⌘ ` nop I K
S ; ⌘ ` falseB (assert(_) , K) �! exception(abort)

S ; ⌘ ` if(e, s1, s2) I K �! S ; ⌘ ` eB (if(_, s1, s2) , K)
S ; ⌘ ` trueB (if(_, s1, s2)) �! S ; ⌘ ` s1 I K
S ; ⌘ ` falseB (if(_, s1, s2)) �! S ; ⌘ ` s2 I K

S ; ⌘ ` while(e, s) I K �! S ; ⌘ ` if(e, seq(s,while(e, s)), nop) I K

S ; ⌘ ` f(e1, e2)BK �! S ; ⌘ ` e1 B (f(_, e2) , K)
S ; ⌘ ` c1 B (f(_, e2) , K) �! S ; ⌘ ` e2 B (f(c1, _) , K)
S ; ⌘ ` c2 B (f(c1, _) , K) �! (S , h⌘,Ki) ; [x1 7! c1, x2 7! c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; ⌘ ` f()BK �! (S , h⌘,Ki) ; · ` s I ·
(given that f is defined as f(){s})

S ; ⌘ ` return(e) I K �! S ; ⌘ ` eB (return(_) , K)
(S , h⌘0,K 0i) ; ⌘ ` v B (return(_) , K) �! S ; ⌘0 ` v BK 0

· ; ⌘ ` cB (return(_) , K) �! value(c)

LECTURE NOTES OCTOBER 10, 2016

