
Lecture Notes on
Peephole Optimizations and

Common Subexpression Elimination

15-411: Compiler Design
Frank Pfenning and Jan Hoffmann

Lecture 17
March 19, 2024

1 Introduction

In this lecture, we discuss common subexpression elimination and a class of optimiza-
tions that is called peephole optimizations. The idea of common subexpression
elimination is to avoid to perform the same operation twice by replacing (binary)
operations with variables. To ensure that these substitutions are sound we intro-
duce dominance, which ensures that substituted variables are always defined.

Peephole optimizations are optimizations that are performed locally on a small
number of instructions. The name is inspired from the picture that we look at
the code through a peephole and make optimization that only involve the small
amount code we can see and that are indented of the rest of the program.

There is a large number of possible peephole optimizations. The LLVM com-
piler implements for example more than 1000 peephole optimizations [LMNR15].
Peephole optimizations are a common source of bugs. A recent formal verification
effort [LMNR15] identified 8 bugs in the process of verifying 300 LLVM peephole
optimizations.

In this lecture, we discuss three important and representative peephole opti-
mizations: constant folding, strength reduction, and null sequences.

2 Constant Folding

Optimizations have two components: (1) a condition under which they can be ap-
plied and the (2) code transformation itself. The optimization of constant folding is
a straightforward example of this. The code transformation itself replaces a binary

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.2

operation with a single constant, and applies whenever c1 ⊙ c2 is defined.

l : x← c1 ⊙ c2
}
−→

{
l : x← c (where c = c1 ⊙ c2)

We can write the similar operation for when an mathematical operation is un-
defined:

l : x← c1 ⊙ c2
}
−→

{
l : raise(arith) (where c1 ⊙ c2 is not defined)

Constant folding can also be used to rewrite conditionals:

l : if c1 ? c2 then l1 else l2
}
−→

{
l : goto l1 (if c1 ? c2 is true)

l : if c1 ? c2 then l1 else l2
}
−→

{
l : goto l2 (if c1 ? c2 is false)

Turning constant conditionals into gotos may cause entire basic blocks of code to
become unnecessary. You can also perform constant folding across multiple in-
structions.

l1 : y ← x+ c1
l2 : z ← y + c2

}
−→

{
l1 : y ← x+ c1
l2 : z ← x+ c

(if c1 + c2 = c)

The advantage of this optimization is that line l1 can become dead code if y is not
needed in the successors of line l2. Of course, we have to ensure that y in line l2
has always been defined in l1 as opposed to a different line in the original program.
This is always the case if the program is in SSA form.

These operations are straightforward because they can be performed without
checking any other part of the code. Most other optimizations have more compli-
cated conditions about when they can be applied.

3 Strength Reduction

Strength reduction in general replaces and expensive operation with a simpler one.
Sometimes it can also eliminate an operation altogether, based on the laws of mod-
ular, two’s complement arithmetic. Recall that we have the usual laws of arithmetic
modulo 232 for addition, subtraction, multiplication, but that comparisons are more
difficult to transform.1

Common simplifications (and some symmetric counterparts):

a+ 0 = a
a− 0 = a
a ∗ 0 = 0
a ∗ 1 = a
a ∗ 2n = a << n

1For example, x+ 1 > x is not true in general, because x could be the maximal integer, 231 − 1.

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.3

but one can easily think of others involving further arithmetic of bit-level opera-
tions. (Remember, however, that a/2n is not equal to a >> n unless a is positive.)
Another optimization that may be interesting for optimization of array accesses is
the distributive law:

a ∗ b+ a ∗ c = a ∗ (b+ c)

where a could be the size of an array element and (b + c) could be an index calcu-
lation.

4 Null Sequences

During register allocation, we noted that it is beneficial to produce self moves like
r ← r by assigning two temps t, s the same register r. The reason that self moves
are beneficial is because they can be removed from the code since say have no effect.
We call an operation or a sequence of operations that does not have an effect a null
sequence.

l : x← x
}
−→

{
l : nop

When we spill a temp t to the stack and perform two operations like t ← t + c
on this temp in a row. Then we might move t into a register before the addition
and move it back after the addition. As a result, we have a move r ← t directly
followed by a move t← r, which seems redundant.

l1 : x← y
l2 : y ← x

}
−→

{
l1 : x← y
l2 : nop

We can not remove the first move because x might be needed after line l2. However,
we might be able to remove it with dead-code elimination.

Another null sequence that you have seen already is a jump to the next line.
Such jumps can be eliminated but they destroy basic blocks. So be careful to only
perform this optimization when you do not rely on basic blocks anymore.

l1 : goto l2
l2 :

}
−→

{
l1 : nop
l2 :

There are plenty of other peephole optimizations that you can find in the com-
piler literature.

5 Common Subexpression Elimination

Copy propagation allows us to have optimizations with this form:

l : x← y
. . .
l′ : instr(x)

 −→


l : x← y
. . .
l′ : instr(y)

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.4

It is natural to ask about transforming a similar computation on compound expres-
sions:

l : x← s1 ⊕ s2
. . .
l′ : instr(x)

 −→


l : x← s1 ⊕ s2
. . .
l′ : instr(s1 ⊕ s2)

However, this will not work most of the time. The result may not even be a valid
instruction (for example, if instr(x) = (y ← x⊕ 1). Even if it is, we have made our
program bigger, and possibly more expensive to run. However, we can consider
the opposite: In a situation

l : x← s1 ⊕ s2
· · ·

k : y ← s1 ⊕ s2

we can replace the second computation of s1 ⊕ s2 by a reference to x (under some
conditions), saving a reduction computation. This is called common subexpression
elimination (CSE).

The thorny issue for common subexpression elimination is determining when
the optimization above is performed. Consider the following program in SSA form:

Lab1 :
x← a⊕ b
if a < b
then goto Lab2
else goto Lab3

Lab2 :
y ← a⊕ b
goto Lab4(y)

Lab3 :
z ← x⊕ b
goto Lab4(z)

Lab4(w) :
u← a⊕ b
. . .

If we want to use CSE to replace the calculation of a ⊕ b in Lab4, then there
appear to be two candidates: we can rewrite u← a⊕b as u← x or u← y. However,
only the first of these is correct! If control flow passes through Lab3 instead of Lab2,
then it will be an error to access y in Lab4.

In order to rewrite u ← a ⊕ b as u ← x, in general we need to know that x
will have the right value when execution reaches line k. Being in SSA form helps
us, because it lets us know that the right-hand sides will always have the same
meaning if they are syntactically identical. But we also need to know x even be
defined along every control flow path that takes us to Lab4.

What we would like to know is that every control flow path from the beginning
of the code (that is, the beginning of the function we are compiling) to line k goes
through line l. Then we can be sure that x has the right value when we reach k. This
is the definition of the dominance relation between lines of code. We write l ≥ k if
l dominates k and l > k if it l strictly dominates k. We see how to define it in the
next section; once it is defined we use it as follows:

l : x← s1 ⊕ s2
· · ·
k : y ← s1 ⊕ s2

 −→


l : x← s1 ⊕ s2
· · ·
k : y ← x

(provided l > k)

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.5

It was suggested in lecture that this optimization would be correct even if the
binary operator is effectful. The reason is that if l dominates k then we always
execute l first. If the operation does not raise an exception, then the use of x in k is
correct. If it does raise an exception, we never reach k. So, yes, this optimization
works even for binary operations that may potentially raise an exception.

6 Dominance

On general control flow graphs, dominance is an interesting relation and there are
several algorithms for computing this relationship. We can cast it as a form of
forward data-flow analysis.

Most algorithms directly operate on the control flow graph. A simple and
fast algorithm that works particularly well in our simple language is described
by Cooper et al. [CHK06] which is empirically faster than the traditional Lengauer-
Tarjan algorithm [LT79] (which is asymptotically faster). We will not discuss these
algorithms in detail.

The approaches we are taking exploits the simplicity of our language and di-
rectly generates the dominance relationship as part of code generation. The draw-
back is that if your code generation is slightly different or more efficient, or if your
transformation change the essential structure of the control flow graph, then you
need to update the relationship. In this lecture, we consider just the basic cases.

For straight-line code the predecessor of each line is its immediate dominator,
and any preceding line is a dominator.

For conditionals, consider
if(e, s1, s2)

We translate this to the following code, ě or š is the code for e and s, respectively
and ê is the temp through which we can refer to the result of evaluating e.

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.6

l0 : ě
l′0 : if (ê != 0) goto l1 else goto l2
l1 : š1 ; l

′
1 : goto l3

l2 : š2 ; l
′
2 : goto l3

l3 :

e"

s1" s2"

l0:"

l1:" l2:"

l3:"

l1’:" l2’:"

l0’:"

On the right is the corresponding control-flow graph. Now the immediate domina-
tor of l1 should be l′0 and the immediate dominator of l2 should also be l′0. Now for
l3 we don’t know if we arrive from l′1 or from l′2. Therefore, neither of these nodes
will dominate l3. Instead, the immediate dominator is l′0, the last node we can be
sure to be traversed before we arrive at l′3. Indicating immediate dominators with
dashed read lines, we show the result below.

e	  

s1	   s2	  

l0:	  

l1:	   l2:	  

l3:	  

l1’:	   l2’:	  

l0’:	  

However, if it turns out, say, l′1 is not reachable, then the dominator relationship
looks different. This is the case, for example, if s1 in this example is a return state-

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.7

ment or is known to raise an error. Then we have instead:

e	  

s1	   s2	  

l0:	  

l1:	   l2:	  

l3:	  

l1’:	   l2’:	  

l0’:	  

In this case, l′1 : goto l3 is unreachable code and can be optimized away. Of course,
the case where l′2 is unreachable is symmetric.

For loops, it is pretty easy to see that the beginning of the loop dominates all
the statements in the loop. Again, considering the straightforward compilation of
a while loop with the control flow graph on the right.

l0 : ě
l′0 : if (ê == 0) goto l2 else goto l1
l1 : š
l′1 : goto l0
l2 :

e"

s"

l0:"

l1:" l2:"

l1’:"

l0’:"

p’:"

Interesting here is mainly that the node p′ just before the loop header l0 is indeed
the immediate dominator of l0, even l0 has l′1 as another predecessor. The definition

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.8

makes this obvious: when we enter the loop we have to come through p′ node,
on subsequent iterations we come from l′1. So we cannot be guaranteed to come
through l′1, but we are guaranteed to come through p′ on our way to l0.

e	  

s	  

l0:	  

l1:	   l2:	  

l1’:	  

l0’:	  

p’:	  

7 Implementing Common Subexpression Elimination

To implement common subexpression elimination we traverse the program, look-
ing for definitions l : x← s1⊙s2. If s1⊙s2 is already in the table, defining variable y
at k, we replace l with l : x← y if k dominates l. Otherwise, we add the expression,
line, and variable to the hash table.

Dominance can usually be checked quite quickly if we maintain a dominator
tree, where each line has a pointer to its immediate dominator. We just follow
these pointers until we either reach k (and so k > l) or the root of the control-flow
graph (in which case k does not dominate l).

8 Termination

When applying code transformations, we should always consider if the transfor-
mations terminate. Clearly, each step of dead code elimination reduces the number
of assignments in the code. We can therefore apply it arbitrarily until we reach qui-
escence, that is, neither of the dead code elimination rules is applicable any more.
Quiescence is the rewriting counterpart to saturation for inference, as we have dis-
cussed in prior lectures. Saturation means that any inference we might apply only

LECTURE NOTES MARCH 19, 2024



Peephole Optimizations and
Common Subexpression Elimination L17.9

has conclusions that are already known. Quiescence means that we can no longer
apply any rewrite rules.

A single application of constant propagation reduces the number of variable
occurrence in the program and must therefore reach quiescence. It also does not
increase the number of definitions in the code, and can therefore be mixed freely
with dead code elimination.

It is more difficult to see whether copy propagation will always terminate, since
the number of variable occurrences stays the same, as does the number of variable
definitions. In fact, in a code pattern

l : x← y
k : w ← x
m : instr(w)
m′ : instr(x)

we could decrease the number of occurrence of x by copy propagation from line l
and then increase it again by copy propagation from line k. However, if we con-
sider a string partial order x > y among variables if the definition of x uses y
(transitively closed), then copy propagation reduces the occurrence of a variable
by a strictly smaller one. This order is well-founded since in SSA we cannot have
a cycle among the definitions. If x is defined in terms of y, then y could not be
defined in terms of x since it the single definition of y must come before x in the
control flow graph.

References

[CHK06] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A simple, fast
dominance algorithm. Technical Report TR-06-33870, Department of
Computer Science, Rice University, 2006.

[LMNR15] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. Provably Correct Peephole Optimizations with Alive. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’15, pages 22–32, 2015.

[LT79] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for find-
ing dominators in a flowgraph. ACM Transactions on Programming Lan-
guages and Systems, 1(1):115–120, July 1979.

LECTURE NOTES MARCH 19, 2024


	Introduction
	Constant Folding
	Strength Reduction
	Null Sequences
	Common Subexpression Elimination
	Dominance
	Implementing Common Subexpression Elimination
	Termination

