
15-411: Compiler Design Spring 2024

Recitation 8: Optimizations 22 March

For previous labs, we have always introduced a new set of features to the source language that you
compile. In L5, you are not adding new features, but optimizing your compiler to output more efficient
assembly. We will be discussing some optimizations that you can write and challenges you may face.

Easy Optimizations First
We spend so much time talking about interesting and hard-to-implement optimizations that it’s easy
to get ahead of oneself and jump straight into implementing something like SSA. Don’t underestimate
how much simple things like peephole optimizations and improving instruction selection can impact your
performance. Easy-to-implement optimizations such as eliminating self-moves or making better use of
x86’s parentheses syntax for memory loads could yield drastic performance improvements for relatively
little work. We recommend starting L5 by reflecting on your compiler’s weak suits and looking for easy
improvements to make before moving on to more advanced optimizations.

Peephole Optimizations
• Constant Folding is a code transformation that replaces a binary operation with a constant.

It works very well in tandem with constant propagation. Be careful to preserve side effects of
operations though, e.g. division, modulo, shift.

Constant folding can also be applied to branches. If the condition of a branch is constant (or can
be folded into a constant), the conditional jump can be replaced with an unconditional jump. This
may cause entire basic blocks of code to become dead code.

• Strength Reduction replaces expensive operations with simpler ones. Arithmetic operations that
interact with 0 or 1 can often be replaced with moves, to which constant or copy propagation can
be applied.

• Null Sequences are sequences of operations that do not have any effects and can be replaced
with a single nop. For example, self moves (moves where dest and src are statically the same)
are always safe to remove since they do not change the machine state. Moving a to b and then
immediately back from b to a means that the second move can be replaced with a nop and not
change its behavior. Another common example is an unconditional jump to the next instruction.

Checkpoint 0
Identify opportunities for peephole optimizations in the following function.

1 foo:
2 t1 ← 40 + 2
3 t2 ← t1 * 1
4 if 3 < 2 then l1 else l2
5 l1:
6 t3 ← t2
7 goto l3
8 l2:
9 t4 ← t1 − 0

10 t3 ← t4
11 goto l3
12 l3:
13 t5 ← phi(t3,t4)
14 t6 ← t5 * 128
15 t5 ← t6 − t6



Common Subexpression Elimination
When the same operation on the same data is performed multiple times in code, common subexpression
elimination replaces the latter instances of the same operation with the result of the earlier operation. This
can potentially save repeating the same calculation at runtime. However, in order for this replacement
to be correct, we must be sure that the same operation will yield the same result at the point of the
replacement, otherwise we risk replacing subexpressions with outdated results.

Doing CSE in SSA form ensures that syntactically equal subexpressions are indeed equal in value, but
we still need to make sure that the result being reused is defined along every path from the beginning of
the function to the line of reuse. This can be determined by looking at the dominance relation between
basic blocks.

Checkpoint 1
Identify opportunities for common subexpression elimination in the following code. Make sure to check
the dominance relations.

1 l1:
2 c ← b
3 x ← a ⊕ b
4 if a < b then l2 else l3
5 l2:
6 y1 ← a ⊕ b
7 goto l4
8 l3:
9 y2 ← z ⊕ b

10 goto l4
11 l4:
12 y3 ← phi(y1,y2)
13 u ← z ⊕ b

Checkpoint 2
If line 6 above was y1 ← a ⊕ c instead, a ⊕ b would no longer be a syntactic common subexpres-
sion. They are clearly semantically equivalent though. How can we identify these semantically but not
syntactically equivalent subexpressions to help CSE do better?

Checkpoint 3
One of the pairs of common subexpressions from checkpoint 1 could not have CSE applied due to the lack
of a dominance relation. However, no matter what path we take through the CFG, that subexpression is
computed at least once, and possibly twice. How can we move some instructions around (code motion)
so that the subexpression in question only gets computed once?



Dataflow Analysis on Basic Blocks
Recall the liveness rules in set format presented during recitation 2:

LiveIn(ℓ) = Uses(ℓ) ∪ (LiveOut(ℓ)− Defs(ℓ))

LiveOut(ℓ) =
⋃

s∈succ(ℓ)

LiveIn(s)

To solve liveness, simply apply these rules repeatedly until the fixpoint is reached. This simple dataflow
analysis algorithm operates across individual instructions. All programs, however, have more individual
instructions than basic blocks, so dataflow across basic blocks would be a lot more efficient. First, let’s
just take the rules above and simply replace all instances of lines/instructions with basic blocks:

LiveIn(b) = Uses(b) ∪ (LiveOut(b)− Defs(b))

LiveOut(b) =
⋃

s∈succ(b)

LiveIn(b)

The challenge arises in figuring out what the sets Uses(b) and Defs(b) should be. An intuitive guess is to
simply take the union the uses and defs respectively for all lines of the block. While that would actually
work for Defs(b), Uses(b) is a little more subtle. A variable that is only used after being defined in the
same block is not being used overall by the whole block. This motivates the per-block sets1

Uses(b) := all variables v in b such that v is used before its first definition
Defs(b) := all variables defined in b

To actually keep dataflow over basic blocks fast, these sets should be computed for each basic block
during preprocessing. There are several different ways, but one of them is a simple forward pass:

1 Uses(b) = {}
2 Defs(b) = {}
3 for line/instruction ℓ in b going forward:
4 Uses(b) = (Uses(b) ∪ Uses(ℓ)) − Defs(b)
5 Defs(b) = Defs(b) ∪ Defs(ℓ)

Once these sets are computed, we can apply the 2 liveness rules above, but for blocks instead of instruc-
tions, until fixpoint is reached. This will yield LiveIn and LiveOut sets for each basic block. While we
have verbally explained the (Kildall’s) algorithm before, here it is in pseudocode:

1 for basic block b in program:
2 LiveOut(b) = {}
3
4 changed = true
5 while (changed):
6 changed = false
7
8 for basic block b in program:
9 LiveOut(b) =

⋃
s∈succ(b) LiveIn(b)

10 oldLiveIn = LiveIn(b)
11 LiveIn(b) = Uses(b) ∪ (LiveOut(b)− Defs(b))
12
13 if oldLiveIn ̸= LiveIn(b):
14 change = true

1In literature, Uses and Defs are often respectively called Gen and Kill instead. They also often have slightly different
definitions but would still converge to the same liveness solution in the end.



A known optimization to make this specific dataflow converge faster is to always iterate over the basic
blocks (in the inner for loop) in postorder (DFS finish order) on the CFG.

Once we have the LiveOut sets for every basic block, we can easily compute LiveOut sets for every
instruction by applying the original 2 rules:

LiveIn(ℓ) = Uses(ℓ) ∪ (LiveOut(ℓ)− Defs(ℓ))

LiveOut(ℓ) =
⋃

s∈succ(ℓ)

LiveIn(s)

We simply set the LiveOut set of the last instruction of a basic block to the LiveOut set of the whole
block, and do a backwards pass to compute the LiveOut sets of each instruction in the basic block.

Checkpoint 4
On written homework 1, you were asked to do liveness analysis on the following program.

label .entry
L00: t0 <- 42 // "input"
L01: t1 <- 6
L02: t2 <- t0 * t1
L03: t3 <- 2
L04: t4 <- t2 - t3
L05: t5 <- 1
L06: t6 <- 0
L07: t7 <- 1

label .loop
L08: t4 <- t4 >> t5
L09: t6 <- t6 + t7
L10: branch t4 .loop .exit

label .exit
L11: ret t6

Do it again, but using dataflow over basic blocks instead.


