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1 Introduction

In this lecture we extend our language with the ability to allocate data structures
on the so-called heap. Addresses of heap elements serve as pointers which can be
dereferenced to read stored values, or used as destinations for write operations.
Similarly, arrays are stored on the heap1 and via appropriate address calculations.

Adding mutable store requires yet again a significant change in the structure of
the rules of the dynamic semantics. By contrast, the static semantics is relatively
easy to extend.

2 Pointers

We extend our language of types with ⌧⇤, where ⌧ is a (non-void) type.

⌧ ::= int | bool | ⌧⇤

In the language of expressions, we can allocate a cell on the heap that can hold
a value of type ⌧ , we have a distinguished null pointer, and we can dereference a
pointer to obtain the stored value.

e ::= . . . | alloc(⌧) | ⇤e | null

They have the following typing rules:

� ` alloc(⌧) : ⌧⇤
� ` e : ⌧⇤
� ` ⇤e : ⌧ � ` null : ⌧⇤

At first glance they might be harmless, but the third rule should raise a red flag:
we previously claimed in our mode analysis of typing, that given � and e we can
synthesize the type of e (if it exists). However, in the rule for null that’s not the case.

1C0 does not have stack-allocated arrays
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for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; ⌘ ` ⇤eBK �! H ; S ; ⌘ ` eB (⇤_ , K)

H ; S ; ⌘ ` aB (⇤_ , K) �! H ; S ; ⌘ ` H(a)BK (a 6= 0)

H ; S ; ⌘ ` aB (⇤_ , K) �! exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a in H . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e)

In the operational semantics we now distinguish variables from other destinations,
since variables are on the stack (or in registers), while destinations ⇤d are on the
heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e)BK �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c]B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)
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H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)

LECTURE NOTES OCTOBER18, 2016

Mutable Store L15.5

Detail: Evaluating Assignments

Based on the rules above, what should happen in the following code fragments.

int* p = NULL;

*p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate p to 0. Second we evaluate 1/0. This will raise an arithmetic
exception, which is therefore the outcome of the execution.

int** p = NULL;

**p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate ⇤p. Since the value of p is 0 this raises a memory exception,
which is therefore the outcome of the execution.

6 Arrays

Arrays are in many ways similar to pointers, but there are no null arrays. We’ll
discuss default arrays below. For now, though, this is a simplification since the
typing rules are more straightforward.

⌧ ::= . . . | ⌧ [ ]
e ::= . . . | alloc array(⌧, e) | e1[e2]
d ::= . . . | d[e]

� ` e : int

� ` alloc array(⌧, e) : ⌧ [ ]

� ` e1 : ⌧ [ ] � ` e2 : int

� ` e1[e2] : ⌧

The dynamic semantics for allocation obtains a fresh segment of memory and
initializes all n elements of the array with the default value of type ⌧ .

H ; S ; ⌘ ` alloc array(⌧, e)BK �! H ; S ; ⌘ ` eB (alloc array(⌧, _) , K)
H ; S ; ⌘ ` nB (alloc array(⌧, _) , K) �! H

0 ; S ; ⌘ ` aBK (n � 0)
[a, a+ n|⌧ |) \ dom(H) = { }, a 6= 0

H
0 = H[a+ 0|⌧ | 7! default(⌧), . . . , a+ (n� 1)|⌧ | 7! default(⌧)]

H ; S ; ⌘ ` nB (alloc array(⌧, _) , K) �! exception(mem) (n < 0)

Array access evaluates from left to right and then computes the correct memory
address for the value.
H ; S ; ⌘ ` e1[e2]BK �! H ; S ; ⌘ ` e1 B (_[e2] , K)
H ; S ; ⌘ ` aB (_[e2] , K) �! H ; S ; ⌘ ` e2 B (a[_] , K)
H ; S ; ⌘ ` iB (a[_] , K) �! H ; S ; ⌘ ` H(a+ i|⌧ |)BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (a[_] , K) �! exception(mem) a = 0 or i < 0 or i � length(a)
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Detail: Evaluating Assignments

Based on the rules above, what should happen in the following code fragments.

int* p = NULL;

*p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate p to 0. Second we evaluate 1/0. This will raise an arithmetic
exception, which is therefore the outcome of the execution.

int** p = NULL;

**p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate ⇤p. Since the value of p is 0 this raises a memory exception,
which is therefore the outcome of the execution.

6 Arrays

Arrays are in many ways similar to pointers, but there are no null arrays. We’ll
discuss default arrays below. For now, though, this is a simplification since the
typing rules are more straightforward.

⌧ ::= . . . | ⌧ [ ]
e ::= . . . | alloc array(⌧, e) | e1[e2]
d ::= . . . | d[e]

� ` e : int

� ` alloc array(⌧, e) : ⌧ [ ]

� ` e1 : ⌧ [ ] � ` e2 : int

� ` e1[e2] : ⌧

The dynamic semantics for allocation obtains a fresh segment of memory and
initializes all n elements of the array with the default value of type ⌧ .

H ; S ; ⌘ ` alloc array(⌧, e)BK �! H ; S ; ⌘ ` eB (alloc array(⌧, _) , K)
H ; S ; ⌘ ` nB (alloc array(⌧, _) , K) �! H

0 ; S ; ⌘ ` aBK (n � 0)
[a, a+ n|⌧ |) \ dom(H) = { }, a 6= 0

H
0 = H[a+ 0|⌧ | 7! default(⌧), . . . , a+ (n� 1)|⌧ | 7! default(⌧)]

H ; S ; ⌘ ` nB (alloc array(⌧, _) , K) �! exception(mem) (n < 0)

Array access evaluates from left to right and then computes the correct memory
address for the value.
H ; S ; ⌘ ` e1[e2]BK �! H ; S ; ⌘ ` e1 B (_[e2] , K)
H ; S ; ⌘ ` aB (_[e2] , K) �! H ; S ; ⌘ ` e2 B (a[_] , K)
H ; S ; ⌘ ` iB (a[_] , K) �! H ; S ; ⌘ ` H(a+ i|⌧ |)BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (a[_] , K) �! exception(mem) a = 0 or i < 0 or i � length(a)
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means we first evaluate ⇤p. Since the value of p is 0 this raises a memory exception,
which is therefore the outcome of the execution.

6 Arrays

Arrays are in many ways similar to pointers, but there are no null arrays. We’ll
discuss default arrays below. For now, though, this is a simplification since the
typing rules are more straightforward.

⌧ ::= . . . | ⌧ [ ]
e ::= . . . | alloc array(⌧, e) | e1[e2]
d ::= . . . | d[e]

� ` e : int

� ` alloc array(⌧, e) : ⌧ [ ]

� ` e1 : ⌧ [ ] � ` e2 : int

� ` e1[e2] : ⌧

The dynamic semantics for allocation obtains a fresh segment of memory and
initializes all n elements of the array with the default value of type ⌧ .

H ; S ; ⌘ ` alloc array(⌧, e)BK �! H ; S ; ⌘ ` eB (alloc array(⌧, _) , K)
H ; S ; ⌘ ` nB (alloc array(⌧, _) , K) �! H

0 ; S ; ⌘ ` aBK (n � 0)
[a, a+ n|⌧ |) \ dom(H) = { }, a 6= 0

H
0 = H[a+ 0|⌧ | 7! default(⌧), . . . , a+ (n� 1)|⌧ | 7! default(⌧)]

H ; S ; ⌘ ` nB (alloc array(⌧, _) , K) �! exception(mem) (n < 0)

Array access evaluates from left to right and then computes the correct memory
address for the value.
H ; S ; ⌘ ` e1[e2]BK �! H ; S ; ⌘ ` e1 B (_[e2] , K)
H ; S ; ⌘ ` aB (_[e2] , K) �! H ; S ; ⌘ ` e2 B (a[_] , K)
H ; S ; ⌘ ` iB (a[_] , K) �! H ; S ; ⌘ ` H(a+ i|⌧ |)BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (a[_] , K) �! exception(mem) a = 0 or i < 0 or i � length(a)
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3 Detail: Typing ⇤null

We cannot synthesize a definite type for null. Unfortunately, we also cannot, in
general, know what type to check an expression against. So we’ll synthesize an
indefinite type, let’s call it any ⇤, the type of a pointer to data of potentially any
type.

Now we have to walk through all the constructs in the language to see whether
we can resolve any ⇤, assuming it can only arise for null. Let’s consider pointer
equality first, that is, an expression p == q where p and q are pointers. If p and q

both have definite type ⌧⇤, we just treat it as well-typed. If one has type ⌧⇤ and the
other ⌧ 0⇤ for ⌧ 6= ⌧

0, we reject the comparison as ill-typed. If one is definite ⌧⇤ and
the other indefinite, we allow the comparison, because the indefinite type has only
one value (null) which can be compared to a pointer of any definite type. If both
are indefinite, we would be comparing null with null, which is also fine.

One way to capture this is to have a so-called type subsumption rule that allows
a “silent” transition:

� ` e : any ⇤
� ` e : ⌧⇤

Then three rules suffice for our overloaded equality:2

� ` e1 : ⌧⇤ � ` e2 : ⌧⇤
� ` e1 == e2 : bool

� ` e1 : int � ` e2 : int

� ` e1 == e2 : bool

� ` e1 : bool � ` e2 : bool

� ` e1 == e2 : bool

A difficulty arises with the dereferencing operator: ⇤null would have any type,
which means it could essentially appear anywhere. Of course, when run, it will
always yield an exception, since dereferencing the null pointer is disallowed. We
therefore rewrite our earlier rule to disallow dereferencing values of indefinite
type.

� ` e : ⌧⇤ � 6 ` e : any ⇤
� ` ⇤e : ⌧

In particular ⇤null is disallowed, and so is ⇤(b ? null : null) and variants thereof,
because the conditional still has indefinite type any⇤. Of course, indefinite types
are not part of the source language and only used internally during type checking.

4 Dynamic Semantics for Pointers

A value of type ⌧⇤ is just an address where a value of type ⌧ is stored, or the special
address 0. Allocation returns an unused address, and dereferencing the pointer
retrieves the stored value. But where is the store? We currently only carry an

2Actually, in this language fragment just one would suffice, since elements of all types can be
compared for equality.
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A difficulty arises with the dereferencing operator: ⇤null would have any type,
which means it could essentially appear anywhere. Of course, when run, it will
always yield an exception, since dereferencing the null pointer is disallowed. We
therefore rewrite our earlier rule to disallow dereferencing values of indefinite
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In particular ⇤null is disallowed, and so is ⇤(b ? null : null) and variants thereof,
because the conditional still has indefinite type any⇤. Of course, indefinite types
are not part of the source language and only used internally during type checking.

4 Dynamic Semantics for Pointers

A value of type ⌧⇤ is just an address where a value of type ⌧ is stored, or the special
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1 Introduction

In this lecture we extend our language with the ability to allocate data structures
on the so-called heap. Addresses of heap elements serve as pointers which can be
dereferenced to read stored values, or used as destinations for write operations.
Similarly, arrays are stored on the heap1 and via appropriate address calculations.

Adding mutable store requires yet again a significant change in the structure of
the rules of the dynamic semantics. By contrast, the static semantics is relatively
easy to extend.

2 Pointers

We extend our language of types with ⌧⇤, where ⌧ is a (non-void) type.

⌧ ::= int | bool | ⌧⇤

In the language of expressions, we can allocate a cell on the heap that can hold
a value of type ⌧ , we have a distinguished null pointer, and we can dereference a
pointer to obtain the stored value.

e ::= . . . | alloc(⌧) | ⇤e | null

They have the following typing rules:

� ` alloc(⌧) : ⌧⇤
� ` e : ⌧⇤
� ` ⇤e : ⌧ � ` null : ⌧⇤

At first glance they might be harmless, but the third rule should raise a red flag:
we previously claimed in our mode analysis of typing, that given � and e we can
synthesize the type of e (if it exists). However, in the rule for null that’s not the case.

1C0 does not have stack-allocated arrays

LECTURE NOTES OCTOBER 20, 2015

Lecture Notes on
Mutable Store

15-411: Compiler Design
Frank Pfenning

Lecture 15
October 20, 2015

1 Introduction

In this lecture we extend our language with the ability to allocate data structures
on the so-called heap. Addresses of heap elements serve as pointers which can be
dereferenced to read stored values, or used as destinations for write operations.
Similarly, arrays are stored on the heap1 and via appropriate address calculations.

Adding mutable store requires yet again a significant change in the structure of
the rules of the dynamic semantics. By contrast, the static semantics is relatively
easy to extend.

2 Pointers

We extend our language of types with ⌧⇤, where ⌧ is a (non-void) type.

⌧ ::= int | bool | ⌧⇤

In the language of expressions, we can allocate a cell on the heap that can hold
a value of type ⌧ , we have a distinguished null pointer, and we can dereference a
pointer to obtain the stored value.

e ::= . . . | alloc(⌧) | ⇤e | null

They have the following typing rules:

� ` alloc(⌧) : ⌧⇤
� ` e : ⌧⇤
� ` ⇤e : ⌧ � ` null : ⌧⇤

At first glance they might be harmless, but the third rule should raise a red flag:
we previously claimed in our mode analysis of typing, that given � and e we can
synthesize the type of e (if it exists). However, in the rule for null that’s not the case.

1C0 does not have stack-allocated arrays
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3 Detail: Typing ⇤null

We cannot synthesize a definite type for null. Unfortunately, we also cannot, in
general, know what type to check an expression against. So we’ll synthesize an
indefinite type, let’s call it any ⇤, the type of a pointer to data of potentially any
type.

Now we have to walk through all the constructs in the language to see whether
we can resolve any ⇤, assuming it can only arise for null. Let’s consider pointer
equality first, that is, an expression p == q where p and q are pointers. If p and q

both have definite type ⌧⇤, we just treat it as well-typed. If one has type ⌧⇤ and the
other ⌧ 0⇤ for ⌧ 6= ⌧

0, we reject the comparison as ill-typed. If one is definite ⌧⇤ and
the other indefinite, we allow the comparison, because the indefinite type has only
one value (null) which can be compared to a pointer of any definite type. If both
are indefinite, we would be comparing null with null, which is also fine.

One way to capture this is to have a so-called type subsumption rule that allows
a “silent” transition:

� ` e : any ⇤
� ` e : ⌧⇤

Then three rules suffice for our overloaded equality:2

� ` e1 : ⌧⇤ � ` e2 : ⌧⇤
� ` e1 == e2 : bool

� ` e1 : int � ` e2 : int

� ` e1 == e2 : bool

� ` e1 : bool � ` e2 : bool

� ` e1 == e2 : bool

A difficulty arises with the dereferencing operator: ⇤null would have any type,
which means it could essentially appear anywhere. Of course, when run, it will
always yield an exception, since dereferencing the null pointer is disallowed. We
therefore rewrite our earlier rule to disallow dereferencing values of indefinite
type.

� ` e : ⌧⇤ � 6 ` e : any ⇤
� ` ⇤e : ⌧

In particular ⇤null is disallowed, and so is ⇤(b ? null : null) and variants thereof,
because the conditional still has indefinite type any⇤. Of course, indefinite types
are not part of the source language and only used internally during type checking.

4 Dynamic Semantics for Pointers

A value of type ⌧⇤ is just an address where a value of type ⌧ is stored, or the special
address 0. Allocation returns an unused address, and dereferencing the pointer
retrieves the stored value. But where is the store? We currently only carry an

2Actually, in this language fragment just one would suffice, since elements of all types can be
compared for equality.
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for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; ⌘ ` ⇤eBK �! H ; S ; ⌘ ` eB (⇤_ , K)

H ; S ; ⌘ ` aB (⇤_ , K) �! H ; S ; ⌘ ` H(a)BK (a 6= 0)

H ; S ; ⌘ ` aB (⇤_ , K) �! exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a in H . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e) : [⌧ 0]

Recall that in typings of statements, ⌧ 0 is the return type of the function that we are
currently typing. The rule for assignment is valid for every ⌧

0.
In the operational semantics we now distinguish variables from other destina-

tions, since variables are on the stack (or in registers), while destinations ⇤d are on
the heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e) I K �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c]B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)
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environment ⌘ that maps variables to their values. We now also carry a heap H that
maps addresses to stored values.

Evaluation of expressions may change the heap, because it may call a function
that changes its state. The state of the abstract machine therefore carries heaps,
stacks, and continuations.

H ; S ; ⌘ ` eBK

Here the semicolon ’;’ is just a separator between the heap H , the stack S, and the
current environment ⌘.

Given heap H , stack S, and environment ⌘, we evaluate expression e with
continuation K.

Execution of statements is similarly generalized.
All the prior transition rules leave the heap unchanged. For example

H ; S ; ⌘ ` e1 � e2 BK �! H ; S ; ⌘ ` e1 B (_� e2 , K)

The new rules for pointers should be not particularly surprising. We write a for
addresses, in our architecture a 64-bit word. The expression null is mapped to the
address 0. Allocation returns a fresh address a and maps it to an appropriate de-
fault value in the new heap.

H ; S ; ⌘ ` nullBK �! H ; S ; ⌘ ` 0BK

H ; S ; ⌘ ` alloc(⌧)BK �! H[a 7! default(⌧)] ; S ; ⌘ ` aBK

[a, a+ |⌧ |) \ dom(H) = { }, a 6= 0

The side condition states that none of the allocated addresses are already in the
domain of H , and that a may not be 0 (which would correspond to the null pointer).
Freshly allocated cells are initialized with a default value for the type ⌧ . In the
implementation, this is arranged to always be 0 (in whatever word length required
by the size of ⌧ ). For booleans this means false, for integers 0 and for pointers null
in the source language.

For the implementation of this rule, we need to know the sizes of each type.
This is, of course, highly dependent on the processor architecture and conventions.
For this course, we compile to x86-64, in which case we have:

|int| = 4
|bool| = 4
|⌧⇤| = 8
|⌧ [ ]| = 8

Dereferencing a pointer just retrieves from the address, assuming it is not 0. If
it is 0, we raise the memory exception mem, which for us will be the signal SIGUSR2
(12) on our architecture. (We use SIGUSR2 instead of the obvious choice, SIGSEGV,
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ing the pointer retrieves the stored value. But where is the store? We currently only
carry an environment ⌘ that maps variables to their values. We now also carry a
heap H that maps addresses to stored values.

A question that arises is how we should represent addresses, that is, the domain
of the heap H . One possibility would be to say that addresses have 64 bits like in
our target architecture. The benefit of this approach is that the abstract machine
remains very close to the real machine on which compiled programs execute. The
downside is that we only have a finite amount of addresses and that we can run
out of memory: for example if we allocate space for an integer 264 times then ex-
ecution will get stuck or have to throw an exception. At first sight, this seems to
be a good specification. However, what if the runtime provides a garbage collec-
tor that automatically frees memory that is not reachable from the stack anymore?
Then our dynamic semantics would potentially require to throw an out of memory
exception even though there is still plenty of memory left.

To deal with all possible implementations and behaviors of the operating sys-
tem, we are treating memory failures in the same way we treat stack overflow. We
do not model them in the high-level dynamic semantics but allow that they can
happen at runtime. This is why we assume we have an infinite address space and
that the heap maps natural numbers to values.

To keep track of the free memory we also store a pointer to the next available
address. For simplicity, we assume that this pointer is part of the heap and stored
at a special address next

H : (N [ {next}) ! Val

Evaluation of expressions may change the heap, because it may call a function
that changes its state. The state of the abstract machine therefore carries heaps,
stacks, and continuations.

H ; S ; ⌘ ` eBK

Here the semicolon ’;’ is just a separator between the heap H , the stack S, and the
current environment ⌘. The state should be read as follows.

Given heap H , stack S, and environment ⌘, we evaluate expression e with
continuation K.

Execution of statements is similarly generalized to states of the form.

H ; S ; ⌘ ` s I K

All the prior transition rules leave the heap unchanged. For example

H ; S ; ⌘ ` e1 � e2 BK �! H ; S ; ⌘ ` e1 B (_� e2 , K)

In the following, we present the new rules for manipulating pointers. The expres-
sion null evaluates to the address 0. Allocation returns a fresh address a and maps
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for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; ⌘ ` ⇤eBK �! H ; S ; ⌘ ` eB (⇤_ , K)

H ; S ; ⌘ ` aB (⇤_ , K) �! H ; S ; ⌘ ` H(a)BK (a 6= 0)

H ; S ; ⌘ ` aB (⇤_ , K) �! exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a in H . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e)

In the operational semantics we now distinguish variables from other destinations,
since variables are on the stack (or in registers), while destinations ⇤d are on the
heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e)BK �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c]B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)
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for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; ⌘ ` ⇤eBK �! H ; S ; ⌘ ` eB (⇤_ , K)

H ; S ; ⌘ ` aB (⇤_ , K) �! H ; S ; ⌘ ` H(a)BK (a 6= 0)

H ; S ; ⌘ ` aB (⇤_ , K) �! exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a in H . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e)

In the operational semantics we now distinguish variables from other destinations,
since variables are on the stack (or in registers), while destinations ⇤d are on the
heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e)BK �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c]B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)
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for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; ⌘ ` ⇤eBK �! H ; S ; ⌘ ` eB (⇤_ , K)

H ; S ; ⌘ ` aB (⇤_ , K) �! H ; S ; ⌘ ` H(a)BK (a 6= 0)

H ; S ; ⌘ ` aB (⇤_ , K) �! exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a in H . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e)

In the operational semantics we now distinguish variables from other destinations,
since variables are on the stack (or in registers), while destinations ⇤d are on the
heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e)BK �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c]B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)
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for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; ⌘ ` ⇤eBK �! H ; S ; ⌘ ` eB (⇤_ , K)

H ; S ; ⌘ ` aB (⇤_ , K) �! H ; S ; ⌘ ` H(a)BK (a 6= 0)

H ; S ; ⌘ ` aB (⇤_ , K) �! exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a in H . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e)

In the operational semantics we now distinguish variables from other destinations,
since variables are on the stack (or in registers), while destinations ⇤d are on the
heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e)BK �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c]B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)
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for two reasons: it allows us to better distinguish stack overflow, and it allows us
to distinguish “accidental” and “on purpose” memory errors.)

H ; S ; ⌘ ` ⇤eBK �! H ; S ; ⌘ ` eB (⇤_ , K)

H ; S ; ⌘ ` aB (⇤_ , K) �! H ; S ; ⌘ ` H(a)BK (a 6= 0)

H ; S ; ⌘ ` aB (⇤_ , K) �! exception(mem) (a = 0)

In order to implement this correctly at a lower level of abstraction, we need to
know the size of the data stored at location a in H . Because of our conventions, this
would always be 4 or 8; in C, other sizes would be possible.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e) : [⌧ 0]

Recall that in typings of statements, ⌧ 0 is the return type of the function that we are
currently typing. The rule for assignment is valid for every ⌧

0.
In the operational semantics we now distinguish variables from other destina-

tions, since variables are on the stack (or in registers), while destinations ⇤d are on
the heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e) I K �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c]B nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)
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5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ⇤d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just type destinations as expressions.

� ` d : ⌧ � ` e : ⌧

� ` assign(d, e) : [⌧ 0]

Recall that in typings of statements, ⌧ 0 is the return type of the function that we are
currently typing. The rule for assignment is valid for every ⌧

0.
In the operational semantics we now distinguish variables from other destina-

tions, since variables are on the stack (or in registers), while destinations ⇤d are on
the heap. First, a reminder for assignment if the destination is a variable.

H ; S ; ⌘ ` assign(x, e) I K �! H ; S ; ⌘ ` eB (assign(x, _) , K)
H ; S ; ⌘ ` cB (assign(x, _) , K) �! H ; S ; ⌘[x 7! c] ` nop I K

If the destination is not a variable, we proceed from left to right, first determining
the address which is the real memory destination, then evaluating the right-hand
side.

H ; S ; ⌘ ` assign(⇤d, e) I K �! H ; S ; ⌘ ` dB (assign(⇤_, e) , K)
H ; S ; ⌘ ` aB (assign(⇤_, e) , K) �! H ; S ; ⌘ ` eB (assign(⇤a, _) , K)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! H[a 7! c] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` cB (assign(⇤a, _) , K) �! exception(mem) (a = 0)

Evaluating Assignments

Based on the rules above, what should happen in the following code fragments.

int* p = NULL;

*p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate p to 0. Second we evaluate 1/0. This will raise an arithmetic
exception, which is therefore the outcome of the execution.

int** p = NULL;

**p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate ⇤p. Since the value of p is 0 this raises a memory exception,
which is therefore the outcome of the execution.
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Here, a, a1, a3, a4 would be 64 bit temps, t2 would be 32 bits, and t5 would be k

bytes. We have written $k to indicate that this is an immediate operand (that is, a
compile-time constant). Some compound memory operands can be used on x86-64
to avoid some intermediate computation such as a1 or a4. Also, we can exploit
properties of two’s complement arithmetic and combine the two comparisons into
a single unsigned comparison of i and t2.

Of course, there are still limits to interoperability with C: if C passes an array to
a C0 program, we somehow need to find out its length and marshal it somewhere
else so we can add the length information. Alternatively, we can compile the code
in unsafe mode where array bounds are not checked, which is just what C does.

Executing assignments with the new destinations is quite similar to reading.

H ; S ; ⌘ ` assign(d1[e2], e3) I K �! H ; S ; ⌘ ` e1 B (assign(_[e2], e3) , K)
H ; S ; ⌘ ` aB (assign(_[e2], e3) , K) �! H ; S ; ⌘ ` e2 B (assign(a[_], e3) , K)
H ; S ; ⌘ ` iB (assign(a[_], e3) , K) �! H ; S ; ⌘ ` e3 B (assign(a+ i|⌧ |, _) , K)

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (assign(a[_], e3) , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)
H ; S ; ⌘ ` cB (assign(b, _) , K) �! H[b 7! c] ; S ; ⌘ ` nop I K

7 Detail: Default Values of Array Type

Each type has a default value. For integers it is 0, for booleans 0 (which represents
false), and for pointers it is 0 (which represents null). The default for arrays is also
0, which represents an array of size 0. We can never legally access any element of
this default array, since the condition that the index must be in bounds can never be
satisfied. Nevertheless, arrays can be compared for equality and disequality (which
is a comparison of their address), so zero-sized arrays are not entirely useless. In
particular, alloc array(0) must return a fresh zero-sized array that’s different from
all other arrays already allocated, and also different from the default array of size
0.

The fact that a = 0 is a valid array address creates an issue when we try to
access M [a � 8] to obtain its size. We could rely on the operating system to raise
a memory exception, although that may not be reliably so. To be sure, we should
check whether a is 0 before doing address calculation. Of course, if we are in unsafe
mode when bounds-checking is turned off (which we will implement in Lab 5),
then this is not necessary.

8 Detail: Compound Assignment Operators

Previously, we could expand x += e to x = x + e. However, with the addition of
arrays, this has become problematic. The difficulty is d1[e2] += e3. After syntac-
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The code pattern for e1{⌧}[e2] and |⌧ | = k could be like this:

cogen(e1, a) (a new)
cogen(e2, i) (i new)
a1  a� 8
t2  M [a1]
if (i < 0) goto error
if (i � t2) goto error
a3  i ⇤ $k
a4  a+ a3

t5  M [a4]

Here, a, a1, a3, a4 would be 64 bit temps, t2 would be 32 bits, and t5 would be k

bytes. We have written $k to indicate that this is an immediate operand (that is, a
compile-time constant). Some compound memory operands can be used on x86-64
to avoid some intermediate computation such as a1 or a4. Also, we can exploit
properties of two’s complement arithmetic and combine the two comparisons into
a single unsigned comparison of i and t2.

Of course, there are still limits to interoperability with C: if C passes an array to
a C0 program, we somehow need to find out its length and marshal it somewhere
else so we can add the length information. Alternatively, we can compile the code
in unsafe mode where array bounds are not checked, which is just what C does.

Executing assignments with the new destinations is quite similar to reading.

H ; S ; ⌘ ` assign(d{⌧}[e2], e3) I K �! H ; S ; ⌘ ` dB (assign(_{⌧}[e2], e3) , K)
H ; S ; ⌘ ` aB (assign(_{⌧}[e2], e3) , K) �! H ; S ; ⌘ ` e2 B (assign(a{⌧}[_], e3) , K)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! H ; S ; ⌘ ` e3 B (assign(a+ i|⌧ |, _) , K)

a 6= 0, 0  i < length(a)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)
H ; S ; ⌘ ` cB (assign(b, _) , K) �! H[b 7! c] ; S ; ⌘ ` nop I K

Here, we have written length(a) for H(a� 8).

7 Values of Array Type

Each type has a default value. For integers it is 0, for booleans 0 (which represents
false), and for pointers it is 0 (which represents null). The default for arrays is also
0, which represents an array of size 0. We can never legally access any element of
this default array, since the condition that the index must be in bounds can never be
satisfied. Nevertheless, arrays can be compared for equality and disequality (which
is a comparison of their address), so zero-sized arrays are not entirely useless. In
particular, alloc array(0) must return a fresh zero-sized array that’s different from
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compile-time constant). Some compound memory operands can be used on x86-64
to avoid some intermediate computation such as a1 or a4. Also, we can exploit
properties of two’s complement arithmetic and combine the two comparisons into
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Of course, there are still limits to interoperability with C: if C passes an array to
a C0 program, we somehow need to find out its length and marshal it somewhere
else so we can add the length information. Alternatively, we can compile the code
in unsafe mode where array bounds are not checked, which is just what C does.

Executing assignments with the new destinations is quite similar to reading.

H ; S ; ⌘ ` assign(d{⌧}[e2], e3) I K �! H ; S ; ⌘ ` dB (assign(_{⌧}[e2], e3) , K)
H ; S ; ⌘ ` aB (assign(_{⌧}[e2], e3) , K) �! H ; S ; ⌘ ` e2 B (assign(a{⌧}[_], e3) , K)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! H ; S ; ⌘ ` e3 B (assign(a+ i|⌧ |, _) , K)

a 6= 0, 0  i < length(a)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)
H ; S ; ⌘ ` cB (assign(b, _) , K) �! H[b 7! c] ; S ; ⌘ ` nop I K

Here, we have written length(a) for H(a� 8).

7 Values of Array Type

Each type has a default value. For integers it is 0, for booleans 0 (which represents
false), and for pointers it is 0 (which represents null). The default for arrays is also
0, which represents an array of size 0. We can never legally access any element of
this default array, since the condition that the index must be in bounds can never be
satisfied. Nevertheless, arrays can be compared for equality and disequality (which
is a comparison of their address), so zero-sized arrays are not entirely useless. In
particular, alloc array(0) must return a fresh zero-sized array that’s different from
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Here, a, a1, a3, a4 would be 64 bit temps, t2 would be 32 bits, and t5 would be k

bytes. We have written $k to indicate that this is an immediate operand (that is, a
compile-time constant). Some compound memory operands can be used on x86-64
to avoid some intermediate computation such as a1 or a4. Also, we can exploit
properties of two’s complement arithmetic and combine the two comparisons into
a single unsigned comparison of i and t2.

Of course, there are still limits to interoperability with C: if C passes an array to
a C0 program, we somehow need to find out its length and marshal it somewhere
else so we can add the length information. Alternatively, we can compile the code
in unsafe mode where array bounds are not checked, which is just what C does.

Executing assignments with the new destinations is quite similar to reading.

H ; S ; ⌘ ` assign(d{⌧}[e2], e3) I K �! H ; S ; ⌘ ` dB (assign(_{⌧}[e2], e3) , K)
H ; S ; ⌘ ` aB (assign(_{⌧}[e2], e3) , K) �! H ; S ; ⌘ ` e2 B (assign(a{⌧}[_], e3) , K)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! H ; S ; ⌘ ` e3 B (assign(a+ i|⌧ |, _) , K)

a 6= 0, 0  i < length(a)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)
H ; S ; ⌘ ` cB (assign(b, _) , K) �! H[b 7! c] ; S ; ⌘ ` nop I K

Here, we have written length(a) for H(a� 8).

7 Values of Array Type

Each type has a default value. For integers it is 0, for booleans 0 (which represents
false), and for pointers it is 0 (which represents null). The default for arrays is also
0, which represents an array of size 0. We can never legally access any element of
this default array, since the condition that the index must be in bounds can never be
satisfied. Nevertheless, arrays can be compared for equality and disequality (which
is a comparison of their address), so zero-sized arrays are not entirely useless. In
particular, alloc array(0) must return a fresh zero-sized array that’s different from
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cogen(e1, a) (a new)
cogen(e2, i) (i new)
a1  a� 8
t2  M [a1]
if (i < 0) goto error
if (i � t2) goto error
a3  i ⇤ $k
a4  a+ a3

t5  M [a4]

Here, a, a1, a3, a4 would be 64 bit temps, t2 would be 32 bits, and t5 would be k

bytes. We have written $k to indicate that this is an immediate operand (that is, a
compile-time constant). Some compound memory operands can be used on x86-64
to avoid some intermediate computation such as a1 or a4. Also, we can exploit
properties of two’s complement arithmetic and combine the two comparisons into
a single unsigned comparison of i and t2.

Of course, there are still limits to interoperability with C: if C passes an array to
a C0 program, we somehow need to find out its length and marshal it somewhere
else so we can add the length information. Alternatively, we can compile the code
in unsafe mode where array bounds are not checked, which is just what C does.

Executing assignments with the new destinations is quite similar to reading.

H ; S ; ⌘ ` assign(d{⌧}[e2], e3) I K �! H ; S ; ⌘ ` dB (assign(_{⌧}[e2], e3) , K)
H ; S ; ⌘ ` aB (assign(_{⌧}[e2], e3) , K) �! H ; S ; ⌘ ` e2 B (assign(a{⌧}[_], e3) , K)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! H ; S ; ⌘ ` e3 B (assign(a+ i|⌧ |, _) , K)

a 6= 0, 0  i < length(a)
H ; S ; ⌘ ` iB (assign(a{⌧}[_], e3) , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)
H ; S ; ⌘ ` cB (assign(b, _) , K) �! H[b 7! c] ; S ; ⌘ ` nop I K

Here, we have written length(a) for H(a� 8).

7 Values of Array Type

Each type has a default value. For integers it is 0, for booleans 0 (which represents
false), and for pointers it is 0 (which represents null). The default for arrays is also
0, which represents an array of size 0. We can never legally access any element of
this default array, since the condition that the index must be in bounds can never be
satisfied. Nevertheless, arrays can be compared for equality and disequality (which
is a comparison of their address), so zero-sized arrays are not entirely useless. In
particular, alloc array(0) must return a fresh zero-sized array that’s different from
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length(a) = H(a-8)
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Struct Declarations and Definitions

Declaring structs:

Lecture Notes on
Structs

15-411: Compiler Design
Frank Pfenning and Jan Hoffmann

Lecture 16
October 20, 2016

1 Introduction

Pointers allow access to data stored in the heap. Arrays allow us to aggregate
data of the same type. Structs provides means to aggregate data of different types.
This creates few additional challenges in the C0 language definition and also in its
implementation (and, of course, the language fragment L4 used in this course).

2 Struct Declarations and Definitions

C0 (and L4) support a subset of the struct-related constructs in C. Structs may be
declared with

struct s;

or they can be defined by specifying the fields f1, . . . , fn of the struct with their types

struct s {⌧1 f1; . . . ⌧n fn; };

We will elaborate this into a form where, for typing purposes, we know s.fi : ⌧i.
For compilation purposes we also compute o↵set(s, fi); see remarks later in this
lecture.

Because structs might require an arbitrary amount of memory, we stipulate that
they can never be held in variables, but must be allocated on the heap. To specify
this concisely we distinguish small types from large types. Values of small type fit in
registers, while values of large type must be on the heap. In L4, we have

• small types int, bool, ⌧⇤, ⌧ [ ], and

• large types struct s

We have the following significant restrictions on types:
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Type
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Pointers allow access to data stored in the heap. Arrays allow us to aggregate
data of the same type. Structs provides means to aggregate data of different types.
This creates few additional challenges in the C0 language definition and also in its
implementation (and, of course, the language fragment L4 used in this course).

2 Struct Declarations and Definitions

C0 (and L4) support a subset of the struct-related constructs in C. Structs may be
declared with

struct s;

or they can be defined by specifying the fields f1, . . . , fn of the struct with their types
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During type derivation we write the following to indicate that field  has 
type  in the definition of s:

fi
τi

Type



Small and Large Types

• Arrays are represented with pointers (but cannot be dereferenced) 
-> they can be compared and stored in registers


• Structs are usually also pointers but they can be dereferenced


• Structs are large types that do not fit in registers

Large types:
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declared with

struct s;

or they can be defined by specifying the fields f1, . . . , fn of the struct with their types
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For compilation purposes we also compute o↵set(s, fi); see remarks later in this
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Small types:



Restrictions on Large Types

• Local variables, function parameters, and return values must have 
small type


• Left- and right-hand sides of assignments must have small type


• Conditional expressions must have small type


• Equality and disequality must compare expressions of small type


• Expressions used as statements must have small type

In C0



Static Semantics



Semantic Rules For Structs I

• Field names occupy their own namespace: allowed to overlap with 
variable, function, or type names (but they must be distinct from 
keywords)


• The same field names can be used in different struct definitions


• In a given struct definition, all field names must be distinct


• A struct may be defined at most once



Semantic Rules For Structs II

• Types struct s that have not (yet) been defined may be referenced as 
long as their size is irrelevant


• Size is relevant for


‣ alloc(struct s)

‣ alloc_array(struct s,e)

‣ definitions of structs if structs are types of fields


• Struct declarations are optional (but encouraged as good style) 


‣ An occurrence of struct s in a context where its size is irrelevant 
serves as an implicit declaration of the type struct s.



Expressions and Typing

Extend types with struct types:
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1 Introduction

In this lecture we extend our language with the ability to allocate data structures
on the so-called heap. Addresses of heap elements serve as pointers which can be
dereferenced to read stored values, or used as destinations for write operations.
Similarly, arrays are stored on the heap1 and via appropriate address calculations.

Adding mutable store requires yet again a significant change in the structure of
the rules of the dynamic semantics. By contrast, the static semantics is relatively
easy to extend.

2 Pointers

We extend our language of types with ⌧⇤, where ⌧ is a (non-void) type.

⌧ ::= int | bool | ⌧⇤

In the language of expressions, we can allocate a cell on the heap that can hold
a value of type ⌧ , we have a distinguished null pointer, and we can dereference a
pointer to obtain the stored value.

e ::= . . . | alloc(⌧) | ⇤e | null

They have the following typing rules:

� ` alloc(⌧) : ⌧⇤
� ` e : ⌧⇤
� ` ⇤e : ⌧ � ` null : ⌧⇤

At first glance they might be harmless, but the third rule should raise a red flag:
we previously claimed in our mode analysis of typing, that given � and e we can
synthesize the type of e (if it exists). However, in the rule for null that’s not the case.

1C0 does not have stack-allocated arrays
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1 Introduction

Pointers allow access to data stored in the heap. Arrays allow us to aggregate
data of the same type. Structs provides means to aggregate data of different types.
This creates few additional challenges in the C0 language definition and also in its
implementation (and, of course, the language fragment L4 used in this course).

2 Struct Declarations and Definitions

C0 (and L4) support a subset of the struct-related constructs in C. Structs may be
declared with

struct s;

or they can be defined by specifying the fields f1, . . . , fn of the struct with their types

struct s {⌧1 f1; . . . ⌧n fn; };

We will elaborate this into a form where, for typing purposes, we know s.fi : ⌧i.
For compilation purposes we also compute o↵set(s, fi); see remarks later in this
lecture.

Because structs might require an arbitrary amount of memory, we stipulate that
they can never be held in variables, but must be allocated on the heap. To specify
this concisely we distinguish small types from large types. Values of small type fit in
registers, while values of large type must be on the heap. In L4, we have

• small types int, bool, ⌧⇤, ⌧ [ ], and

• large types struct s

We have the following significant restrictions on types:
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Structs L16.2

• Local variables, function parameters, and return values must have small type.

• Left- and right-hand sides of assignments must have small type.

• Conditional expressions must have small type.

• Equality and disequality must compare expressions of small type.

• Expressions used as statements must have small type.

There are some scoping requirements imposed on structs, but they are surpris-
ingly lenient. The reason is that undefined structs provide a very weak form of
polymorphism. For example, we can pass values of type struct s ⇤ as pointers
without needing to know how struct s is defined, as long as we don’t attempt to
access its fields. The following static semantic rules apply:

1. Field names occupy their own name space, so they cannot clash with variable,
function, or type names (but they must be distinct from keywords). The same
field names can be used in different struct definitions.

2. In a given struct definition, all field names must be distinct.

3. A struct may be defined at most once.

4. Types struct s that have not (yet) been defined may be referenced as long as
their size is irrelevant. The size of a struct is relevant in expressions alloc(struct s),
alloc array(struct s, e), and in struct definitions when serving as the type of a
field.

5. An occurrence of struct s in a context where its size is irrelevant serves as an
implicit declaration of the type struct s. In effect this means that explicit struct
declarations are optional (but encouraged as good style).

3 Expressions and Typing

The extension of the language of expressions and destinations is surprisingly eco-
nomical.

e ::= . . . | e.f
d ::= . . . | d.f

We also define (typically during elaboration):

e!f ⌘ (⇤e).f

which can also be used as a destination in the form d!f .
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Extend expressions with field access:

Structs L16.2

• Local variables, function parameters, and return values must have small type.

• Left- and right-hand sides of assignments must have small type.

• Conditional expressions must have small type.

• Equality and disequality must compare expressions of small type.

• Expressions used as statements must have small type.

There are some scoping requirements imposed on structs, but they are surpris-
ingly lenient. The reason is that undefined structs provide a very weak form of
polymorphism. For example, we can pass values of type struct s ⇤ as pointers
without needing to know how struct s is defined, as long as we don’t attempt to
access its fields. The following static semantic rules apply:

1. Field names occupy their own name space, so they cannot clash with variable,
function, or type names (but they must be distinct from keywords). The same
field names can be used in different struct definitions.

2. In a given struct definition, all field names must be distinct.

3. A struct may be defined at most once.

4. Types struct s that have not (yet) been defined may be referenced as long as
their size is irrelevant. The size of a struct is relevant in expressions alloc(struct s),
alloc array(struct s, e), and in struct definitions when serving as the type of a
field.

5. An occurrence of struct s in a context where its size is irrelevant serves as an
implicit declaration of the type struct s. In effect this means that explicit struct
declarations are optional (but encouraged as good style).

3 Expressions and Typing

The extension of the language of expressions and destinations is surprisingly eco-
nomical.

e ::= . . . | e.f
d ::= . . . | d.f

We also define (typically during elaboration):

e!f ⌘ (⇤e).f

which can also be used as a destination in the form d!f .
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Define during elaboration:

Structs L16.2

• Local variables, function parameters, and return values must have small type.

• Left- and right-hand sides of assignments must have small type.

• Conditional expressions must have small type.

• Equality and disequality must compare expressions of small type.

• Expressions used as statements must have small type.

There are some scoping requirements imposed on structs, but they are surpris-
ingly lenient. The reason is that undefined structs provide a very weak form of
polymorphism. For example, we can pass values of type struct s ⇤ as pointers
without needing to know how struct s is defined, as long as we don’t attempt to
access its fields. The following static semantic rules apply:

1. Field names occupy their own name space, so they cannot clash with variable,
function, or type names (but they must be distinct from keywords). The same
field names can be used in different struct definitions.

2. In a given struct definition, all field names must be distinct.

3. A struct may be defined at most once.

4. Types struct s that have not (yet) been defined may be referenced as long as
their size is irrelevant. The size of a struct is relevant in expressions alloc(struct s),
alloc array(struct s, e), and in struct definitions when serving as the type of a
field.

5. An occurrence of struct s in a context where its size is irrelevant serves as an
implicit declaration of the type struct s. In effect this means that explicit struct
declarations are optional (but encouraged as good style).

3 Expressions and Typing

The extension of the language of expressions and destinations is surprisingly eco-
nomical.

e ::= . . . | e.f
d ::= . . . | d.f

We also define (typically during elaboration):

e!f ⌘ (⇤e).f

which can also be used as a destination in the form d!f .
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Type rule:

Structs L16.3

� ` e : struct s s.f : ⌧

� ` e.f : ⌧

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (⇤p).y should evaluate to 0. But what is the value of ⇤p? We could
say that ⇤p evaluates to the value representing the entire struct, and write rules like
this:

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` eB (_.y , K)
H ; S ; ⌘ ` {x = v1, y = v2}B (_.y , K) �! H ; S ; ⌘ ` v2 BK

but such a rule would seem to indicate that, in order to evaluate (⇤p).y, we first
read the entire struct out of memory, obtaining the struct value {x = v1, y = v2},
and then we select the correct field v2 from that struct. This is not what will actually
happen when we execute this code. What actually should happen when we read
from (⇤p).f is that we first get the address of the beginning of the struct, p. Next we
take the byte offset of the field y (4, under the x86-64 ABI we are using), counting
from the beginning of the struct, and add that to p. Finally, we retrieve the integer
stored at the address p+ 4.

In C, we could write this symbolically using the address-of operation, and say
that evaluating p->f is the same as evaluating *(&((*p).f)). In general, when
the expression has a large type, we evaluate ⇤e, by taking the value of e but not
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Dynamic Semantics



Dynamics of Structs: Example

Consider the following program fragment:

Structs L16.3

� ` e : struct s s.f : ⌧

� ` e.f : ⌧

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (⇤p).y should evaluate to 0. But what is the value of ⇤p? We could
say that ⇤p evaluates to the value representing the entire struct, and write rules like
this:

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` eB (_.y , K)
H ; S ; ⌘ ` {x = v1, y = v2}B (_.y , K) �! H ; S ; ⌘ ` v2 BK

but such a rule would seem to indicate that, in order to evaluate (⇤p).y, we first
read the entire struct out of memory, obtaining the struct value {x = v1, y = v2},
and then we select the correct field v2 from that struct. This is not what will actually
happen when we execute this code. What actually should happen when we read
from (⇤p).f is that we first get the address of the beginning of the struct, p. Next we
take the byte offset of the field y (4, under the x86-64 ABI we are using), counting
from the beginning of the struct, and add that to p. Finally, we retrieve the integer
stored at the address p+ 4.

In C, we could write this symbolically using the address-of operation, and say
that evaluating p->f is the same as evaluating *(&((*p).f)). In general, when
the expression has a large type, we evaluate ⇤e, by taking the value of e but not
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Structs L16.3

� ` e : struct s s.f : ⌧

� ` e.f : ⌧

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (⇤p).y should evaluate to 0. But what is the value of ⇤p? We could
say that ⇤p evaluates to the value representing the entire struct, and write rules like
this:

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` eB (_.y , K)
H ; S ; ⌘ ` {x = v1, y = v2}B (_.y , K) �! H ; S ; ⌘ ` v2 BK

but such a rule would seem to indicate that, in order to evaluate (⇤p).y, we first
read the entire struct out of memory, obtaining the struct value {x = v1, y = v2},
and then we select the correct field v2 from that struct. This is not what will actually
happen when we execute this code. What actually should happen when we read
from (⇤p).f is that we first get the address of the beginning of the struct, p. Next we
take the byte offset of the field y (4, under the x86-64 ABI we are using), counting
from the beginning of the struct, and add that to p. Finally, we retrieve the integer
stored at the address p+ 4.

In C, we could write this symbolically using the address-of operation, and say
that evaluating p->f is the same as evaluating *(&((*p).f)). In general, when
the expression has a large type, we evaluate ⇤e, by taking the value of e but not
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Structs L16.3

� ` e : struct s s.f : ⌧

� ` e.f : ⌧

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (⇤p).y should evaluate to 0. But what is the value of ⇤p? We could
say that ⇤p evaluates to the value representing the entire struct, and write rules like
this:

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` eB (_.y , K)
H ; S ; ⌘ ` {x = v1, y = v2}B (_.y , K) �! H ; S ; ⌘ ` v2 BK

but such a rule would seem to indicate that, in order to evaluate (⇤p).y, we first
read the entire struct out of memory, obtaining the struct value {x = v1, y = v2},
and then we select the correct field v2 from that struct. This is not what will actually
happen when we execute this code. What actually should happen when we read
from (⇤p).f is that we first get the address of the beginning of the struct, p. Next we
take the byte offset of the field y (4, under the x86-64 ABI we are using), counting
from the beginning of the struct, and add that to p. Finally, we retrieve the integer
stored at the address p+ 4.

In C, we could write this symbolically using the address-of operation, and say
that evaluating p->f is the same as evaluating *(&((*p).f)). In general, when
the expression has a large type, we evaluate ⇤e, by taking the value of e but not
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Evaluation of Field Access

Option: Evaluate the struct first

Structs L16.3

� ` e : struct s s.f : ⌧

� ` e.f : ⌧

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (⇤p).y should evaluate to 0. But what is the value of ⇤p? We could
say that ⇤p evaluates to the value representing the entire struct, and write rules like
this:

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` eB (_.y , K)
H ; S ; ⌘ ` {x = v1, y = v2}B (_.y , K) �! H ; S ; ⌘ ` v2 BK

but such a rule would seem to indicate that, in order to evaluate (⇤p).y, we first
read the entire struct out of memory, obtaining the struct value {x = v1, y = v2},
and then we select the correct field v2 from that struct. This is not what will actually
happen when we execute this code. What actually should happen when we read
from (⇤p).f is that we first get the address of the beginning of the struct, p. Next we
take the byte offset of the field y (4, under the x86-64 ABI we are using), counting
from the beginning of the struct, and add that to p. Finally, we retrieve the integer
stored at the address p+ 4.

In C, we could write this symbolically using the address-of operation, and say
that evaluating p->f is the same as evaluating *(&((*p).f)). In general, when
the expression has a large type, we evaluate ⇤e, by taking the value of e but not
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Structs L16.3

� ` e : struct s s.f : ⌧

� ` e.f : ⌧

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (⇤p).y should evaluate to 0. But what is the value of ⇤p? We could
say that ⇤p evaluates to the value representing the entire struct, and write rules like
this:

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` eB (_.y , K)
H ; S ; ⌘ ` {x = v1, y = v2}B (_.y , K) �! H ; S ; ⌘ ` v2 BK

but such a rule would seem to indicate that, in order to evaluate (⇤p).y, we first
read the entire struct out of memory, obtaining the struct value {x = v1, y = v2},
and then we select the correct field v2 from that struct. This is not what will actually
happen when we execute this code. What actually should happen when we read
from (⇤p).f is that we first get the address of the beginning of the struct, p. Next we
take the byte offset of the field y (4, under the x86-64 ABI we are using), counting
from the beginning of the struct, and add that to p. Finally, we retrieve the integer
stored at the address p+ 4.

In C, we could write this symbolically using the address-of operation, and say
that evaluating p->f is the same as evaluating *(&((*p).f)). In general, when
the expression has a large type, we evaluate ⇤e, by taking the value of e but not
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• This is mathematically correct but how would we implement that?


• We again give a more low-level version

Reflect efficient implementation:

• First get the address of struct p


• Take the field offset of y (4 bytes in this case)


• Retrieve integer at address p+4



Type Information and Field Offset

• Like for arrays, we need type information to compute the memory offset 
of a field


• One way to make the type information available in the dynamics is to 
annotate each field access in the code with the type of the struct (like 
we did for array access)

Structs L15.4

introduce the new construct &e where e has a large type. This is not an extension of
the source language (which would greatly complicate its semantics), but we use it
in the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead. Like with arrays, we need type
information to compute the field offset. So we will enrich the syntax of field ac-
cess with struct types. Types annotation can be inserted during type checking. The
meaning of the new syntactic form

e{⌧1 f1; . . . ⌧n fn; }.f

is that e has type struct s defined by struct s {⌧1 f1; . . . ⌧n fn; }. However, we omit
the type annotations in the following evaluation rules to improve their readability.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;
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• Here, e has type struct s, which is defined by 


• The following evaluation rules omit this type information to improve 
readability

Structs L15.4

introduce the new construct &e where e has a large type. This is not an extension of
the source language (which would greatly complicate its semantics), but we use it
in the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead. Like with arrays, we need type
information to compute the field offset. So we will enrich the syntax of field ac-
cess with struct types. Types annotation can be inserted during type checking. The
meaning of the new syntactic form

e{⌧1 f1; . . . ⌧n fn; }.f

is that e has type struct s defined by struct s {⌧1 f1; . . . ⌧n fn; }. However, we omit
the type annotations in the following evaluation rules to improve their readability.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;
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‘Address Of’ Operator

In C we can get the address of a variable x and a field f using & 

• In C0 we cannot take the address of values


• This would complicated the semantics


• However, we will use the ‘address of’ operator in the semantics

&x x has to be stored 
on the stack.

&((*p).f)



Evaluation of Field Access

• If expression e has a large type, we evaluate *e by evaluating e to an 
address but we don’t dereference it


• This is similar to a destination *d on the left-hand side of an assignment

Rules:

Structs L16.4

dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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Structs L16.4

dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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Structs L16.4

dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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Evaluation of Address Operator
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;

LECTURE NOTES OCTOBER 20, 2016

Type info omitted.

These are the only cases in 
which we can get a large 
type: field deref, pointer 
deref, and array access.



Example: Iteration of Address Calculations
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;
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dereferencing it. This is quite similar to what we have to do when ⇤d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce
the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; ⌘ ` e.f BK �! H ; S ; ⌘ ` ⇤(&(e.f))BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; ⌘ ` &(⇤e)BK �! H ; S ; ⌘ ` eBK

H ; S ; ⌘ ` &(e.f)BK �! H ; S ; ⌘ ` &eB (&(_.f) , K)
H ; S ; ⌘ ` aB (&(_.f) , K) �! H ; S ; ⌘ ` a+ o↵set(s, f)BK

(a 6= 0, a : struct s)
H ; S ; ⌘ ` aB (&(_.f) , K) �! exception(mem) (a = 0)

H ; S ; ⌘ ` &(e1[e2])BK �! H ; S ; ⌘ ` e1 B (&(_[e2]) , K)
H ; S ; ⌘ ` aB (&(_[e2]) , K) �! H ; S ; ⌘ ` e2 B (&(a[_] , K)
H ; S ; ⌘ ` iB (&(a[_] , K) �! H ; S ; ⌘ ` a+ i|⌧ |BK

a 6= 0, 0  i < length(a), a : ⌧ [ ]
H ; S ; ⌘ ` iB (&(a[_] , K) �! exception(mem)

a = 0 or i < 0 or i � length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;

LECTURE NOTES OCTOBER 20, 2016

Have to compute the 
address of y.



Example: Iteration of Address Calculations
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we have to compute the address of (⇤L).B.y. Such a computation would proceed
as follows:

H ; S ; ⌘ ` assign(x, (⇤L).B.y) I K

�! H ; S ; ⌘ ` ((⇤L).B.y) B (assign(x, _) , K)
�! H ; S ; ⌘ ` ⇤(&((⇤L).B.y)) B (assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B.y) B (⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B) B (&(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &(⇤L) B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` L B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` a B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)

(given that H ; S ; ⌘(L) = a, a 6= 0)
�! H ; S ; ⌘ ` a+ 8 B (&(_.y) , ⇤(_) , assign(x, _) , K)

(given that o↵set(line, B) = 8)
�! H ; S ; ⌘ ` a+ 12 B ⇤(_) , assign(x, _) , K

(given that o↵set(point, y) = 4)
�! H ; S ; ⌘ ` c B (assign(x, _) , K)

(given that H(a+ 12) = c)
�! H ; S ; ⌘[x 7! c] ` nop I K

5 Revisiting Assignment

We can exploit this new construct to simplify rules for assignment to destinations
that are not variables (that is, they denote addresses on the heap).

H ; S ; ⌘ ` assign(d, e) I K �! H ; S ; ⌘ ` &dB (assign(_, e) , K) (d 6= x)
H ; S ; ⌘ ` aB (assign(_, e) , K) �! H ; S ; ⌘ ` eB (assign(a, _) , K)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! H[a 7! v] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! exception(mem) (a = 0)

When structs are allocated in memory, all the fields are initialized with their default
values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
new form asnop(d,�, e) when d 6= x, then these rules work to describe dynamic
semantics:

H ; S ; ⌘ ` asnop(d,�, e) I K �! H ; S ; ⌘ ` &dB (asnop(_,�, e) , K)
H ; S ; ⌘ ` aB (asnop(_,�, e) , K) �! H ; S ; ⌘ ` ⇤a� eB (assign(a, _) , K)
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Revisiting Assignment

We can simplify the rules for assignments:

Structs L16.5

we have to compute the address of (⇤L).B.y. Such a computation would proceed
as follows:

H ; S ; ⌘ ` assign(x, (⇤L).B.y) I K

�! H ; S ; ⌘ ` ((⇤L).B.y) B (assign(x, _) , K)
�! H ; S ; ⌘ ` ⇤(&((⇤L).B.y)) B (assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B.y) B (⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B) B (&(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &(⇤L) B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` L B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` a B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)

(given that H ; S ; ⌘(L) = a, a 6= 0)
�! H ; S ; ⌘ ` a+ 8 B (&(_.y) , ⇤(_) , assign(x, _) , K)

(given that o↵set(line, B) = 8)
�! H ; S ; ⌘ ` a+ 12 B ⇤(_) , assign(x, _) , K

(given that o↵set(point, y) = 4)
�! H ; S ; ⌘ ` c B (assign(x, _) , K)

(given that H(a+ 12) = c)
�! H ; S ; ⌘[x 7! c] ` nop I K

5 Revisiting Assignment

We can exploit this new construct to simplify rules for assignment to destinations
that are not variables (that is, they denote addresses on the heap).

H ; S ; ⌘ ` assign(d, e) I K �! H ; S ; ⌘ ` &dB (assign(_, e) , K) (d 6= x)
H ; S ; ⌘ ` aB (assign(_, e) , K) �! H ; S ; ⌘ ` eB (assign(a, _) , K)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! H[a 7! v] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! exception(mem) (a = 0)

When structs are allocated in memory, all the fields are initialized with their default
values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
new form asnop(d,�, e) when d 6= x, then these rules work to describe dynamic
semantics:
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�! H ; S ; ⌘ ` a+ 12 B ⇤(_) , assign(x, _) , K

(given that o↵set(point, y) = 4)
�! H ; S ; ⌘ ` c B (assign(x, _) , K)

(given that H(a+ 12) = c)
�! H ; S ; ⌘[x 7! c] ` nop I K
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that are not variables (that is, they denote addresses on the heap).
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When structs are allocated in memory, all the fields are initialized with their default
values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
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values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
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When structs are allocated in memory, all the fields are initialized with their default
values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
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Revisiting Short-Cut Assignments

Consider statements like  d += e  again

• If d is a variable x then we can elaborate to assign(x,x+e)


• If d denotes an address then we need to evaluate d first
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but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
new form asnop(d,�, e) when d 6= x, then these rules work to describe dynamic
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When structs are allocated in memory, all the fields are initialized with their default
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with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
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we have to compute the address of (⇤L).B.y. Such a computation would proceed
as follows:

H ; S ; ⌘ ` assign(x, (⇤L).B.y) I K

�! H ; S ; ⌘ ` ((⇤L).B.y) B (assign(x, _) , K)
�! H ; S ; ⌘ ` ⇤(&((⇤L).B.y)) B (assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B.y) B (⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B) B (&(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &(⇤L) B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` L B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` a B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)

(given that H ; S ; ⌘(L) = a, a 6= 0)
�! H ; S ; ⌘ ` a+ 8 B (&(_.y) , ⇤(_) , assign(x, _) , K)

(given that o↵set(line, B) = 8)
�! H ; S ; ⌘ ` a+ 12 B ⇤(_) , assign(x, _) , K

(given that o↵set(point, y) = 4)
�! H ; S ; ⌘ ` c B (assign(x, _) , K)

(given that H(a+ 12) = c)
�! H ; S ; ⌘[x 7! c] ` nop I K

5 Revisiting Assignment

We can exploit this new construct to simplify rules for assignment to destinations
that are not variables (that is, they denote addresses on the heap).

H ; S ; ⌘ ` assign(d, e) I K �! H ; S ; ⌘ ` &dB (assign(_, e) , K) (d 6= x)
H ; S ; ⌘ ` aB (assign(_, e) , K) �! H ; S ; ⌘ ` eB (assign(a, _) , K)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! H[a 7! v] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! exception(mem) (a = 0)

When structs are allocated in memory, all the fields are initialized with their default
values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
new form asnop(d,�, e) when d 6= x, then these rules work to describe dynamic
semantics:

H ; S ; ⌘ ` asnop(d,�, e) I K �! H ; S ; ⌘ ` &dB (asnop(_,�, e) , K)
H ; S ; ⌘ ` aB (asnop(_,�, e) , K) �! H ; S ; ⌘ ` ⇤a� eB (assign(a, _) , K)
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Behavior of the C0 Reference Compiler

This document concerns discrepancies in evaluation order between the dynamic semantics of
C0 and its reference compiler1. The discrepancies have to do with the evaluation of assignment
operator statements (like d += e).

In the last section, I include a recommendation for how to fix the discrepancies. Fixing these
discrepancies is important for the 15-411/15-611 class, since students are expected to implement
a correct compiler from C0 to x86-64, and to do this, they need to know what “correct” means.

The dynamic semantics analyzed are adapted (with minor renaming of metavariables) from
http://www.cs.cmu.edu/~janh/courses/411/18/lec/16-structs.pdf.

Acknowledgements: Mario Carneiro for discovering the discrepancies.

1 The discrepancies

1. Take the source program ptr-fail.c0:

int main() {

int* x = NULL;

*x += 1 / 0;

return 0;

}

The reference compiler raises a floating point exception (due to the division by zero); the
dynamic semantics report a memory exception (due to the dereference of a null pointer).

2. arr-fail.c0

int main() {

int[] a = alloc_array(int, 1)

a[-1] += 1 / 0;

return 0;

}

Reference compiler: floating point exception
Dynamic semantics: memory exception (out-of-bounds)

3. ptr-succ.c0

int f(int *x) {

*x = 100;

return 1;

}

int main() {

int x = alloc(int);

*x += f(x);

return *x;

}

Reference compiler: return 101
Dynamic semantics: return 1
1http://c0.typesafety.net/downloads.html
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Acknowledgements: Mario Carneiro for discovering the discrepancies.

1 The discrepancies

1. Take the source program ptr-fail.c0:

int main() {

int* x = NULL;

*x += 1 / 0;

return 0;

}

The reference compiler raises a floating point exception (due to the division by zero); the
dynamic semantics report a memory exception (due to the dereference of a null pointer).

2. arr-fail.c0

int main() {

int[] a = alloc_array(int, 1)

a[-1] += 1 / 0;

return 0;

}

Reference compiler: floating point exception
Dynamic semantics: memory exception (out-of-bounds)

3. ptr-succ.c0

int f(int *x) {

*x = 100;

return 1;

}

int main() {

int x = alloc(int);

*x += f(x);

return *x;

}

Reference compiler: return 101
Dynamic semantics: return 1
1http://c0.typesafety.net/downloads.html

1

Returns 101.
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we have to compute the address of (⇤L).B.y. Such a computation would proceed
as follows:

H ; S ; ⌘ ` assign(x, (⇤L).B.y) I K

�! H ; S ; ⌘ ` ((⇤L).B.y) B (assign(x, _) , K)
�! H ; S ; ⌘ ` ⇤(&((⇤L).B.y)) B (assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B.y) B (⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &((⇤L).B) B (&(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` &(⇤L) B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` L B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)
�! H ; S ; ⌘ ` a B (&(_.B) , &(_.y) , ⇤(_) , assign(x, _) , K)

(given that H ; S ; ⌘(L) = a, a 6= 0)
�! H ; S ; ⌘ ` a+ 8 B (&(_.y) , ⇤(_) , assign(x, _) , K)

(given that o↵set(line, B) = 8)
�! H ; S ; ⌘ ` a+ 12 B ⇤(_) , assign(x, _) , K

(given that o↵set(point, y) = 4)
�! H ; S ; ⌘ ` c B (assign(x, _) , K)

(given that H(a+ 12) = c)
�! H ; S ; ⌘[x 7! c] ` nop I K

5 Revisiting Assignment

We can exploit this new construct to simplify rules for assignment to destinations
that are not variables (that is, they denote addresses on the heap).

H ; S ; ⌘ ` assign(d, e) I K �! H ; S ; ⌘ ` &dB (assign(_, e) , K) (d 6= x)
H ; S ; ⌘ ` aB (assign(_, e) , K) �! H ; S ; ⌘ ` eB (assign(a, _) , K)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! H[a 7! v] ; S ; ⌘ ` nop I K (a 6= 0)
H ; S ; ⌘ ` v B (assign(a, _) , K) �! exception(mem) (a = 0)

When structs are allocated in memory, all the fields are initialized with their default
values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x ⇥ e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
new form asnop(d,�, e) when d 6= x, then these rules work to describe dynamic
semantics:

H ; S ; ⌘ ` asnop(d,�, e) I K �! H ; S ; ⌘ ` &dB (asnop(_,�, e) , K)
H ; S ; ⌘ ` aB (asnop(_,�, e) , K) �! H ; S ; ⌘ ` ⇤a� eB (assign(a, _) , K)
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6 Dealing with Different Data Sizes

In L2 and L3 we only had integers and booleans, but in L4 we have data of different
sizes. For small types, we have the following table:

L4 type size in bytes C type
|int| = 4 int

|bool| = 4 int

|⌧⇤| = 8 t *

|⌧ [ ]| = 8 t *

|struct s| = size(s) struct s

Note that we have decided to represent L3 booleans as integers in C, rather than as
members of the type bool (defined as an alias to _Bool). This is because booleans
in C, according to the x86-64 ABI, have width 1 byte and do not need to be aligned.1
Actually, the introduction of type bool to C seems relatively recent, so just using
type int to represent truth values is not inconsistent with the C philosophy. In
full C0 we decided on representing C0 booleans as C booleans, since we also have
characters of width 1 byte and therefore cannot avoid dealing with data of size 1.

The size of a struct type is computed by laying out the structs in memory from
left to right, inserting padding to make sure that each field is properly aligned.
Each integer and boolean must be aligned at 0 modulo 4, each pointer or array
reference must be aligned at 0 modulo 8, and each enclosed struct must be aligned
according to its most stringent field requirement. Furthermore, we add padding
at the end so that the whole struct has a size which is 0 modulo its most stringent
field requirement. This is so arrays can be laid out simply by knowing the size of
its type. The C library function calloc should always return a pointer that is 0
modulo 8 and therefore appropriate for any struct we might want to allocate.

7 Detail: Register Sizes

Dealing with data of different sizes will likely require maintaining additional infor-
mation in your compiler so you can pick the right load/store and register move-
ment instructions (movl vs. movq), the right comparisons (cmpl vs. cmpq), reserve
the appropriate amount of stack space, allocate the appropriate amount of heap
space, and do correct address calculations.

The good news is that in L3 and L4, registers only need to hold 4 byte or 8 byte
values. Still, it is very easy to introduce bugs when you do not explicitly medi-
ate changes in data size. For example, for the intermediate form we recommend

1This created some significant complications in writing the compiler for L3 that we wanted to
avoid.

LECTURE NOTES OCTOBER 20, 2016

• Struct sizes are determined by laying out the fields left to right


• Ints and bools are aligned at 0 modulo 4


• Pointers are aligned at 0 modulo 8


• Structs are aligned according to their most restrictive fields

C0 and C bools 
have size 1 byte.



Register Sizes

• With different seizes you need to maintain more information


• Need to pick the right instructions (movl vs movq, cmpl vs cmpq) 

• Should to allocate right amount of heap or stack space


‣Maintain size information in IRs!


• It is a good idea to keep temp/registers of different sizes separate


• If you want moves from small to large temps then make conversion 
explicit

Structs L16.7

disallowing instructions of the form

d
64  s

32

where s and d are registers of the indicated sizes, but writing one of

d
64  zeroextend s

32

d
64  signextend s

32

and similarly for truncations in the other directions. This should ensure that you
do not accidentally apply incorrect transformations, like copy propagation, if the
destination and source of a “move” have different sizes.

On the x86-64 architecture, both move and arithmetic instructions that target a
32-bit register have the peculiar effect of zero-extending the value into the whole
64-bit register. For example,

MOVL %EAX, %EAX

has an effect: it replaces bits 32–63 of %RAX by 0. Similarly,

XORL %EAX, %EAX

will set all 64 bits of %RAX to 0, not just the lowest 32.
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Disallow: Instead use:

You could always 
use 8 bytes for 

spilling.


