
15-411: Compiler Design Spring 2024

Recitation 4: Calling Conventions 16 February

The L3 language adds support for function calls, type definitions, and header files with C interoperability.
In this recitation, we’ll discuss some of the implications of adding these features and how your compiler
should deal with them.

Caller- and Callee-Saved Registers
In Lab 3, your compiler’s code-generation and register allo-
cation phases will need to distinguish between callee-saved
and caller-saved registers:

• The values stored in callee-saved registers must
be preserved across function calls. This means that
your function must save and restore any callee-saved
registers that it modifies.

• The values stored in caller-saved registers may be
modified by any function call, so your compiler can-
not assume that they will retain their values after
calling a function. If you need those values to be
preserved, you must save and restore them before
and after the function call.

To avoid having callee-saved registers occupy a very long
live range during register allocation, we can handle them
separately. Prioritize allocating caller-saved registers; if
they are insufficient, we assign assign callee-save registers
before we resort to spilling, but we make sure to save them
to the stack at the beginning of a function and restore them
at the end. This is more efficient than always saving and
restoring all callee-saved registers.

Tracing Function Calls in x86-64
In Lab 3, your compiler must conform to the standard C calling conventions for x86-64. As a reminder,
this means that:

• The first six arguments to a function should be stored in %rdi, %rsi, %rdx, %rcx, %r8, and %r9
(respectively).

• The remaining arguments should be placed on the stack. The seventh argument should be stored
at the address %rsp, the eighth at %rsp + 8, etc.

• The return value of a function should be stored in %rax.

• The use of %rbp as a base pointer is not required (but you may find that using it simplifies your
compiler’s logic significantly). LLVM uses the base pointer, but GCC does not.

Another interesting observation: unlike in C, every function in C0 (and thus in L3) has a fixed stack
size that can be computed at compile time. This observation allows you to make your compiler’s stack-
handling much simpler than if you were unable to determine the stack size beforehand.



Checkpoint 0
Draw a stack diagram for the following L3 program at the point when execution reaches line 4. Assume
that %rbp is being used as a base pointer.

1 int f(int we, int dont, int care, int about, int these, int args, int a, int b) {
2 // assume that x is spilled on the stack
3 int x = a + b;
4 return 2 * x;
5 }
6
7 int main() {
8 return f(0,0,0,0,0,0,3,5);
9 }

Checkpoint 1
Using your stack diagram, convert the program to x86-64 assembly following the standard calling con-
ventions. Remember to use the 64-bit and 32-bit versions of the registers appropriately and that stack
grows downward!



Tips and Hints for Lab3
• Header Files in L3: Unlike in C, header files in L3 (and above) are only used to declare types

and external functions. If a function is declared in a header file, then it may not be defined in the
program – it is declared as external. External functions are defined in C source files, which are
linked together with the assembly produced by your compiler.

• RBP: You are not required to use %rbp as a base pointer, so you are allowed to treat it like a
normal callee-saved register in your compiler.

• Code Review: Code Review happens one week after Lab3 is due. So if you haven’t polished
the style of your compiler and added a README describing the design of various passes of your
compiler, now would be a good time to start. We are looking for good coding style and comments,
modular design, and that both of you are familiar with all components of the implementation.


