Lecture Notes on Loop Optimizations

15-411: Compiler Design Frank Pfenning and Jan Hoffmann

> Lecture 19 March 26, 2024

1 Introduction

Optimizing loops is particularly important in compilation, since loops (and in particular the inner loops) account for much of the executions times of many programs. Since tail-recursive functions are usually also turned into loops, the importance of loop optimizations is further magnified. In this lecture we will discuss two main ones: hoisting loop-invariant computation out of a loop, and optimizations based on induction variables.

2 What Is a Loop?

Before we discuss loop optimizations, we should discuss what we identify as a loop. In our source language, this is rather straightforward, since loops are formed with while or for, where it is convenient to just elaborate a for loop into its corresponding while form.

The key to a loop is a back edge in the control-flow graph from a node k to a node h that dominates k. We call h the *header node* of the loop. The loop itself then consists of the nodes on a path from h to k . It is convenient to organize the code so that a loop can be identified with its header node. We then write loop (h, l) if line l is in the loop with header h .

When loops are nested, we generally optimize the inner loops before the outer loops. For one, inner loops are likely to be executed more often. For another, it could move computation to an outer loop from which it is hoisted further when the outer loop is optimized and so on.

3 Examples of Loop Optimizations

Because of the great potential of performance improvements, many different loop optimizations are performed in modern compilers and compiler developers are willing to trade off efficiency and simplicity of the compilation. The following list of loop optimizations is incomplete but gives you an idea of the different possibilities.

- **Fusion** If there are two adjacent loops that iterate over the same data then these loops can be combined in some situations.
- **Interchange** Sometimes it can improve locality to switch the position of an inner and outer loop.
- **Unrolling** Sometimes it is beneficial to place a copy of the body of the loop in a new code block in front of the loop. This can lead to new opportunities for optimization and in some situations we can avoid some executions for the loop guard.
- **Hoisting invariant computation** If the result of an operation in the loop body is the same in every loop iteration then we can perform it before entering the loop body.
- **Inversion** Replacing a *while* loop with a *do while* loop can reduce the number of jumps and improve the effectiveness of instruction pipelines.
- **Induction variable substitution** If a variable changes by a constant between loop iterations then it can enable optimizations to make this relationship explicit.

4 Hoisting Loop-Invariant Computation

A (pure) expression is *loop invariant* if its value does not change throughout the loop. We can then define the predicate $inv(h, p)$, where p is a pure expression, as follows:[1](#page-1-0)

> c constant inv (h, c) $\det(l, x)$ \neg loop (h, l) inv (h,x) $\mathsf{inv}(h, s_1)$ inv (h, s_2) inv $(h, s_1 \oplus s_2)$

Since we are concerned only with programs in SSA form, it is easy to see that variables are loop invariant if they are not parameters of the header label. However, the

¹While operations with effects can also be invariant, we cannot hoist them since they are not be executed if the loop body is not executed.

definition above does not quite capture this for definitions $t \leftarrow p$ where p is loopinvariant but t is not part of the label parameters. So we add a second propagation rule.

$$
\frac{l: t \leftarrow p \quad \text{inv}(h, p) \quad \text{loop}(h, l)}{\text{inv}(h, t)}
$$

Note that we do not consider memory references or function calls to be loop invariant, although under some additional conditions they may be hoisted as well.

In order to hoist loop invariant computations out of a loop we should have a *loop pre-header* in the control-flow graph, which immediately dominates the loop header. We then move all the loop invariant computations to the pre-header, in order.

Some care must be taken with this optimization. For example, when the loop body is never executed the code could become significantly slower. Another problem if we have conditionals in the body of the loop: values computed only on one branch or the other will be loop invariant, but depending on the boolean condition one or the other may never be executed.

In some cases, when the loop guard is inexpensive and effect-free but the loopinvariant code is expensive, we might consider duplicating the test so that instead of

$$
\mathsf{seq}(pre, \mathsf{while}(e, s))
$$

we generate code for

$$
seq(if(e, seq(\textit{pre}, \textit{while}(e, s)), \textit{nop}))
$$

where *pre* is the hoisted computation in the loop pre-header.

A typical example of hoisting loop invariant computation would be a loop to initialize all elements of a two-dimensional array:

for (int i = 0; i < width * height; i++)\n
$$
A[i] = 1;
$$

We show the relevant part of the abstract assembly on the left. In the right is the result of hoisting the multiplication, enabled because both *width* and *height* are loop invariant and therefore their product is.

```
i_0 \leftarrow 0 i_0 \leftarrow 0t \leftarrow width * heightgoto \text{loop}(i_0) goto \text{loop}(i_0)\textsf{loop}(i_1): \textsf{loop}(i_1):t \leftarrow width * heightif (i_1 \geq t) goto exit if (i_1 \geq t) goto exit
    . . . . . .
   i_2 \leftarrow i_1 + 1 i_2 \leftarrow i_1 + 1goto \text{loop}(i_2) goto \text{loop}(i_2)exit : exit : exit :
```
5 Induction Variables

Hoisting loop invariant computation is significant; optimizing computation which changes by a constant amount each time around the loop is probably even more important. We call such variables *basic induction variables*. The opportunity for optimization arises from *derived induction variables*, that is, variables that are linear expressions of basic induction variables.

As an example we will use a function check if a given array is sorted in ascending order.

```
bool is_sorted(int[] A, int n)
//@requires 0 \leq n && n \leq \leq \lambda(1);
{
  for (int i = 0; i < n-1; i++)//@loop_invariant 0 <= i;
    if (A[i] > A[i+1]) return false;
  return true;
}
```
Below is a possible compiled SSA version of this code, assuming that we do not perform array bounds checks (or have eliminated them).

```
is sorted(A, n):
      i_0 \leftarrow 0goto loop(i_0)loop(i_1):
      t_0 \leftarrow n-1if (i_1 \geq t_0) goto rtrue
      t_1 \leftarrow 4 * i_1t_2 \leftarrow A + t_1t_3 \leftarrow M[t_2]t_4 \leftarrow i_1 + 1t_5 \leftarrow 4 * t_4t_6 \leftarrow A + t_5t_7 \leftarrow M[t_6]if (t_3 > t_7) goto rfalse
      i_2 \leftarrow i_1 + 1goto loop(i_2)rtrue :
      return 1
rfalse :
       return 0
```
Here, i_1 is the basic induction variable, and $t_1 = 4 * i_1$ and $t_4 = i_1 + 1$ are the derived induction variables. In general, we consider a variable a derived induction

LECTURE NOTES MARCH 26, 2024

variable if its has the form $a * i + b$, where a and b are loop invariant and i denotes the number of loop iterations.

Let's consider t_4 first. We see that common subexpression elimination applies. However, we would like to preserve the basic induction variable i_1 and its version i_2 , so we apply code motion and then eliminate the second occurrence of $i_1 + 1$.

In the second step we applied copy propagation and then renamed t_4 to i_2 for easier reading (but not formally required).

Next we look at the derived induction variable $t_1 \leftarrow 4 * i_1$. The idea is to see how we can calculate t_1 at a subsequent iteration from t_1 at a prior iteration. In order to achieve this effect, we add a new induction variable to represent $4 * i_1$. We call this j and add it to our loop variables in SSA form.

```
is_sorted(A, n) :
     i_0 \leftarrow 0j_0 \leftarrow 4 * i_0 @ensures j_0 = 4 * i_0goto \textsf{loop}(i_0, j_0)loop(i_1, j_1): @requires j_1 = 4 * i_1t_0 \leftarrow n-1if (i_1 \geq t_0) goto rtrue
     t_1 \leftarrow j_1 @assert j_1 = 4 * i_1t_2 \leftarrow A + t_1t_3 \leftarrow M[t_2]i_2 \leftarrow i_1 + 1j_2 \leftarrow 4 * i_2 @ensures j_2 = 4 * i_2t_5 \leftarrow 4 * i_2t_6 \leftarrow A + t_5t_7 \leftarrow M[t_6]if (t_3 > t_7) goto rfalse
     goto loop(i_2, j_2)
```
Crucial here is the invariant that $j_1 = 4 * i_1$ when label loop (i_1, j_1) is reached. Now we calculate

$$
j_2 = 4 \cdot i_2 = 4 \cdot (i_1 + 1) = 4 \cdot i_1 + 4 = j_1 + 4
$$

so we can express j_2 in terms of j_1 without multiplication. This is an example of *strength reduction* since addition is faster than multiplication. Recall that all the laws we used are valid for modular arithmetic. Similarly:

 $j_0 = 4 * i_0 = 0$

since $i_0 = 0$, which is an example of constant propagation followed by constant

folding.

```
is_sorted(A, n) :
     i_0 \leftarrow 0j_0 \leftarrow 0 @ensures j_0 = 4 * i_0goto \text{loop}(i_0, j_0)\text{loop}(i_1, j_1): \text{@requires } j_1 = 4 * i_1t_0 \leftarrow n-1if (i_1 \geq t_0) goto rtrue
     t_1 \leftarrow j_1 @assert j_1 = 4 * i_1t_2 \leftarrow A + t_1t_3 \leftarrow M[t_2]i_2 \leftarrow i_1 + 1j_2 \leftarrow j_1 + 4 @ensures j_2 = 4 * i_2t_5 \leftarrow 4 * i_2t_6 \leftarrow A + t_5t_7 \leftarrow M[t_6]if (t_3 > t_7) goto rfalse
      goto loop(i_2, j_2)
```
With some copy propagation, and noticing that $n-1$ is loop invariant, we next get:

```
is_sorted(A, n) :
     i_0 \leftarrow 0j_0 \leftarrow 0 @ensures j_0 = 4 * i_0t_0 \leftarrow n-1goto loop(i_0, j_0)loop(i_1, j_1): @requires j_1 = 4 * i_1if (i_1 \geq t_0) goto rtrue
     t_2 \leftarrow A + j_1t_3 \leftarrow M[t_2]i_2 \leftarrow i_1 + 1j_2 \leftarrow j_1 + 4 @ensures j_2 = 4 * i_2t_5 \leftarrow 4 * i_2t_6 \leftarrow A + t_5t_7 \leftarrow M[t_6]if (t_3 > t_7) goto rfalse
     goto \textsf{loop}(i_2, j_2)
```
With common subexpression elimination (noting the additional assertions we are

aware of), we can replace $4 * i_2$ by j_2 . We combine this with copy propagation.

```
is_sorted(A, n) :
     i_0 \leftarrow 0j_0 \leftarrow 0 @ensures j_0 = 4 * i_0t_0 \leftarrow n-1goto loop(i_0, j_0)loop(i_1, j_1): @requires j_1 = 4 * i_1if (i_1 \geq t_0) goto rtrue
     t_2 \leftarrow A + j_1t_3 \leftarrow M[t_2]i_2 \leftarrow i_1 + 1j_2 \leftarrow j_1 + 4 @ensures j_2 = 4 * i_2t_6 \leftarrow A + j_2t_7 \leftarrow M[t_6]if (t_3 > t_7) goto rfalse
     goto loop(i_2, j_2)
```
We observe another derived induction variable, namely $t_2 = A + j_1$. We give this a new name $(k_1 = A + j_1)$ and introduce it into our function. Again we just calculate: $k_2 = A + j_2 = A + j_1 + 4 = k_1 + 4$ and $k_0 = A + j_0 = A$.

```
is_sorted(A, n):
     i_0 \leftarrow 0j_0 \leftarrow 0 @ensures j_0 = 4 * i_0k_0 \leftarrow A + j_0 @ensures k_0 = A + j_0t_0 \leftarrow n - 1goto loop(i_0, j_0, k_0)loop(i_1, j_1, k_1): @requires j_1 = 4 * i_1 \wedge k_1 = A + j_1if (i_1 \geq t_0) goto rtrue
     t_2 \leftarrow k_1t_3 \leftarrow M[t_2]i_2 \leftarrow i_1 + 1j_2 \leftarrow j_1 + 4 @ensures j_2 = 4 * i_2k_2 \leftarrow k_1 + 4 @ensures k_2 = A + j_2t_6 \leftarrow A + j_2t_7 \leftarrow M[t_6]if (t_3 > t_7) goto rfalse
     goto loop(i_2, j_2, k_2)
```
After one more round of constant propagtion, common subexpression elimination,

and dead code elimination we get:

is_sorted (A, n) : $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ @ensures $j_0 = 4 * i_0$ $k_0 \leftarrow A$ @ensures $k_0 = A + j_0$ $t_0 \leftarrow n-1$ goto $\textsf{loop}(i_0, j_0, k_0)$ $\text{loop}(i_1, j_1, k_1):$ @requires $j_1 = 4 * i_1 \wedge k_1 = A + j_1$ if $(i_1 \geq t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ @ensures $j_2 = 4 * i_2$ $k_2 \leftarrow k_1 + 4$ @ensures $k_2 = A + j_2$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto $\textsf{loop}(i_2, j_2, k_2)$

With neededness analysis we can say that j_0 , j_1 , and j_2 are no longer needed and can be eliminated.

> is_sorted (A, n) : $i_0 \leftarrow 0$ $k_0 \leftarrow A$ @ensures $k_0 = A + 4 * i_0$ $t_0 \leftarrow n-1$ goto $loop(i_0, k_0)$ $loop(i_1, k_1)$: @requires $k_1 = A + 4 * i_1$ if $(i_1 \geq t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $k_2 \leftarrow k_1 + 4$ @ensures $k_2 = A + 4 * i_2$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto $\textsf{loop}(i_2, k_2)$

Unfortunately, i_1 is still needed, since it governs a conditional jump. In order to eliminate that we would have to observe that

$$
i_1 \ge t_0 \text{ iff } A + 4 \cdot i_1 \ge A + 4 \cdot t_0
$$

This holds since the addition here is a on 64 bit quantities where the second operand is 32 bits, so no overflow can occur. The general case under which we can make this observation is a bit unclear. It may be one should look for induction variables that are not needed except for conditions in conditional branches (which would

be the case here). Or we might make a particular effort to remove basic induction variables once derived ones have been introduced. In any case, if we exploit this we obtain:

```
is_sorted(A, n):
     i_0 \leftarrow 0k_0 \leftarrow A @ensures k_0 = A + 4 * i_0t_0 \leftarrow n-1goto \mathsf{loop}(i_0, k_0)\text{loop}(i_1, k_1): @requires k_1 = A + 4 * i_1if (k_1 \geq A + 4 * t_0) goto rtrue
     t_3 \leftarrow M[k_1]i_2 \leftarrow i_1 + 1k_2 \leftarrow k_1 + 4 @ensures k_2 = A + 4 * i_2t_7 \leftarrow M[k_2]if (t_3 > t_7) goto rfalse
     goto \textsf{loop}(i_2, k_2)
```
Now i_0 , i_1 , and i_2 are no longer needed and can be eliminated. Moreover, $A + 4 * t_0$ is loop invariant and can be hoisted.

```
is sorted(A, n):
      k_0 \leftarrow At_0 \leftarrow n-1t_8 \leftarrow 4 * t_0t_9 \leftarrow A + t_8goto loop(k_0)loop(k_1):
      if (k_1 \geq t_9) goto rtrue
      t_3 \leftarrow M[k_1]k_2 \leftarrow k_1 + 4t_7 \leftarrow M[k_2]if (t_3 > t_7) goto rfalse
      goto loop(k_2)rtrue :
      return 1
rfalse :
      return 0
```
It was suggested that we can avoid two memory accesses per iteration by unrolling the loop once. This make sense, but this opimization is beyond the scope of this lecture.

We have carried out the optimizations here on concrete programs and values, but it is straightforward to generalize them to arbitrary induction variables x that

LECTURE NOTES MARCH 26, 2024

are updated with $x_2 \leftarrow x_1 \pm c$ for a constant c , and derived variables that arise from constant multiplication with or addition to a basic induction variable.