15-411: Structs

Jan Hoffmann

Recap: Pointers and Arrays

Pointers and Arrays: Syntax

Types

T = int | bool | 7 | 7[]
EXxpressions

e ::=...|alloc(7) | xe | null | alloc_array(T,e) | e1]es]

Destinations (I-values)

do=z | +d | dle]

Assignments

assign(d, e)

Pointers and Arrays: Static Semantics

Type rules:
I'Fe: any
I' Falloc(7) : 7 I'F null : any % T e: 7%
I'Fe:m I Fe:anyx I'Fep:7]] T'Feo:int
I'Fxe:T ['Feilea] : 7
I'-d:m I'ke:T I'-e:int

I' |- assign(d, e) : [7'] [' - alloc_array(7,€e) : 7]

Pointers and Arrays: Dynamic Semantics

Transition system that steps between machine states

Machine states (expressions):

Call
Heap memory stack Continuation

H:S;nkFep> K

Variable environment

Machine states (statements):

H:S:nkFsp» K

Recap: Rules for Assignments

Variables:
H ;S ;nkt assign(z,e) » K — H;S:;nker> (assign(x,_), K)

H;S;nkcr> (assign(x,_) , K) — H;S;nz—cFnopr K
Memory destinations:
H ;S ;nt assign(xd,e) » K — H;S;nkd> (assign(x_,e) , K)
H;S;nkar (assign(x_,e) , K) — H ;S ;ntker (assign(xa,_) , K)
H ;S ;nkcr> (assign(xa,_), K) — Hla—c|;S;nFnopr» K (a # 0)

H ;S ;ntcp> (assign(xa,_) , K) o exception(mem) (a =0)

Recap: Array Assignment

;55 n - assign(d{r}lea], e3) » K

.S s nkar> (assign(_{7}[ea], e3) , K)

;S ki (assign(a{r}[_],e3) , K)

;S n ki (assign(a{r}[_],e3) , K)

H;S;nkcp> (assign(b,_) , K)

—

—

length(a) = H(a-8)

H ;S ;ntdr (assign(_{7}]es], e3) , K)

H ;S ;nk e (assign(a{r}[_],e3) , K)

H ;S ;nkes> (assign(a+i|7|,_) , K)
a# 0,0 <i < length(a)

exception(mem)
a=0o0ri<0ori>length(a)

Hb—c|];S;nFnopw» K

Structs

Struct Declarations and Definitions

Declaring structs:
J struct s;

Type

Defining structs:
Field

struct s {7’1 J15--Tn Jn; }3

Type

During type derivation we write the following to indicate that field f; has
type 7; in the definition of s:

S.fi . T3

Small and Large Types

 Arrays are represented with pointers (but cannot be dereferenced)
-> they can be compared and stored in registers

- Structs are usually also pointers but they can be dereferenced
- Structs are large types that do not fit in registers

Small types: Large types:

int, bool, 7%, T[] struct s

Restrictions on Large Types In CO

- Local variables, function parameters, and return values must have
small type

- Left- and right-hand sides of assignments must have small type
- Conditional expressions must have small type
- Equality and disequality must compare expressions of small type

- Expressions used as statements must have small type

Static Semantics

Semantic Rules For Structs |

 Field names occupy their own namespace: allowed to overlap with
variable, function, or type names (but they must be distinct from

keywords)

 The same field names can be used in different struct definitions

* In a given struct definition, all field names must be distinct

» A struct may be defined at most once

Semantic Rules For Structs

- Types struct s that have not (yet) been defined may be referenced as
long as thelir size is irrelevant

» Size is relevant for
»alloc(struct s)
> alloc array(struct s,e)

> definitions of structs if structs are types of fields

- Struct declarations are optional (but encouraged as good style)

> An occurrence of struct s in a context where its size is irrelevant
serves as an implicit declaration of the type struct s.

EXpreSSiOﬂS and Typlng How to create an

expression of

?
Extend types with struct types: type struct s

struct s" X =alloc(struct s)
T = ... | struct s

Extend expressions with field access:

2 T | Z‘f Struct s must
= ...|df have been
. . . defined.
Define during elaboration: Type rule:
e—~f = (xe).f I'Fe:structs s.f:7
I'Fef:7

Can also use this
as a destination

Dynamic Semantics

Dynamics of Structs: Example

Consider the following program fragment:

struct point {

?nt X; Fields are filled
int y; with default
+; values.

struct point* p = alloc(struct point);

How should the following expressions evaluated?

(*p).y

Evaluation of Field Access

Option: Evaluate the struct first
H:S:nktef>K — H;S;nke>(_y, K)
H;S;nF{x=v,y=wm}>(_y, K) > H:S:nkuvp> K

» This is mathematically correct but how would we implement that?

* We again give a more low-level version

Reflect efficient implementation:

» First get the address of struct p
- Take the field offset of y (4 bytes in this case)

* Retrieve integer at address p+4

Type Information and Field Offset

- Like for arrays, we need type information to compute the memory offset
of a field

- One way to make the type information available in the dynamics is to
annotate each field access in the code with the type of the struct (like
we did for array access)

elr1 15 Tn Jni }of

+ Here, e has type struct s, which is defined by struct s {71 f1;...7n fu;}

 The following evaluation rules omit this type information to improve
readability

'‘Address Of’ Operator

In C we can get the address of a variable x and a field f using &

&((*p).f) &X X has to be stored
on the stack.

* In CO we cannot take the address of values
 This would complicated the semantics

- However, we will use the ‘address of’ operator in the semantics

Evaluation of Field Access

- |f expression e has a large type, we evaluate *e by evaluating e to an
address but we don’t dereference it

 This is similar to a destination *d on the left-hand side of an assignment

Rules: Get the address of e.f

H;S;nkefr>K — H;S:nkx&lef)> K
H;S:;nkt&lef)> K — H;S;nt&> (&(_.f), K)

H;S;nkFa> (&_.f), K) — H ;S ;nta+ offset(s, f) > K

(a # 0,a : struct s)
Type info needed

H;S;nkFa> (&_.f), K) —> exception(mem) (@ =0)

Fvaluation of Address Operator These are the only cases in

which we can get a large
type: field deref, pointer
deref, and array access.

H;S;nkF&xe)> K — H:S;nkex> K

H:;S5;nk&leles]) > K — H;S;nte > (&(_[e2]) , K)
Type info omitted.
H;S;ntar(&(le2]), K) — H;S;nt e (&(al], K)

H:Sinric(&al],K) — HiSinra+ilr|>K
a# 0,0 <i<length(a),a: 7]

H;S;:nkFi> (&lal], K) o exception(mem)
a=0o0ri<0or:>length(a)

Example: lteration of Address Calculations

struct point {
int x;
int y;

¥

struct line {
struct point A;
struct point B;

+;

struct line*x L = alloc(struct line);

int x = (*L).B.y; Have to compute the
address of .

Example: lteration of Address Calculations

H ;S ;nkassign(z, (xL).B.y) » K

Revisiting Assignment

We can simplify the rules for assignments:

H ;S ;nt assign(d,e) » K — H;S:nk&dr> (assign(_,e) , K) (d+# x)
H;S:nkar (assign(_,e) , K) — H;S;nker (assign(a,_), K)

H ;S ;ntkwv> (assign(a,_) , K) — Hla—v];S;nFnopp» K (a # 0)

H;S;nkwvp> (assign(a,_) , K) —> exception(mem) (@ =0)

Rules for variable assignments are unchanged.

Revisiting Short-Cut Assignments

Consider statements like d += e again

- |If d is a variable x then we can elaborate to assign(x, x+e)

* |f d denotes an address then we need to evaluate d first

Elaborate d ©=e to asnop(d,®,e) if d # z,

Want:
H ;S ;ntasnop(d,®,e) » K — H;S:nk&dr (asnop(_,®,€) , K)

H;S:nkar (asnop(_,®,e), K) — H;S:nk*xa®er (assign(a,_) , K)

Not compatible with the
reference CO compiler.

Behavior of the CO Reference Compiler

int main() {
int*x x = NULL;
xx += 1 / 0;
return O;

+

Results in arithmetic
exception.

Behavior of the CO Reference Compiler

int f({int *x) {
*x = 100;
return 1;

}

int main() {
int x = alloc(int);
xx += f(x);
return *x;

} Returns 101.

Revisiting Short-Cut Assignments

Correct rules:
Elaborate d ®=e to asnop(d,®,e) if d # z,
H ;S ;nt asnop(d,®,e)» K - H;S:;nk&dr (asnop(_,®,¢e) , K)

H;S;ntar (asnop(_,&,e), K) — H;S:;nker (asnop(a,®,), K)

H;S:nkwve (asnop(a, ®,), K) e H ;5 ;nt assign(a, xa @ v) » K

Data Sizes

L4 type size in bytes C type
COand Cbools " - o
_ booll = 4 int
have size 1 byte. . _ g £ %
il = 8 t x
struct s| = size(s) struct s

- Struct sizes are determined by laying out the fields left to right
* Ints and bools are aligned at 0 modulo 4
 Pointers are aligned at 0 modulo 8

- Structs are aligned according to their most restrictive fields

Register Sizes

- With different seizes you need to maintain more information
e Need to pick the right instructions (movl vs movq, cmpl vs cmpq)

- Should to allocate right amount of heap or stack space _You could always
use 8 bytes for

> Maintain size information in IRs! spilling.

- It is a good idea to keep temp/registers of different sizes separate

* If you want moves from small to large temps then make conversion
explicit

Disallow: Instead use:

d%4 <« zeroextend s32

d64 . 832
d% <« signextend s3?

