
Lecture Notes on
Memory Optimizations

15-411: Compiler Design
Frank Pfenning and Jan Hoffmann

Lecture 18
March 21, 2024

1 Introduction

Even on modern architecures with hierarchical memory caches, memory access, on
average, is still significantly more expensive than register access or even most arith-
metic operations. Therefore, memory optimizations play a significant role in gener-
ating fast code. As we will see, whether certain memory optimizations are possible
or not depends on properties of the whole language. For example, whether or not
we can obtain pointers to the middle of heap-allocated objects will be a crucial
question to answer.

2 Examples

We have seen many optimizations that involve temps or variables. It is natural to
ask if these optimizations still apply if we replace some or all of the temps with
memory locations.

Constant propagation. First, we consider constant propagation.

l1 : t1 ← 4
l2 : t2 ← 8128
l3 : x← t1

In this program we can replace t1 with 4 in line l3. Of course, we have to make sure
that the definition in line l1 is the only one that reaches line l3. However, this is
always the case when the program is in SSA form.

LECTURE NOTES MARCH 21, 2024

Memory Optimizations L18.2

Can we still perform the optimization if we replace t1 and t2 with memory
locations?

l1 : M [q]← 4
l2 : M [p]← 8128
l3 : x←M [q]

Before replacing line l3 with x ← 4, we have to ensure is that the temp q has the
same value in lines l1 and l3. Again, this can be ensured by SSA form. However,
even then it’s not sound to perform the optimization. We also need to ensure that
M [q] is not modified in any other line on a path that reaches l3. For example, we
have to ensure that p ̸= q. If q = p then x would have the value 8128 in the original
program.

If we assume that this code snippet appears in a basic block (no jumps) then we
can perform the optimization if p and q do not alias, that is, p ̸= q. Alias analysis is
a central problem of optimization of memory locations.

Common Subexpression Elimination Next, we consider the equivalent of com-
mon subexpression elimination. Consider a function, mult(A, p, q) that multiplies
matrix A with vector p and returns the result in vector q.

struct point {

int x;

int y;

};

typedef struct point pt;

void mult(int[] A, pt* p, pt* q) {

q->x = A[0] * p->x + A[1] * p->y;

q->y = A[2] * p->x + A[3] * p->y;

return;

}

Below is the translation into abstract assembly, with the small twist that we have
allowed memory reference to be of the form M [base + offset]. The memory opti-
mization question we investigate is whether some load instructions t ← M [s] can

LECTURE NOTES MARCH 21, 2024

Memory Optimizations L18.3

be avoided because the corresponding value is already held in a temp.

mult(A, p, q) :
t0 ←M [A+ 0]
t1 ←M [p+ 0]
t2 ← t0 ∗ t1
t3 ←M [A+ 4]
t4 ←M [p+ 4]
t5 ← t3 ∗ t4
t6 ← t2 + t5
M [q + 0]← t6
t8 ←M [A+ 8]
t9 ←M [p+ 0] # redundant load?
t10 ← t8 ∗ t9
t11 ←M [A+ 12]
t12 ←M [p+ 4] # redundant load?
t13 ← t11 ∗ t12
t14 ← t10 + t13
M [q + 4]← t14
return

We see that the source refers to p->x and p->y twice, and those are reflected in the
two, potentially redundant loads above. Before you read on, consider if we could
replace the lines with t9 ← t1 and t12 ← t4. We can do that if we can be assured
that memory at the addresses p + 0 and p + 4, respectively, has not changed since
the previous load instructions.

It turns out that in C0 the second load is definitely redundant, but the first one
may not be.

The first load is not redundant because when this function is called, the pointers
p and q might be the same (they might aliased). When this is the case, the store to
M [q+0] will likely change the value stored at M [p+0], leading to a different answer
than expected for the second line.

On the other hand, this cannot happen for the first line, because M [q+0] could
never be the same as M [p+4] since one accesses the x field and the other the y field
of a struct.

Of course, the answer is most likely wrong when p = q. One could either
rewrite the code, or require that p ̸= q in the precondition to the function.

In C, the question is more delicate because the use of the address-of (&) operator
could obtain pointers to the middle of objects. For example, the argument int[] A

would be int* A in C, and such a pointer might have been obtained with &q->x.

LECTURE NOTES MARCH 21, 2024

Memory Optimizations L18.4

3 Using the Results of Alias Analysis

In C0, the types of pointers are a powerful basis of alias analysis. The way alias
analysis is usually phrased is as a may-alias analysis, because we try to infer which
pointers in a program may alias. Then we know for optimization purposes that
if two pointers are not in the may-alias relationship that they must be different.
Writing to one address cannot change the value stored at the other.

Let’s consider how we might use the results of alias analysis, embodied in a
predicate may-alias(a, b) for two temps (containing addresses) a and b. We assume
we have a load instruction

l : t←M [a]

and we want to infer if this is available at some other line l′ : t′ ←M [a] so we could
replace it with l′ : t′ ← t. Our optimization rule can be defined as follows.

l : t←M [a]
. . .
k : t′ ←M [a]

 −→

l : t←M [a]
. . .
k : t′ ← t

provided l > k, avail(l, k)

The fact that l dominates k is sufficient here in SSA form to guarantee that the
meaning of t and a remains unchanged. The predicate avail is supposed to check
that M [a] also remains unchanged and l > k ensures that t is defined at line k.

It turns out to be simpler to first define unavailability, the negation of availability.
We define a predicate unavail(l, k) l : t ← M [a] at other instructions k that are
dominated by l. Domination is not really required in the rules. We only add for
efficiency reasons. We need the predicate avail(l, k) only for pairs of locations l, k
such that l > k. So we only need to derive unavailability for such pairs.

For unavailability, unavail(l, k), we have the seeding rule on the left and the
general propagation rule on the right. Because we are in SSA, we know in the
seeding rule that l > k where k is the (unique) successor of l′.

l : t←M [a]
l > l′

l′ : M [b]← s
may-alias(a, b)
succ(l′, k)

unavail(l, k)

unavail(l, k)
succ(k, k′)
l > k′

unavail(l, k′)

The rule on the right includes the cases of jumps or conditional jumps. This ensures
that in a node with multiple predecessors, if a value is unavailable in just one of
them, in will be unavailable at the node. Function calls can also seed unavailability.
Unfortunately it is enough if one of the function parameters is a memory reference,
because from one memory reference we may be able to get to another by following

LECTURE NOTES MARCH 21, 2024

Memory Optimizations L18.5

pointers and offsets.
l : t←M [a]
l > l′

l′ : d← f(s1, . . . , sn)
memref(si)
succ(l′, k)

unavail(l, k)

With more information on the shape of memory this rule can be relaxed.
From unavailability we can deduce which memory values are still available,

namely those that are not unavailable (restriction attention to those that are domi-
nated by the load—otherwise the question is not asked).

l : t←M [a]
l > l′

¬unavail(l, l′)

avail(l, l′)

Note that stratification is required: we need to saturate unavail(l, l′) before applying
this rule.

4 Type-Based Alias Analysis

One way of performing type-based alias analysis is to propagate type information
from the semantic analysis to abstract assembly. The type information is used to
associate with each memory location the type of data that is stored at that location.
The idea is that data that is stored at locations of different types is not aliased. Such
an analysis works for type-safe languages such as Java and C0.

Here, we will restore the type information directly at the assembly level. Our
alias analysis is based on the type and offset of the address. We call this an alias
class, with the idea that pointers in different alias classes cannot alias. More for-
mally, we derive a predicate class(a, τ, offset), which expresses that a is temp con-
taining an address derived from a source of type τ and offset offset from the start
of the memory of type τ .

Then the may-alias relation is defined by

class(a, τ, k) class(b, τ, k)

may-alias(a, b)

There is a couple of special cases we do not treat explicitly. For example, the
location of the array length (which is stored in safe mode at least) may be at offset
−8. But such a location can never be written to (array lengths never change, once

LECTURE NOTES MARCH 21, 2024

Memory Optimizations L18.6

allocated), so a load of the array length is available at all locations dominated by
the load.

Since some temps can store multiple addresses because they are assigned in a
loop or as a result of multiple jumps the a parameterized label. In this case, we are
not able to assign a single offset and introduce ⊤, pronounced “top”, to represent
all addresses. So you can think of it as being N. This leads to the following two rules.

class(a, τ, k) class(b, τ,⊤)

may-alias(a, b)

class(a, τ,⊤) class(b, τ,⊤)

may-alias(a, b)

The seed of the class relation comes from function types and need to be propa-
gated by the compiler. In our example,

mult(A, p, q) :
t0 ←M [A+ 0]
t1 ←M [p+ 0]
t2 ← t0 + t1
t3 ←M [A+ 4]
. . .

the compiler would generate

class(A, int[], 0)
class(p, struct point∗, 0)
class(q, struct point∗, 0)

We now propagate the information through a forward dataflow analysis. For ex-
ample:

l : b← a class(a, τ, k)

class(b, τ, k)

l : b← a+ $n class(a, τ, k)

class(b, τ, k + n)

In the second case we have written $n to emphasize the second summand is a
constant n. Unfortunately, if it is a variable, we cannot precisely calculate the offset.
This may happen with arrays, but not with pointers, including pointers to structs.
So we need to generalize the third argument to class to be either a variable or ⊤,
which indicates any value may be possible. We then have, for example

l : b← a+ t class(a, τ, k)

class(b, τ,⊤)

Now ⊤ behaves like an information sink. For example, ⊤ + k = k + ⊤ = ⊤.
Since in SSA form a is defined only once, we should not have to change our mind
about the class assigned to a variable. However, at parameterized jump targets
(which is equivalent to Φ-functions), we need to “disjoin” the information so that

LECTURE NOTES MARCH 21, 2024

Memory Optimizations L18.7

if the argument is known to be k at one predecessor but unknown at ⊤ at another
predecessor, the result should be ⊤.

Because of loops, we then need to generalize further and introduce ⊥ which
means that we believe (for now) that the variable is never used. Because of the
seeding by the compiler, this will mostly happen for loop variables. The values are
arranged in a lattice

⊤
···

0 1 2 · · ·

···

⊥
where at the bottom we have more information, at the top the least. The ⊔ oper-
ation between lattice elements finds the least upper bounds of its two arguments.
For example, 0⊔4 = ⊤ and⊥⊔2 = 2. We use it in SSA form to combine information
about offsets. We now read an assertion class(a, τ, k) as saying that the offset is at
least k under the lattice ordering. Then we have

lab(a1) :
class(a1, τ, k1)
l : goto lab(a2)
class(a2, τ, k2)

class(a1, τ, k1 ⊔ k2)

Written with Φ-functions, we would have

class(a0, τ, k0)
a0 ← Φ(a1, . . . , an)
class(ai, τ, ki) (1 ≤ k ≤ n)

class(a0, τ, k0 ⊔ k1 ⊔ · · · ⊔ kn)

Because of loops we might perform this calculation multiple times until we have
reached a fixed point. In this case the fixed point is least upper bound of all the
offset classes we compute, which is a little different than the saturated data base
we considered before.

It is not immediately clear why the different classes of the addresses ai in the
last two rules have the same type τ . For example, it could be possible that we
have class(a1, τ1, k1) and class(a2, τ2, k2) for τ1 ̸= τ2 in the first rule. However, this
should not be possible if the programs are translated from C0. It would mean that
an expression can have two different pointer types in the code.

This is an example of abstract interpretation, which may be a subject of a future
lecture. One can obtain a more precise alias analysis if one refines the abstract do-
main, which is lattice shown above.

LECTURE NOTES MARCH 21, 2024

Memory Optimizations L18.8

5 Allocation-Based Alias Analysis

Another technique to infer that pointers may not alias is based on their allocation
point. In brief, if two pointers are allocated with different calls to alloc or alloc array,
then they cannot be aliased. Because allocation may happen in a different function
than we are currently compiling (and hopefully optimizing), this is an example of
an interprocedural analysis.

LECTURE NOTES MARCH 21, 2024

	Introduction
	Examples
	Using the Results of Alias Analysis
	Type-Based Alias Analysis
	Allocation-Based Alias Analysis

