
15-411: Tail Call Optimization

Jan Hoffmann

Two Implementations of the
Power Function

Function Optimizations L21.4

int catalan (int n)

{

int i = 0;

int c = 1;

while (i<n)

{

int n’ = i;

int c’ = n;

c = 2*(2*n’+1)*c’/(n’+2);

i = i+1;

}

return c;

}

3 Tail-Call Optimization

Consider the following two implementations pow and powloop of the power func-
tion be.

int powacc (int b, int e, int a)

{

if (e == 0)

return a;

else

return powacc(b,e-1,a*b);

}

int pow(int b, int e)

{

return powacc(b,e,1)

}

int powloop(int b, int e)

{

int acc = 1;

while (e>0)

{

e = e - 1;

acc = acc * b;

}

return acc;

}

Which implementation is more efficient? Potentially, the first version, which uses a
recursive function, but it depends on the compiler. The overhead of using functions
mainly comes from maintaining stack frames. But why do we have stack frames?
We store local variables and registers of the caller to resume its computation after
the function call. However, if there is no computation after the function call, there
is no need to preserve the registers or the local variables of the caller. So we do not
need to preserve the stack frame of the caller and can directly return to the caller of
the caller in the callee. This is often called tail-call optimization.

Tail-call optimization is usually performed on the abstract assembly level. Of-

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.4

int catalan (int n)

{

int i = 0;

int c = 1;

while (i<n)

{

int n’ = i;

int c’ = n;

c = 2*(2*n’+1)*c’/(n’+2);

i = i+1;

}

return c;

}

3 Tail-Call Optimization

Consider the following two implementations pow and powloop of the power func-
tion be.

int powacc (int b, int e, int a)

{

if (e == 0)

return a;

else

return powacc(b,e-1,a*b);

}

int pow(int b, int e)

{

return powacc(b,e,1)

}

int powloop(int b, int e)

{

int acc = 1;

while (e>0)

{

e = e - 1;

acc = acc * b;

}

return acc;

}

Which implementation is more efficient? Potentially, the first version, which uses a
recursive function, but it depends on the compiler. The overhead of using functions
mainly comes from maintaining stack frames. But why do we have stack frames?
We store local variables and registers of the caller to resume its computation after
the function call. However, if there is no computation after the function call, there
is no need to preserve the registers or the local variables of the caller. So we do not
need to preserve the stack frame of the caller and can directly return to the caller of
the caller in the callee. This is often called tail-call optimization.

Tail-call optimization is usually performed on the abstract assembly level. Of-

LECTURE NOTES APRIL 4, 2023

Which implementation is
more efficient?

Compiling Tail Calls

Function overhead mainly comes from maintaining stack frames

Why do we have call frames?

• Store local variables and (temporarily) registers

➡ Resume computation after function call

Maintaining call a frame is not necessary if the function body ends with
a function call

• Instead of creating a new frame, we can reuse the frame of the caller

Tail call.

Tail call optimization.

Tail Call Optimization

• Reusing the frame of the caller is easier for recursive calls since the
frame “fits”

➡ Many compilers implement tail-call optimization only for recursive calls 

• But: It’s not difficult to adjust the frame size to account for tail calls to
other functions

• Implementation: Replace a function call in abstract assembly with a
jump

Example: Java

Works best after function parameters are
removed.

Example: powacc

Function Optimizations L21.4

int catalan (int n)

{

int i = 0;

int c = 1;

while (i<n)

{

int n’ = i;

int c’ = n;

c = 2*(2*n’+1)*c’/(n’+2);

i = i+1;

}

return c;

}

3 Tail-Call Optimization

Consider the following two implementations pow and powloop of the power func-
tion be.

int powacc (int b, int e, int a)

{

if (e == 0)

return a;

else

return powacc(b,e-1,a*b);

}

int pow(int b, int e)

{

return powacc(b,e,1)

}

int powloop(int b, int e)

{

int acc = 1;

while (e>0)

{

e = e - 1;

acc = acc * b;

}

return acc;

}

Which implementation is more efficient? Potentially, the first version, which uses a
recursive function, but it depends on the compiler. The overhead of using functions
mainly comes from maintaining stack frames. But why do we have stack frames?
We store local variables and registers of the caller to resume its computation after
the function call. However, if there is no computation after the function call, there
is no need to preserve the registers or the local variables of the caller. So we do not
need to preserve the stack frame of the caller and can directly return to the caller of
the caller in the callee. This is often called tail-call optimization.

Tail-call optimization is usually performed on the abstract assembly level. Of-

LECTURE NOTES APRIL 4, 2023

1. Compile to Abstract Assembly

Function Optimizations L21.4

int catalan (int n)

{

int i = 0;

int c = 1;

while (i<n)

{

int n’ = i;

int c’ = n;

c = 2*(2*n’+1)*c’/(n’+2);

i = i+1;

}

return c;

}

3 Tail-Call Optimization

Consider the following two implementations pow and powloop of the power func-
tion be.

int powacc (int b, int e, int a)

{

if (e == 0)

return a;

else

return powacc(b,e-1,a*b);

}

int pow(int b, int e)

{

return powacc(b,e,1)

}

int powloop(int b, int e)

{

int acc = 1;

while (e>0)

{

e = e - 1;

acc = acc * b;

}

return acc;

}

Which implementation is more efficient? Potentially, the first version, which uses a
recursive function, but it depends on the compiler. The overhead of using functions
mainly comes from maintaining stack frames. But why do we have stack frames?
We store local variables and registers of the caller to resume its computation after
the function call. However, if there is no computation after the function call, there
is no need to preserve the registers or the local variables of the caller. So we do not
need to preserve the stack frame of the caller and can directly return to the caller of
the caller in the callee. This is often called tail-call optimization.

Tail-call optimization is usually performed on the abstract assembly level. Of-

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

C0 High-level Abstract Assembly

2. Replace Parameters with Abstract Registers

High-level Abstract Assembly

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Low-level Abstract Assembly

3. Apply Optimizations (Remove Null Sequences)

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Low-level Abstract Assembly

4. Introduce Tail Recursion

Function Optimizations L21.5

ten it is only applied to recursive calls because it is easier to implement and leads to
greater performance gains. However, it can also be applied to non-recursive calls.

Consider the following translation of the function pow to high-level abstract
assembly. We have two opportunities for tail call optimization: both calls to powacc
are immediately followed by a return of the value that has been return by the call
to powacc. We now want to replace the call to powacc with a jump to its function
body. However, we need to find a way to pass the concrete arguments and to pass
on the return value to the previous caller.

powacc(b, e, a) :
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
t2 powacc(b, t0, t1)
return t2

done :
return a

pow(b, e) :
t0 powacc(b, e, 1)
return t0

Tail Recursion As we will see, tail calls are easier to implement if we introduce
argument and return registers. Consider the following translation of the code to
such a lower-level abstract assembly.

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
call powacc
t2 res
res t2
ret

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
t0 res
res t0
ret

Here, we want to replace calls that are immediately followed by a return with a
jump.

call f
ret

 goto f

To obtain a call immediately followed by a return with first apply copy propa-
gation and dead code elimination. In the code below we have already applied tail
call optimization to the block powacc.

LECTURE NOTES APRIL 4, 2023

Replace recursive calls followed by returns with jumps:

Function Optimizations L21.6

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
goto powacc

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
ret

It’s that simple. We only have to be careful when we introduce code that is
setting up the stack frame (and potentially saving callee-saved registers) for the
function powacc. This code should be in a separate block powacc prologue that
we call the function prologue. Each call call powacc should then replaced with
call powacc prologue. However, we do not need to setup a stack frame when we
perform the tail call. So the jump goto powacc remains unchanged. This works
because the jump goto powacc is an internal jump between two blocks of the same
function (here one block).

Non-Recursive Calls Let us now consider the same tail call optimization for the
function pow.

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
goto powacc

This change would introduce a jump from the block of one function to the block
of another function. This is in general not sound because spilled local variables
are not available on the stack frame of the other function and registers might be
overwritten.

I the present case, however, this optimization is correct if there is no other call
to the function powacc. We merge powacc and pow into a single function before we
perform register allocation setup stack frames. The general case, is more complex.
We still have to setup the stack frame of the callee but we can overwrite the stack
frame of the caller and return directly to the caller of the caller.

LECTURE NOTES APRIL 4, 2023

Non-Recursive Tail Calls

We also replace non-recursive tail calls with jumps

Function Optimizations L21.6

powacc :
b arg1
e arg2
a arg3
if (e = 0) goto done
t0 e� 1
t1 a ⇤ b
arg1 b
arg2 t0
arg3 t1
goto powacc

done :
res a
ret

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
call powacc
ret

It’s that simple. We only have to be careful when we introduce code that is
setting up the stack frame (and potentially saving callee-saved registers) for the
function powacc. This code should be in a separate block powacc prologue that
we call the function prologue. Each call call powacc should then replaced with
call powacc prologue. However, we do not need to setup a stack frame when we
perform the tail call. So the jump goto powacc remains unchanged. This works
because the jump goto powacc is an internal jump between two blocks of the same
function (here one block).

Non-Recursive Calls Let us now consider the same tail call optimization for the
function pow.

pow :
b arg1
e arg2
arg1 b
arg2 2
arg3 1
goto powacc

This change would introduce a jump from the block of one function to the block
of another function. This is in general not sound because spilled local variables
are not available on the stack frame of the other function and registers might be
overwritten.

I the present case, however, this optimization is correct if there is no other call
to the function powacc. We merge powacc and pow into a single function before we
perform register allocation setup stack frames. The general case, is more complex.
We still have to setup the stack frame of the callee but we can overwrite the stack
frame of the caller and return directly to the caller of the caller.

LECTURE NOTES APRIL 4, 2023

In general it’s not sound to jump to a block of a different function

However, it’s okay to merge pow and powacc into one function if
powacc is only called from pow

Register Allocation
After tail call optimization, we
can make the assignment:

Function Optimizations L21.7

Register Allocation After the tail call optimization, the register allocator could
make the following assignments.

b 7! arg1
e 7! arg2
a 7! arg3
t0 7! arg2
t1 7! arg3

After we eliminate self moves, we arrive at code that is basically identical to the
abstract assembly that we produce for the function powloop.

powacc :
if (e = 0) goto done
arg2 arg2 � 1
arg3 arg3 ⇤ arg1
goto powacc

done :
res arg3
ret

pow :
arg1 1
goto powacc

LECTURE NOTES APRIL 4, 2023

Eliminate self moves

Function Optimizations L21.7

Register Allocation After the tail call optimization, the register allocator could
make the following assignments.

b 7! arg1
e 7! arg2
a 7! arg3
t0 7! arg2
t1 7! arg3

After we eliminate self moves, we arrive at code that is basically identical to the
abstract assembly that we produce for the function powloop.

powacc :
if (e = 0) goto done
arg2 arg2 � 1
arg3 arg3 ⇤ arg1
goto powacc

done :
res arg3
ret

pow :
arg1 1
goto powacc

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.7

Register Allocation After the tail call optimization, the register allocator could
make the following assignments.

b 7! arg1
e 7! arg2
a 7! arg3
t0 7! arg2
t1 7! arg3

After we eliminate self moves, we arrive at code that is basically identical to the
abstract assembly that we produce for the function powloop.

powacc :
if (e = 0) goto done
arg2 arg2 � 1
arg3 arg3 ⇤ arg1
goto powacc

done :
res arg3
ret

pow :
arg1 1
goto powacc

LECTURE NOTES APRIL 4, 2023

Function Optimizations L21.7

Register Allocation After the tail call optimization, the register allocator could
make the following assignments.

b 7! arg1
e 7! arg2
a 7! arg3
t0 7! arg2
t1 7! arg3

After we eliminate self moves, we arrive at code that is basically identical to the
abstract assembly that we produce for the function powloop.

powacc :
if (e = 0) goto done
arg2 arg2 � 1
arg3 arg3 ⇤ arg1
goto powacc

done :
res arg3
ret

pow :
arg1 1
goto powacc

LECTURE NOTES APRIL 4, 2023

