
15-411: Compiler Design Spring 2024

Recitation 5: SSA Solutions 23 February

Static Single Assignment Form
Recall the Fibonacci sequence:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 n > 1

Check out this lil program that computes the nth Fibonacci number:

int fib(int n) {
if (n == 0) return 0;
int a = 0;
int b = 1;
int i = 1;
while (i < n) {

int c = b;
b = a + b;
a = c;
i++;

}
return b;

}

Checkpoint 0
Translate this program into abstract assembly, organized as basic blocks with parametrized labels.

Solution:

fib(n):
if (n == 0)

then done1()
else pre_loop(n)

done1():
return 0

pre_loop(n):
a <- 0
b <- 1
i <- 1
goto loop(n, a, b, i)

loop(n, a, b, i):
if (i < n)

then body(n, a, b, i)
else done2(b)

body(n, a, b, i):
c <- b
b <- a + b



a <- c
i <- i + 1
goto loop(n, a, b, i)

done2(b):
return b

Checkpoint 1
Use generation counters to convert this basic block assembly into SSA form.

Solution:

fib(n0):
if (n0 == 0)

then done1()
else pre_loop(n0)

done1():
return 0

pre_loop(n1):
a0 <- 0
b0 <- 1
i0 <- 1
goto loop(n1, a0, b0, i0)

loop(n2, a1, b1, i1):
if (i1 < n2)

then body(n2, a1, b1, i1)
else done2(b1)

body(n3, a2, b2, i2):
c0 <- b2
b3 <- a2 + b2
a3 <- c0
i3 <- i2 + 1
goto loop(n3, a3, b3, i3)

done2(b4):
return b4

Checkpoint 2
Rewrite the SSA program using Φ-functions instead of parametrized labels (except for the first basic
block fib).

If the parametrized label foo(xi) : can be jumped to from 2 different lines goto foo(xj) and goto foo(xk),
then we would switch to a non-parametrized label foo : but add the instruction xi ← Φ(xj , xk) to the
start of the basic block under foo :.

Solution:

fib(n0):
if (n0 == 0)



then done1
else pre_loop

done1:
return 0

pre_loop:
n1 <- Phi(n0)
a0 <- 0
b0 <- 1
i0 <- 1
goto loop

loop:
n2 <- Phi(n1, n3)
a1 <- Phi(a0, a3)
b1 <- Phi(b0, b3)
i1 <- Phi(i0, i3)
if (i1 < n2)

then body
else done2

body:
n3 <- Phi(n2)
a2 <- Phi(a1)
b2 <- Phi(b1)
i2 <- Phi(i1)
c0 <- b2
b3 <- a2 + b2
a3 <- c0
i3 <- i2 + 1
goto loop

done2:
b4 <- Phi(b1)
return b4

Checkpoint 3
Now minimize the Φ-function SSA program. Recall that we do this by repeatedly removing instructions
of the form

ti = Φ(tx1 , ..., txk
)

whenever there exists a j such that all the xn are either i or j, then replacing all instances of ti with tj .

Solution:

fib(n0):
if (n0 == 0)

then done1
else pre_loop

done1:
return 0

pre_loop:



a0 <- 0
b0 <- 1
i0 <- 1
goto loop

loop:
a1 <- Phi(a0, a3)
b1 <- Phi(b0, b3)
i1 <- Phi(i0, i3)
if (i1 < n0)

then body
else done2

body:
c0 <- b1
b3 <- a1 + b1
a3 <- c0
i3 <- i1 + 1
goto loop

done2:
return b1



Checkpoint 4
A very useful optimization that is made easy to implement by transforming programs into SSA form is
copy and constant propagation. Since by definition each variable is only defined once in the program,
whenever we see

• x← c, we can replace all instances of x with c

• x← y, we can replace all instances of x with y

Additionally, although it will not come up on the specific example we’re working on for this checkpoint,
whenever we see

• Φ(c, c), we can replace it with c

• Φ(x, x), we can replace it with x

Now apply this optimization to the minimized Φ-function SSA program from above.

Solution:

fib(n0):
if (n0 == 0)

then done1
else pre_loop

done1:
return 0

pre_loop:
goto loop

loop:
a1 <- Phi(0, b1)
b1 <- Phi(1, b3)
i1 <- Phi(1, i3)
if (i1 < n0)

then body
else done2

body:
b3 <- a1 + b1
i3 <- i1 + 1
goto loop

done2:
return b1

Checkpoint 5
Convert the optimized Φ-function SSA program back into abstract assembly without Φ-functions, aka
the de-SSA transformation.

For every occurence of x ← Φ(y, z) at the start of some basic block b, delete it, and instead insert
x ← y and x ← z respectively at the end of each of b’s predecessor blocks. Note that this will result



in x having multiple assignment sites, hence why the program is no longer in Static Single Assignment
(SSA) form.

Solution:

fib(n0):
if (n0 == 0)

then done1
else pre_loop

done1:
return 0

pre_loop:
a1 <- 0
b1 <- 1
i1 <- 1
goto loop

loop:
if (i1 < n0)

then body
else done2

body:
b3 <- a1 + b1
i3 <- i1 + 1
a1 <- b1
b1 <- b3
i1 <- i3
goto loop

done2:
return b1



Tips and Hints for Lab3
• Header Files in L3: Unlike in C, header files in L3 (and above) are only used to declare types

and external functions. If a function is declared in a header file, then it may not be defined in the
program – it is declared as external. External functions are defined in C source files, which are
linked together with the assembly produced by your compiler.

• RBP: You are not required to use %rbp as a base pointer, so you are allowed to treat it like a
normal callee-saved register in your compiler.

• Code Review: Code Review happens one week after Lab3 is due. So if you haven’t polished
the style of your compiler and added a README describing the design of various passes of your
compiler, now would be a good time to start. We are looking for good coding style and comments,
modular design, and that both of you are familiar with all components of the implementation.

• SSA: While SSA is an optimization that you won’t need to (and probably shouldn’t) implement
until Lab 5, it’s good to have an understanding of what SSA is and how it behaves. But as usual,
just work on getting a correct compiler that runs reasonable well, you’ll get to work entirely on
optimizing your compiler for Lab 5!


