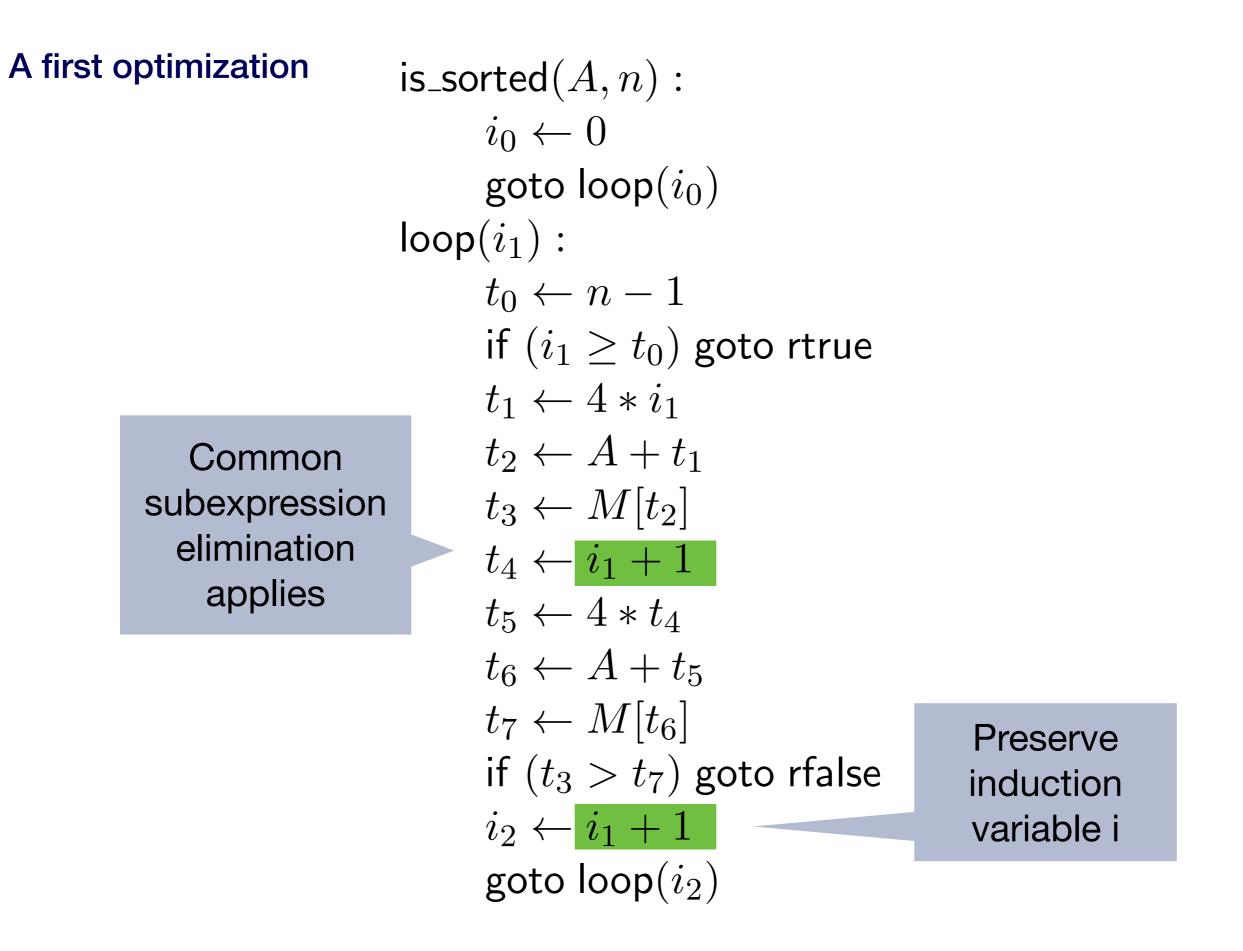
15-411: Induction Variables

Jan Hoffmann

Induction Variables

- Variables in loops whose value changes by a constant in each iteration
- Basic induction variable:
 - gets increase or decreased by a constant in each iteration
 - Example: i = i + 1
- Derived induction variable:
 - linear function of another induction variable
 - Example: x = 4 * i

Example


Check if an array is sorted

```
bool is_sorted(int[] A, int n)
//@requires 0 <= n && n <= \length(A);
{
   for (int i = 0; i < n-1; i++)
      //@loop_invariant 0 <= i;
      if (A[i] > A[i+1]) return false;
   return true;
}
```

Basic induction variable **Derived induction** variable

Translation to SSA Form (without array bound checks)

```
is\_sorted(A, n) :
       i_0 \leftarrow 0
       goto loop(i_0)
loop(i_1):
       t_0 \leftarrow n-1
      if (i_1 \ge t_0) goto rtrue
      t_1 \leftarrow 4 * i_1
       t_2 \leftarrow A + t_1
       t_3 \leftarrow M[t_2]
      t_4 \leftarrow i_1 + 1
       t_5 \leftarrow 4 * t_4
       t_6 \leftarrow A + t_5
       t_7 \leftarrow M[t_6]
       if (t_3 > t_7) goto rfalse
      i_2 \leftarrow i_1 + 1
       goto loop(i_2)
rtrue :
       return 1
rfalse :
       return 0
```


$$\begin{split} \text{is_sorted}(A,n): \\ i_0 \leftarrow 0 \\ \text{goto } \text{loop}(i_0) \\ \text{loop}(i_1): \\ t_0 \leftarrow n-1 \\ \text{if } (i_1 \geq t_0) \text{ goto rtrue} \\ t_1 \leftarrow 4 * i_1 \\ t_2 \leftarrow A + t_1 \\ t_3 \leftarrow M[t_2] \\ t_4 \leftarrow i_1 + 1 \\ t_5 \leftarrow 4 * t_4 \\ t_6 \leftarrow A + t_5 \\ t_7 \leftarrow M[t_6] \\ \text{if } (t_3 > t_7) \text{ goto rfalse} \\ i_2 \leftarrow t_4 \\ \text{goto } \text{loop}(i_2) \end{split}$$

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ goto $loop(i_0)$ $loop(i_1)$: $t_0 \leftarrow n-1$ if $(i_1 \ge t_0)$ goto rtrue $t_1 \leftarrow 4 * i_1$ $t_2 \leftarrow A + t_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $t_5 \leftarrow 4 * i_2$ $t_6 \leftarrow A + t_5$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse

Consider induction variable t1 $t_1 \leftarrow 4 * i_1$

Idea: compute t1 from a previous iteration of t1

Introduce new variable j = 4*i $is_sorted(A, n)$: $i_0 \leftarrow 0$ goto $loop(i_0)$ $loop(i_1)$: $t_0 \leftarrow n-1$ if $(i_1 \ge t_0)$ goto rtrue $t_1 \leftarrow 4 * i_1$ $t_2 \leftarrow A + t_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $t_5 \leftarrow 4 * i_2$ $t_6 \leftarrow A + t_5$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse

goto $\mathsf{loop}(i_2)$

Consider induction variable t1 $t_1 \leftarrow 4 * i_1$

Idea: compute t1 from a previous iteration of t1

Introduce new variable j = 4*i

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 4 * i_0$ goto $loop(i_0, j_0)$ $loop(i_1, j_1):$ $t_0 \leftarrow n-1$ if $(i_1 \ge t_0)$ goto rtrue $t_1 \leftarrow j_1$ $t_2 \leftarrow A + t_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $i_2 \leftarrow 4 * i_2$ $t_5 \leftarrow 4 * i_2$ $t_6 \leftarrow A + t_5$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2)

@ensures $j_0 = 4 * i_0$ @requires $j_1 = 4 * i_1$

@assert $j_1 = 4 * i_1$

@ensures $j_2 = 4 * i_2$

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 4 * i_0$ goto loop (i_0, j_0) $loop(i_1, j_1)$: $t_0 \leftarrow n-1$ if $(i_1 \ge t_0)$ goto rtrue $t_1 \leftarrow j_1$ $t_2 \leftarrow A + t_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow 4 * i_2$ $t_5 \leftarrow 4 * i_2$ $t_6 \leftarrow A + t_5$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2)

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ goto loop (i_0, j_0) $loop(i_1, j_1)$: $t_0 \leftarrow n-1$ if $(i_1 \ge t_0)$ goto rtrue $t_1 \leftarrow j_1$ $t_2 \leftarrow A + t_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ $t_5 \leftarrow 4 * i_2$ $t_6 \leftarrow A + t_5$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2)

@ensures $j_0 = 4 * i_0$ @requires $j_1 = 4 * i_1$

@assert $j_1 = 4 * i_1$

@ensures $j_2 = 4 * i_2$

$$j_2 = 4 * i_2 = 4 * (i_1 + 1) = 4 * i_1 + 4 = j_1 + 4$$

 $j_0 = 4 * i_0 = 0$

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $is_sorted(A, n)$: $j_0 \leftarrow 0$ @ensures $j_0 = 4 * i_0$ $i_0 \leftarrow 0$ $t_0 \leftarrow n-1$ $j_0 \leftarrow 0$ $\dot{}$ \mathbf{b} (i_0, j_0) goto loop (i_0, j_0) @requires $j_1 = 4 * i_1$ $loop(i_1, j_1)$: Loop hoisting $t_0 \leftarrow n-1$ $\ldots \ (\ z_1 \ z_0)$ goto rtrue if $(i_1 \ge t_0)$ goto rtrue $t_2 \leftarrow A + j_1$ $t_3 \leftarrow M[t_2]$ $t_1 \leftarrow j_1$ $i_2 \leftarrow i_1 + 1$ $t_2 \leftarrow A + t_1$ $t_3 \leftarrow M[t_2]$ $j_2 \leftarrow j_1 + 4$ @ensures $j_2 = 4 * i_2$ $i_2 \leftarrow i_1 + 1$ $t_5 \leftarrow 4 * i_2$ $j_2 \leftarrow j_1 + 4$ $t_6 \leftarrow A + t_5$ $t_5 \leftarrow 4 * i_2$ $t_7 \leftarrow M[t_6]$ $t_6 \leftarrow A + t_5$ if $(t_3 > t_7)$ goto rfalse $t_7 \leftarrow M[t_6]$ goto loop (i_2, j_2) if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2)

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ $t_0 \leftarrow n-1$ goto $loop(i_0, j_0)$ $loop(i_1, j_1)$: if $(i_1 \ge t_0)$ goto rtrue $t_2 \leftarrow A + j_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ $t_5 \leftarrow 4 * i_2$ $t_6 \leftarrow A + t_5$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse goto $loop(i_2, j_2)$

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ $t_0 \leftarrow n-1$ goto loop (i_0, j_0) $loop(i_1, j_1)$: if $(i_1 \ge t_0)$ goto rtrue $t_2 \leftarrow A + j_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ $t_6 \leftarrow A + j_2$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2)

@ensures $j_0 = 4 * i_0$

@requires $j_1 = 4 * i_1$


```
is\_sorted(A, n) :
       i_0 \leftarrow 0
       j_0 \leftarrow 0
       t_0 \leftarrow n-1
       goto loop(i_0, j_0)
loop(i_1, j_1):
       if (i_1 \ge t_0) goto rtrue
      t_2 \leftarrow A + j_1
       t_3 \leftarrow M[t_2]
       i_2 \leftarrow i_1 + 1
       j_2 \leftarrow j_1 + 4
       t_6 \leftarrow A + j_2
       t_7 \leftarrow M[t_6]
       if (t_3 > t_7) goto rfalse
       goto loop(i_2, j_2)
```

t2 is another induction variable.

We introduce k to keep track of k = A + j $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ $k_0 \leftarrow A + j_0$ $t_0 \leftarrow n-1$ goto loop (i_0, j_0, k_0) $loop(i_1, j_1, k_1)$: if $(i_1 \ge t_0)$ goto rtrue $t_2 \leftarrow k_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ $k_2 \leftarrow k_1 + 4$ $t_6 \leftarrow A + j_2$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2, k_2)

@ensures $j_0 = 4 * i_0$ @ensures $k_0 = A + j_0$

@requires $j_1 = 4 * i_1 \land k_1 = A + j_1$

@ensures $j_2 = 4 * i_2$ @ensures $k_2 = A + j_2$

 $k_2 = A + j_2 = A + j_1 + 4 = k_1 + 4$

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ $k_0 \leftarrow A + j_0$ $t_0 \leftarrow n-1$ goto loop (i_0, j_0, k_0) $loop(i_1, j_1, k_1)$: if $(i_1 \ge t_0)$ goto rtrue $t_2 \leftarrow k_1$ $t_3 \leftarrow M[t_2]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ $k_2 \leftarrow k_1 + 4$ $t_6 \leftarrow A + j_2$ $t_7 \leftarrow M[t_6]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2, k_2)

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ @ensures $j_0 = 4 * i_0$ $k_0 \leftarrow A$ @ensures $k_0 = A + j_0$ $t_0 \leftarrow n-1$ goto loop (i_0, j_0, k_0) $loop(i_1, j_1, k_1)$: @requires $j_1 = 4 * i_1 \wedge i_1$ if $(i_1 \ge t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ @ensures $j_2 = 4 * i_2$ @ensures $k_2 = A + j_2$ $k_2 \leftarrow k_1 + 4$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2, k_2)

One more round of constant propagation, dead code elim., and CSE $is_sorted(A, n)$: $i_0 \leftarrow 0$ $j_0 \leftarrow 0$ $k_0 \leftarrow A$ $t_0 \leftarrow n-1$ goto loop (i_0, j_0, k_0) $loop(i_1, j_1, k_1)$: if $(i_1 \ge t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $j_2 \leftarrow j_1 + 4$ $k_2 \leftarrow k_1 + 4$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, j_2, k_2)

j1, j2, and j3 are no longer needed.

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $k_0 \leftarrow A$ $t_0 \leftarrow n-1$ goto $loop(i_0, k_0)$ $loop(i_1, k_1)$: if $(i_1 \ge t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $k_2 \leftarrow k_1 + 4$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, k_2)

@ensures $k_0 = A + 4 * i_0$

@requires $k_1 = A + 4 * i_1$

 $@ensures k_2 = A + 4 * i_2$

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $k_0 \leftarrow A$ $t_0 \leftarrow n-1$ goto $loop(i_0, k_0)$ $loop(i_1, k_1)$: if $(i_1 \ge t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $k_2 \leftarrow k_1 + 4$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, k_2)

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $k_0 \leftarrow A$ $t_0 \leftarrow n-1$ goto $loop(i_0, k_0)$ $loop(i_1, k_1)$: if $(k_1 \ge A + 4 * t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $k_2 \leftarrow k_1 + 4$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto $loop(i_2, k_2)$

 $i_1 \ge t_0 \text{ iff } A + 4 * i_1 \ge A + 4 * t_0$

 $is_sorted(A, n)$: $i_0 \leftarrow 0$ $k_0 \leftarrow A$ $t_0 \leftarrow n-1$ goto $loop(i_0, k_0)$ $loop(i_1, k_1)$: if $(k_1 \ge A + 4 * t_0)$ goto rtrue $t_3 \leftarrow M[k_1]$ $i_2 \leftarrow i_1 + 1$ $k_2 \leftarrow k_1 + 4$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto loop (i_2, k_2)

i0, i1, and i2 are no longer needed.

 $is_sorted(A, n)$: $k_0 \leftarrow A$ $t_0 \leftarrow n-1$ $t_8 \leftarrow 4 * t_0$ $t_9 \leftarrow A + t_8$ goto $loop(k_0)$ $loop(k_1)$: if $(k_1 \ge t_9)$ goto rtrue $t_3 \leftarrow M[k_1]$ $k_2 \leftarrow k_1 + 4$ $t_7 \leftarrow M[k_2]$ if $(t_3 > t_7)$ goto rfalse goto $loop(k_2)$ Unrolling the loop once can remove one memory access per iteration.