15-411: Compiler Design Spring 2024

Recitation 4: Calling Conventions Solutions 16 February

The L3 language adds support for function calls, type definitions, and header files with C interoperability.
In this recitation, we'll discuss some of the implications of adding these features and how your compiler
should deal with them.

Caller- and Callee-Saved Registers Function | 64-bit| 32-bit | 16-bit | 8-bit

In Lab 3, your compiler's code-generation and register allo- ~ Return Value |%rax |%eax |[%ax |[%al
cation phases will need to distinguish between callee-saved (5jjce saved |3rbx [sebx [2bx [2b1

and caller-saved registers:
g 4th Argument |¥rcx |%ecx [%cx %cl

e The values stored in callee-saved registers must 3rd Argument |$zdx |tedx |3dx o dl

be preserved across function calls. This means that
. . T
your function must save and restore any callee-saved ~ 2nd Argument |3rsi |%esi |%si [%sil

registers that it modifies. 1st Argument |%rdi [%edi |%di |%dil

e The values stored in caller-saved registers may be Callee saved |%rbp |%ebp [%bp |Sbpl

modified by any function call, so your compiler can- ~ Stack Pointer [$rsp [%esp |[Ssp %spl
not assume that they will retain their values after g Argument [3r8 |%r8d [%rsw |2r8Db
calling a function. If you need those values to be
preserved, you must save and restore them before
and after the function call. Caller saved |%rl0 [%rl0d |$rl0w|%r10b
Caller saved |%rll |%rlld |%rllw|%rllb
Callee saved [%rl2 |%rl2d [%rl2w|%rl2b

Callee saved |%rl3 [%rl3d |$rl13w|%rl3b

6th Argument [%r9 [%r9d |%r9w |%r9b

To avoid having callee-saved registers occupy a very long
live range during register allocation, we can handle them
separately. Prioritize allocating caller-saved registers; if
they are insufficient, we assign assign callee-save registers ~ Callee saved [%rl4 [%rldd |Srldw|%rldb
before we resort to spilling, but we make sure to save them (cgllee saved |$r15 |$r15d [2r15w|er15b
to the stack at the beginning of a function and restore them
at the end. This is more efficient than always saving and
restoring all callee-saved registers.

Tracing Function Calls in x86-64

In Lab 3, your compiler must conform to the standard C calling conventions for x86-64. As a reminder,
this means that:

e The first six arguments to a function should be stored in %rdi, %rsi, %rdx, %rcx, %r8, and %r9

(respectively).

e The remaining arguments should be placed on the stack. The seventh argument should be stored
at the address %rsp, the eighth at %rsp + 8, etc.

e The return value of a function should be stored in Yrax.

e The use of %rbp as a base pointer is not required (but you may find that using it simplifies your
compiler’s logic significantly). LLVM uses the base pointer, but GCC does not.

Another interesting observation: unlike in C, every function in CO (and thus in L3) has a fixed stack
size that can be computed at compile time. This observation allows you to make your compiler’s stack-
handling much simpler than if you were unable to determine the stack size beforehand.

Checkpoint 0

Draw a stack diagram for the following L3 program at the point when execution reaches line 4. Assume
that %rbp is being used as a base pointer.

int f(int we, int dont, int care, int about, int these, int args, int a, int b) {

// assume that x is spilled on the stack

int x = a + b;

return 2 x x;

int main() {

1
2
3
4
5}
6
7
8 return f(0,0,0,0,0,0,3,5);
9

}

Solution:
Value Pointers
Return address of _main()
Previous %rbp
b; Arg. 8 of £()
a; Arg. 7 of £0
Return address of £ ()
main's %rbp < %rbp

X <« %hrsp

Checkpoint 1

Using your stack diagram, convert the program to x86-64 assembly following the standard calling con-
ventions. Remember to use the 64-bit and 32-bit versions of the registers appropriately and that stack
grows downward!

Solution:

_cO0_f:
push %rbp
movq %rsp, %rbp
subq $8, Y%rsp
movl 24(%rbp), %eax
addl 16 (%rbp), %eax
movl %eax, (%rsp)
movl (%rsp), %eax
imull $2, ‘%eax
addq $8, %rsp
pop %rbp
ret

_cO_main:
push %rbp
movq %rsp, %rbp
subq $16, %rsp
movl $0, %edi
movl $0, %esi
movl $0, %edx
movl $0, %ecx

movl $0, %r8d
movl $0, %r9d
movl $3, (%rsp)
movl $5, 8(%rsp)
call _cO_f

addq $16, %rsp
pop %rbp

ret

Tips and Hints for Lab3

e Header Files in L3: Unlike in C, header files in L3 (and above) are only used to declare types
and external functions. If a function is declared in a header file, then it may not be defined in the
program — it is declared as external. External functions are defined in C source files, which are
linked together with the assembly produced by your compiler.

e RBP: You are not required to use %rbp as a base pointer, so you are allowed to treat it like a
normal callee-saved register in your compiler.

e Code Review: Code Review happens one week after Lab3 is due. So if you haven't polished
the style of your compiler and added a README describing the design of various passes of your
compiler, now would be a good time to start. We are looking for good coding style and comments,
modular design, and that both of you are familiar with all components of the implementation.

