
15-411: Induction Variables

Jan Hoffmann

Induction Variables

• Variables in loops whose value changes by a constant in each iteration

• Basic induction variable:

• gets increase or decreased by a constant in each iteration

• Example: i = i + 1

• Derived induction variable:

• linear function of another induction variable

• Example: x = 4 * i

Example

Check if an array is sorted

Loop Optimizations L19.3

We show the relevant part of the abstract assembly on the left. In the right is the
result of hoisting the multiplication, enabled because both width and height are
loop invariant and therefore their product is.

i0 0 i0 0
t width ⇤ height

goto loop(i0) goto loop(i0)
loop(i1) : loop(i1) :

t width ⇤ height
if (i1 � t) goto exit if (i1 � t) goto exit
.
i2 i1 + 1 i2 i1 + 1
goto loop(i2) goto loop(i2)

exit : exit :

4 Induction Variables

Hoisting loop invariant computation is significant; optimizing computation which
changes by a constant amount each time around the loop is probably even more
important. We call such variables basic induction variables. The opportunity for op-
timization arises from derived induction variables, that is, variables that are computed
from basic induction variables.

As an example we will use a function check if a given array is sorted in ascend-
ing order.

bool is_sorted(int[] A, int n)

//@requires 0 <= n && n <= \length(A);

{

for (int i = 0; i < n-1; i++)

//@loop_invariant 0 <= i;

if (A[i] > A[i+1]) return false;

return true;

}

Below is a possible compiled SSA version of this code, assuming that we do not

LECTURE NOTES NOV 3, 2015

Translation to SSA Form
(without array bound checks)

Basic induction
variable

Derived induction
variable

Loop Optimizations L19.4

perform array bounds checks (or have eliminated them).

is sorted(A, n) :
i0 0
goto loop(i0)

loop(i1) :
t0 n� 1
if (i1 � t0) goto rtrue
t1 4 ⇤ i1
t2 A+ t1
t3 M [t2]
t4 i1 + 1
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
i2 i1 + 1
goto loop(i2)

rtrue :
return 1

rfalse :
return 0

Here, i1 is the basic induction variable, and t1 = 4 ⇤ i1 and t4 = i1 + 1 are the
derived induction variables. In general, we consider a variable a derived induction
variable if its has the form a ⇤ i+ b, where a and b are loop invariant.

Let’s consider t4 first. We see that common subexpression elimination applies.
However, we would like to preserve the basic induction variable i1 and its version

LECTURE NOTES NOV 3, 2015

Common
subexpression

elimination
applies

Loop Optimizations L19.4

perform array bounds checks (or have eliminated them).

is sorted(A, n) :
i0 0
goto loop(i0)

loop(i1) :
t0 n� 1
if (i1 � t0) goto rtrue
t1 4 ⇤ i1
t2 A+ t1
t3 M [t2]
t4 i1 + 1
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
i2 i1 + 1
goto loop(i2)

rtrue :
return 1

rfalse :
return 0

Here, i1 is the basic induction variable, and t1 = 4 ⇤ i1 and t4 = i1 + 1 are the
derived induction variables. In general, we consider a variable a derived induction
variable if its has the form a ⇤ i+ b, where a and b are loop invariant.

Let’s consider t4 first. We see that common subexpression elimination applies.
However, we would like to preserve the basic induction variable i1 and its version

LECTURE NOTES NOV 3, 2015

Preserve
induction
variable i

A first optimization

Loop Optimizations L19.5

i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A, n) : is sorted(A, n) : is sorted(A, n) :
i0 0 i0 0 i0 0
goto loop(i0) goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) : loop(i1) :
t0 n� 1 t0 n� 1 t0 n� 1
if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue
t1 4 ⇤ i1 t1 4 ⇤ i1 t1 4 ⇤ i1
t2 A+ t1 t2 A+ t1 t2 A+ t1
t3 M [t2] t3 M [t2] t3 M [t2]
t4 i1 + 1 t4 i1 + 1 i2 i1 + 1
t5 4 ⇤ t4 t5 4 ⇤ t4 t5 4 ⇤ i2
t6 A+ t5 t6 A+ t5 t6 A+ t5
t7 M [t6] t7 M [t6] t7 M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 i1 + 1 i2 t4
goto loop(i2) goto loop(i2) goto loop(i2)

In the second step we applied copy propagation and then renamed t4 to i2 for easier
reading (but not formally required).

Next we look at the derived induction variable t1 4 ⇤ i1. The idea is to see
how we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In
order to achieve this effect, we add a new induction variable to represent 4 ⇤ i1. We
call this j and add it to our loop variables in SSA form.

is sorted(A, n) :
i0 0
j0 4 ⇤ i0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 4 ⇤ i2 @ensures j2 = 4 ⇤ i2
t4 i2
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.5

i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A, n) : is sorted(A, n) : is sorted(A, n) :
i0 0 i0 0 i0 0
goto loop(i0) goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) : loop(i1) :
t0 n� 1 t0 n� 1 t0 n� 1
if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue
t1 4 ⇤ i1 t1 4 ⇤ i1 t1 4 ⇤ i1
t2 A+ t1 t2 A+ t1 t2 A+ t1
t3 M [t2] t3 M [t2] t3 M [t2]
t4 i1 + 1 t4 i1 + 1 i2 i1 + 1
t5 4 ⇤ t4 t5 4 ⇤ t4 t5 4 ⇤ i2
t6 A+ t5 t6 A+ t5 t6 A+ t5
t7 M [t6] t7 M [t6] t7 M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 i1 + 1 i2 t4
goto loop(i2) goto loop(i2) goto loop(i2)

In the second step we applied copy propagation and then renamed t4 to i2 for easier
reading (but not formally required).

Next we look at the derived induction variable t1 4 ⇤ i1. The idea is to see
how we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In
order to achieve this effect, we add a new induction variable to represent 4 ⇤ i1. We
call this j and add it to our loop variables in SSA form.

is sorted(A, n) :
i0 0
j0 4 ⇤ i0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 4 ⇤ i2 @ensures j2 = 4 ⇤ i2
t4 i2
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.5

i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A, n) : is sorted(A, n) : is sorted(A, n) :
i0 0 i0 0 i0 0
goto loop(i0) goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) : loop(i1) :
t0 n� 1 t0 n� 1 t0 n� 1
if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue
t1 4 ⇤ i1 t1 4 ⇤ i1 t1 4 ⇤ i1
t2 A+ t1 t2 A+ t1 t2 A+ t1
t3 M [t2] t3 M [t2] t3 M [t2]
t4 i1 + 1 t4 i1 + 1 i2 i1 + 1
t5 4 ⇤ t4 t5 4 ⇤ t4 t5 4 ⇤ i2
t6 A+ t5 t6 A+ t5 t6 A+ t5
t7 M [t6] t7 M [t6] t7 M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 i1 + 1 i2 t4
goto loop(i2) goto loop(i2) goto loop(i2)

In the second step we applied copy propagation and then renamed t4 to i2 for easier
reading (but not formally required).

Next we look at the derived induction variable t1 4 ⇤ i1. The idea is to see
how we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In
order to achieve this effect, we add a new induction variable to represent 4 ⇤ i1. We
call this j and add it to our loop variables in SSA form.

is sorted(A, n) :
i0 0
j0 4 ⇤ i0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 4 ⇤ i2 @ensures j2 = 4 ⇤ i2
t4 i2
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES NOV 3, 2015

Consider induction
variable t1

Loop Optimizations L19.5

i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A, n) : is sorted(A, n) : is sorted(A, n) :
i0 0 i0 0 i0 0
goto loop(i0) goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) : loop(i1) :
t0 n� 1 t0 n� 1 t0 n� 1
if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue
t1 4 ⇤ i1 t1 4 ⇤ i1 t1 4 ⇤ i1
t2 A+ t1 t2 A+ t1 t2 A+ t1
t3 M [t2] t3 M [t2] t3 M [t2]
t4 i1 + 1 t4 i1 + 1 i2 i1 + 1
t5 4 ⇤ t4 t5 4 ⇤ t4 t5 4 ⇤ i2
t6 A+ t5 t6 A+ t5 t6 A+ t5
t7 M [t6] t7 M [t6] t7 M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 i1 + 1 i2 t4
goto loop(i2) goto loop(i2) goto loop(i2)

In the second step we applied copy propagation and then renamed t4 to i2 for easier
reading (but not formally required).

Next we look at the derived induction variable t1 4 ⇤ i1. The idea is to see
how we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In
order to achieve this effect, we add a new induction variable to represent 4 ⇤ i1. We
call this j and add it to our loop variables in SSA form.

is sorted(A, n) :
i0 0
j0 4 ⇤ i0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 4 ⇤ i2 @ensures j2 = 4 ⇤ i2
t4 i2
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES NOV 3, 2015

Idea: compute t1 from a
previous iteration of t1

Introduce new variable
j = 4*i

Consider induction
variable t1

Loop Optimizations L19.5

i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A, n) : is sorted(A, n) : is sorted(A, n) :
i0 0 i0 0 i0 0
goto loop(i0) goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) : loop(i1) :
t0 n� 1 t0 n� 1 t0 n� 1
if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue
t1 4 ⇤ i1 t1 4 ⇤ i1 t1 4 ⇤ i1
t2 A+ t1 t2 A+ t1 t2 A+ t1
t3 M [t2] t3 M [t2] t3 M [t2]
t4 i1 + 1 t4 i1 + 1 i2 i1 + 1
t5 4 ⇤ t4 t5 4 ⇤ t4 t5 4 ⇤ i2
t6 A+ t5 t6 A+ t5 t6 A+ t5
t7 M [t6] t7 M [t6] t7 M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 i1 + 1 i2 t4
goto loop(i2) goto loop(i2) goto loop(i2)

In the second step we applied copy propagation and then renamed t4 to i2 for easier
reading (but not formally required).

Next we look at the derived induction variable t1 4 ⇤ i1. The idea is to see
how we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In
order to achieve this effect, we add a new induction variable to represent 4 ⇤ i1. We
call this j and add it to our loop variables in SSA form.

is sorted(A, n) :
i0 0
j0 4 ⇤ i0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 4 ⇤ i2 @ensures j2 = 4 ⇤ i2
t4 i2
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES NOV 3, 2015

Idea: compute t1 from a
previous iteration of t1

Introduce new variable
j = 4*i

Loop Optimizations L20.5

i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A, n) : is sorted(A, n) : is sorted(A, n) :
i0 0 i0 0 i0 0
goto loop(i0) goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) : loop(i1) :
t0 n� 1 t0 n� 1 t0 n� 1
if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue
t1 4 ⇤ i1 t1 4 ⇤ i1 t1 4 ⇤ i1
t2 A+ t1 t2 A+ t1 t2 A+ t1
t3 M [t2] t3 M [t2] t3 M [t2]
t4 i1 + 1 t4 i1 + 1 i2 i1 + 1
t5 4 ⇤ t4 t5 4 ⇤ t4 t5 4 ⇤ i2
t6 A+ t5 t6 A+ t5 t6 A+ t5
t7 M [t6] t7 M [t6] t7 M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 i1 + 1 i2 t4
goto loop(i2) goto loop(i2) goto loop(i2)

In the second step we applied copy propagation and then renamed t4 to i2 for easier
reading (but not formally required).

Next we look at the derived induction variable t1 4 ⇤ i1. The idea is to see
how we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In
order to achieve this effect, we add a new induction variable to represent 4 ⇤ i1. We
call this j and add it to our loop variables in SSA form.

is sorted(A, n) :
i0 0
j0 4 ⇤ i0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 4 ⇤ i2 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES MARCH 30, 2023

Loop Optimizations L19.6

Crucial here is the invariant that j1 = 4 ⇤ i1 when label loop(i1, j1) is reached. Now
we calculate

j2 = 4 ⇤ i2 = 4 ⇤ (i1 + 1) = 4 ⇤ i1 + 4 = j1 + 4

so we can express j2 in terms of j1 without multiplication. This is an example of
strength reduction since addition is faster than multiplication. Recall that all the laws
we used are valid for modular arithmetic. Similarly:

j0 = 4 ⇤ i0 = 0

since i0 = 0, which is an example of constant propagation followed by constant
folding.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t4 i2
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.6

Crucial here is the invariant that j1 = 4 ⇤ i1 when label loop(i1, j1) is reached. Now
we calculate

j2 = 4 ⇤ i2 = 4 ⇤ (i1 + 1) = 4 ⇤ i1 + 4 = j1 + 4

so we can express j2 in terms of j1 without multiplication. This is an example of
strength reduction since addition is faster than multiplication. Recall that all the laws
we used are valid for modular arithmetic. Similarly:

j0 = 4 ⇤ i0 = 0

since i0 = 0, which is an example of constant propagation followed by constant
folding.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t4 i2
t5 4 ⇤ t4
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES NOV 3, 2015

Loop Optimizations L20.5

i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A, n) : is sorted(A, n) : is sorted(A, n) :
i0 0 i0 0 i0 0
goto loop(i0) goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) : loop(i1) :
t0 n� 1 t0 n� 1 t0 n� 1
if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue if (i1 � t0) goto rtrue
t1 4 ⇤ i1 t1 4 ⇤ i1 t1 4 ⇤ i1
t2 A+ t1 t2 A+ t1 t2 A+ t1
t3 M [t2] t3 M [t2] t3 M [t2]
t4 i1 + 1 t4 i1 + 1 i2 i1 + 1
t5 4 ⇤ t4 t5 4 ⇤ t4 t5 4 ⇤ i2
t6 A+ t5 t6 A+ t5 t6 A+ t5
t7 M [t6] t7 M [t6] t7 M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 i1 + 1 i2 t4
goto loop(i2) goto loop(i2) goto loop(i2)

In the second step we applied copy propagation and then renamed t4 to i2 for easier
reading (but not formally required).

Next we look at the derived induction variable t1 4 ⇤ i1. The idea is to see
how we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In
order to achieve this effect, we add a new induction variable to represent 4 ⇤ i1. We
call this j and add it to our loop variables in SSA form.

is sorted(A, n) :
i0 0
j0 4 ⇤ i0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 4 ⇤ i2 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES MARCH 30, 2023

Loop Optimizations L20.6

Crucial here is the invariant that j1 = 4 ⇤ i1 when label loop(i1, j1) is reached. Now
we calculate

j2 = 4 ⇤ i2 = 4 ⇤ (i1 + 1) = 4 ⇤ i1 + 4 = j1 + 4

so we can express j2 in terms of j1 without multiplication. This is an example of
strength reduction since addition is faster than multiplication. Recall that all the laws
we used are valid for modular arithmetic. Similarly:

j0 = 4 ⇤ i0 = 0

since i0 = 0, which is an example of constant propagation followed by constant
folding.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES MARCH 30, 2023

Loop Optimizations L19.7

With some copy propagation, and noticing that n�1 is loop invariant, we next get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

With common subexpression elimination (noting the additional assertions we are
aware of), we can replace 4 ⇤ i2 by j2. We combine this with copy propagation.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

We observe another derived induction variable, namely t2 = A+ j1. We give this a
new name (k1 = A+ j1) and introduce it into our function. Again we just calculate:

LECTURE NOTES NOV 3, 2015

Loop hoisting

Loop Optimizations L20.6

Crucial here is the invariant that j1 = 4 ⇤ i1 when label loop(i1, j1) is reached. Now
we calculate

j2 = 4 ⇤ i2 = 4 ⇤ (i1 + 1) = 4 ⇤ i1 + 4 = j1 + 4

so we can express j2 in terms of j1 without multiplication. This is an example of
strength reduction since addition is faster than multiplication. Recall that all the laws
we used are valid for modular arithmetic. Similarly:

j0 = 4 ⇤ i0 = 0

since i0 = 0, which is an example of constant propagation followed by constant
folding.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
t0 n� 1
if (i1 � t0) goto rtrue
t1 j1 @assert j1 = 4 ⇤ i1
t2 A+ t1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

LECTURE NOTES MARCH 30, 2023

Loop Optimizations L19.7

With some copy propagation, and noticing that n�1 is loop invariant, we next get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

With common subexpression elimination (noting the additional assertions we are
aware of), we can replace 4 ⇤ i2 by j2. We combine this with copy propagation.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

We observe another derived induction variable, namely t2 = A+ j1. We give this a
new name (k1 = A+ j1) and introduce it into our function. Again we just calculate:

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.7

With some copy propagation, and noticing that n�1 is loop invariant, we next get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

With common subexpression elimination (noting the additional assertions we are
aware of), we can replace 4 ⇤ i2 by j2. We combine this with copy propagation.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

We observe another derived induction variable, namely t2 = A+ j1. We give this a
new name (k1 = A+ j1) and introduce it into our function. Again we just calculate:

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.7

With some copy propagation, and noticing that n�1 is loop invariant, we next get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t5 4 ⇤ i2
t6 A+ t5
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

With common subexpression elimination (noting the additional assertions we are
aware of), we can replace 4 ⇤ i2 by j2. We combine this with copy propagation.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
t0 n� 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ⇤ i1
if (i1 � t0) goto rtrue
t2 A+ j1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

We observe another derived induction variable, namely t2 = A+ j1. We give this a
new name (k1 = A+ j1) and introduce it into our function. Again we just calculate:

LECTURE NOTES NOV 3, 2015

t2 is another
induction variable.

We introduce k to
keep track of k = A + j

Loop Optimizations L19.8

k2 = A+ j2 = A+ j1 + 4 = k1 + 4 and k0 = A+ j0 = A.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A+ j0 @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t2 k1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

After more round of constant propagtion, common subexpression elimination, and
dead code elimination we get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

With neededness analysis we can say that j0, j1, and j2 are no longer needed and

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.8

k2 = A+ j2 = A+ j1 + 4 = k1 + 4 and k0 = A+ j0 = A.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A+ j0 @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t2 k1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

After more round of constant propagtion, common subexpression elimination, and
dead code elimination we get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

With neededness analysis we can say that j0, j1, and j2 are no longer needed and

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.8

k2 = A+ j2 = A+ j1 + 4 = k1 + 4 and k0 = A+ j0 = A.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A+ j0 @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t2 k1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

After more round of constant propagtion, common subexpression elimination, and
dead code elimination we get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

With neededness analysis we can say that j0, j1, and j2 are no longer needed and

LECTURE NOTES NOV 3, 2015

One more round of constant
propagation, dead code elim.,

and CSE

Loop Optimizations L19.8

k2 = A+ j2 = A+ j1 + 4 = k1 + 4 and k0 = A+ j0 = A.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A+ j0 @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t2 k1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

After more round of constant propagtion, common subexpression elimination, and
dead code elimination we get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

With neededness analysis we can say that j0, j1, and j2 are no longer needed and

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.8

k2 = A+ j2 = A+ j1 + 4 = k1 + 4 and k0 = A+ j0 = A.

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A+ j0 @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t2 k1
t3 M [t2]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t6 A+ j2
t7 M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

After more round of constant propagtion, common subexpression elimination, and
dead code elimination we get:

is sorted(A, n) :
i0 0
j0 0 @ensures j0 = 4 ⇤ i0
k0 A @ensures k0 = A+ j0
t0 n� 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ⇤ i1 ^ k1 = A+ j1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
j2 j1 + 4 @ensures j2 = 4 ⇤ i2
k2 k1 + 4 @ensures k2 = A+ j2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

With neededness analysis we can say that j0, j1, and j2 are no longer needed and

LECTURE NOTES NOV 3, 2015

j1, j2, and j3 are no
longer needed.

Loop Optimizations L19.9

can be eliminated.

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Unfortunately, i1 is still needed, since it governs a conditional jump. In order to
eliminate that we would have to observe that

i1 � t0 iff A+ 4 ⇤ i1 � A+ 4 ⇤ t0

This holds since the addition here is a on 64 bit quantities where the second operand
is 32 bits, so no overflow can occur. The general case under which we can make
this observation is a bit unclear. It may be one should look for induction variables
that are not needed except for conditions in conditional branches (which would
be the case here). Or we might make a particular effort to remove basic induction
variables once derived ones have been introduced. In any case, if we exploit this
we obtain:

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (k1 � A+ 4 ⇤ t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Now i0, i1, and i2 are no longer needed and can be eliminated. Moreover, A+4 ⇤ t0

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.9

can be eliminated.

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Unfortunately, i1 is still needed, since it governs a conditional jump. In order to
eliminate that we would have to observe that

i1 � t0 iff A+ 4 ⇤ i1 � A+ 4 ⇤ t0

This holds since the addition here is a on 64 bit quantities where the second operand
is 32 bits, so no overflow can occur. The general case under which we can make
this observation is a bit unclear. It may be one should look for induction variables
that are not needed except for conditions in conditional branches (which would
be the case here). Or we might make a particular effort to remove basic induction
variables once derived ones have been introduced. In any case, if we exploit this
we obtain:

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (k1 � A+ 4 ⇤ t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Now i0, i1, and i2 are no longer needed and can be eliminated. Moreover, A+4 ⇤ t0

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.9

can be eliminated.

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Unfortunately, i1 is still needed, since it governs a conditional jump. In order to
eliminate that we would have to observe that

i1 � t0 iff A+ 4 ⇤ i1 � A+ 4 ⇤ t0

This holds since the addition here is a on 64 bit quantities where the second operand
is 32 bits, so no overflow can occur. The general case under which we can make
this observation is a bit unclear. It may be one should look for induction variables
that are not needed except for conditions in conditional branches (which would
be the case here). Or we might make a particular effort to remove basic induction
variables once derived ones have been introduced. In any case, if we exploit this
we obtain:

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (k1 � A+ 4 ⇤ t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Now i0, i1, and i2 are no longer needed and can be eliminated. Moreover, A+4 ⇤ t0

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.9

can be eliminated.

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Unfortunately, i1 is still needed, since it governs a conditional jump. In order to
eliminate that we would have to observe that

i1 � t0 iff A+ 4 ⇤ i1 � A+ 4 ⇤ t0

This holds since the addition here is a on 64 bit quantities where the second operand
is 32 bits, so no overflow can occur. The general case under which we can make
this observation is a bit unclear. It may be one should look for induction variables
that are not needed except for conditions in conditional branches (which would
be the case here). Or we might make a particular effort to remove basic induction
variables once derived ones have been introduced. In any case, if we exploit this
we obtain:

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (k1 � A+ 4 ⇤ t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Now i0, i1, and i2 are no longer needed and can be eliminated. Moreover, A+4 ⇤ t0

LECTURE NOTES NOV 3, 2015

Loop Optimizations L19.9

can be eliminated.

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (i1 � t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Unfortunately, i1 is still needed, since it governs a conditional jump. In order to
eliminate that we would have to observe that

i1 � t0 iff A+ 4 ⇤ i1 � A+ 4 ⇤ t0

This holds since the addition here is a on 64 bit quantities where the second operand
is 32 bits, so no overflow can occur. The general case under which we can make
this observation is a bit unclear. It may be one should look for induction variables
that are not needed except for conditions in conditional branches (which would
be the case here). Or we might make a particular effort to remove basic induction
variables once derived ones have been introduced. In any case, if we exploit this
we obtain:

is sorted(A, n) :
i0 0
k0 A @ensures k0 = A+ 4 ⇤ i0
t0 n� 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ⇤ i1
if (k1 � A+ 4 ⇤ t0) goto rtrue
t3 M [k1]
i2 i1 + 1
k2 k1 + 4 @ensures k2 = A+ 4 ⇤ i2
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Now i0, i1, and i2 are no longer needed and can be eliminated. Moreover, A+4 ⇤ t0

LECTURE NOTES NOV 3, 2015i0, i1, and i2 are no
longer needed.

Loop Optimizations L19.10

is loop invariant and can be hoisted.

is sorted(A, n) :
k0 A
t0 n� 1
t8 4 ⇤ t0
t9 A+ t8
goto loop(k0)

loop(k1) :
if (k1 � t9) goto rtrue
t3 M [k1]
k2 k1 + 4
t7 M [k2]
if (t3 > t7) goto rfalse
goto loop(k2)

rtrue :
return 1

rfalse :
return 0

It was suggested that we can avoid two memory accesses per iteration by unrolling
the loop once. This make sense, but this opimization is beyond the scope of this
lecture.

We have carried out the optimizations here on concrete programs and values,
but it is straightforward to generalize them to arbitrary induction variables x that
are updated with x2 x1±c for a constant c, and derived variables that arise from
constant multiplication with or addition to a basic induction variable.

LECTURE NOTES NOV 3, 2015

Unrolling the loop
once can remove one
memory access per

iteration.

