
Lecture Notes on
Function Optimizations

15-411: Compiler Design
Jan Hoffmann

Lecture 20
March 28, 2024

1 Introduction

If implemented naively, function calls can have significant overhead. For each func-
tion call, we may copy the arguments to adhere to the calling convention, increase
the call stack to store local variables of the callee, and save local variables of the
caller. This can be particularly costly for recursive functions that are called many
times. However, in many cases we can avoid these overheads of function calls and
there are several function optimizations that are based on this observation. Such
optimizations are particularly important for functional languages. In this lecture,
we will focus on two of the most effective ones: inline expansion and tail-call opti-
mization.

2 Inline Expansion

Inline expansion, also called function inlining, is an optimization that replaces a func-
tion call with the function body of the called function. Of course, we have to take
care to replace the formal arguments in the body with concrete arguments from the
call to ensure that such a transformation is correct.

Inline expansion has the following benefits.

• It can lead to improved time and space usage because we do not have to
allocate, setup, and deallocate a call frame for the callee. Additionally, we do
not have to save and restore the registers of the caller.

• It enables additional intra-procedural optimizations such as constant propa-
gation and dead-code elimination.

LECTURE NOTES MARCH 28, 2024



Function Optimizations L20.2

• It can improve register allocation since the register allocator can optimize a
larger portion of code and does not have to reserve registers for the function
arguments.

If inline expansion has all these benefits, why don’t we inline all functions?
First, we cannot inline recursive calls because we (in general) cannot predict the
recursion depth at compile time. We can unroll a recursive function call but we
cannot completely replace the call.

But also for non-recursive functions, it is not a good idea to inline all function
calls. Assume you have 21 function f0, . . . , f20 in a program. If fi calls fi+1 2 times
and we inline all function calls then the body of f20 is copied 1, 084, 576 times. This
will almost certainly cause performance problems if the code does not fit in the
cache anymore after inline expansion.

Finally, we might not be able to inline a function because the function body is
not available. This is the case for library functions for which we do not have access
to the source code. It could also be the case that we cannot statically determine
which function is called. However, this is not a problem in L4 because we do not
have features such as first-class functions, function pointers, or dynamic dispatch,
which are used to dynamically select functions at a call.

Inlining Heuristics In L4, we statically know which function is called at all call
sides. As a result, we could theoretically inline all locally-defined functions. How-
ever, we need to balance code growth and potential performance gains from inline
expansion. That is why we need to decide for which functions and call sites we
should perform inline expansion.

As with many optimizations, it is not possible to exactly predict the perfor-
mance impact of inlining and we have to resort to inlining heuristics. Good choices
for inline expansion are functions that are only called once. Inlining such functions
will even reduce the code size. Similarly, we always inline a function whose body
is shorter than the code we generate for calling the function (saving registers, set-
ting up arguments, ...). In this case, inlining the function will also reduce the code
size of the program.

In general, it is a good idea to inline small functions since inline expansion of
small functions does not increase the code size significantly. However, it can be
beneficial to avoid inline expansion for calls when the caller has a small function
body since expanding such calls might reduce the opportunities for inline expan-
sion for the caller. Similarly, you might want to avoid inline expansion for calls in
conditional branches and give preference to expanding calls in loops. The rational
behind these stratifies is that we want to maximize the performance improvements
we get from a fixed increase in code size: Loop bodies are potentially executed
often and conditional branches are potentially executed rarely. When performing
inline expansion, we have to avoid creating huge function bodies because it in-

LECTURE NOTES MARCH 28, 2024



Function Optimizations L20.3

creases the stress on the register allocator. So there should be a cutoff function size
at which we stop inlining functions that further increase its size.

Implementing Inline Expansion As for other optimizations, we have to select
the right intermediate language to perform inline expansion. If the intermediate
language is to high-level then we do not yet know the sizes of the function bodies
and it is more difficult to apply heuristics. However, we want to perform inline ex-
pansion before register allocation and other optimizations that might benefit from
inlining. Abstract assembly has the advantage that we can either implement inlining
as one of the first optimizations in abstract assembly or we could alternate it with
other optimizations that change the code size of function bodies.

Consider for example the function catalan(n), which computes the nth Catalan
number.

int next (int n, int c)

{

return 2*(2*n+1)*c/(n+2);

}

int catalan (int n)

{

int i = 0;

int c = 1;

while (i<n)

{

c = next(i,c);

i = i+1;

}

return c;

}

The function next is short and a good candidate for inline expansion. When we
perform the inline expansion, we have to make sure to rename the arguments (and
local variables) of next to avoid name clashes with the variables of catalan. In an
implementation, we would pick fresh names that cannot appear anywhere else in
the program. Here, we simply rename as follows.

int next (int n’, int c’)

{

return 2*(2*n’+1)*c’/(n’+2);

}

Now we replace the function call, with the function body in which we replace each
return with an assignment to c. Moreover, we add a preamble in which we assign
the actual parameters to the formal parameters.

LECTURE NOTES MARCH 28, 2024



Function Optimizations L20.4

int catalan (int n)

{

int i = 0;

int c = 1;

while (i<n)

{

int n’ = i;

int c’ = n;

c = 2*(2*n’+1)*c’/(n’+2);

i = i+1;

}

return c;

}

3 Tail-Call Optimization

Consider the following two implementations pow and powloop of the power func-
tion be.

int powacc (int b, int e, int a)

{

if (e == 0)

return a;

else

return powacc(b,e-1,a*b);

}

int pow(int b, int e)

{

return powacc(b,e,1)

}

int powloop(int b, int e)

{

int acc = 1;

while (e>0)

{

e = e - 1;

acc = acc * b;

}

return acc;

}

Which implementation is more efficient? Potentially, the first version, which uses a
recursive function, but it depends on the compiler. The overhead of using functions
mainly comes from maintaining stack frames. But why do we have stack frames?
We store local variables and registers of the caller to resume its computation after
the function call. However, if there is no computation after the function call, there
is no need to preserve the registers or the local variables of the caller. So we do not
need to preserve the stack frame of the caller and can directly return to the caller of
the caller in the callee. This is often called tail-call optimization.

Tail-call optimization is usually performed on the abstract assembly level. Of-

LECTURE NOTES MARCH 28, 2024



Function Optimizations L20.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 ← e− 1
t1 ← a ∗ b
t2 ← powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 ← powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b← arg1
e← arg2
a← arg3
if (e = 0) goto done
t0 ← e− 1
t1 ← a ∗ b
arg1 ← b
arg2 ← t0
arg3 ← t1
call powacc
t2 ← res
res← t2
ret

done :
res← a
ret

pow :
b← arg1
e← arg2
arg1 ← b
arg2 ← 2
arg3 ← 1
call powacc
t0 ← res
res← t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

⇝ goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES MARCH 28, 2024



Function Optimizations L20.6

powacc :
b← arg1
e← arg2
a← arg3
if (e = 0) goto done
t0 ← e− 1
t1 ← a ∗ b
arg1 ← b
arg2 ← t0
arg3 ← t1
goto powacc

done :
res← a
ret

pow :
b← arg1
e← arg2
arg1 ← b
arg2 ← 2
arg3 ← 1
call powacc
ret

It’s that simple. We only have to be careful when we introduce code that is
setting up the stack frame (and potentially saving callee-saved registers) for the
function powacc. This code should be in a separate block powacc prologue that
we call the function prologue. Each call call powacc should then replaced with
call powacc prologue. However, we do not need to setup a stack frame when we
perform the tail call. So the jump goto powacc remains unchanged. This works
because the jump goto powacc is an internal jump between two blocks of the same
function (here one block).

Non-Recursive Calls Let us now consider the same tail call optimization for the
function pow.

pow :
b← arg1
e← arg2
arg1 ← b
arg2 ← 2
arg3 ← 1
goto powacc

This change would introduce a jump from the block of one function to the block
of another function. This is in general not sound because spilled local variables
are not available on the stack frame of the other function and registers might be
overwritten.

I the present case, however, this optimization is correct if there is no other call
to the function powacc. We merge powacc and pow into a single function before we
perform register allocation setup stack frames. The general case, is more complex.
We still have to setup the stack frame of the callee but we can overwrite the stack
frame of the caller and return directly to the caller of the caller.

LECTURE NOTES MARCH 28, 2024



Function Optimizations L20.7

Register Allocation After the tail call optimization, the register allocator could
make the following assignments.

b 7→ arg1
e 7→ arg2
a 7→ arg3
t0 7→ arg2
t1 7→ arg3

After we eliminate self moves, we arrive at code that is basically identical to the
abstract assembly that we produce for the function powloop.

powacc :
if (e = 0) goto done
arg2 ← arg2 − 1
arg3 ← arg3 ∗ arg1
goto powacc

done :
res← arg3
ret

pow :
arg1 ← 1
goto powacc

LECTURE NOTES MARCH 28, 2024


	Introduction
	Inline Expansion
	Tail-Call Optimization

