
Assignment 4: Memory and Dynamic Semantics

15-411/611: Course Staff

Due Tuesday, March 19, 2024 (11:59PM)

Reminder: Assignments are individual assignments, not done in pairs. The work must
be all your own. Hand in your solutions on Gradescope. Please read the late policy for
written assignments on the course web page.

ASSIGNMENT 4 TUESDAY, MARCH 19, 2024 (11:59PM)

Memory and Dynamic Semantics A4.2

Problem 1: Memory Semantics (10 points)

Consider the code snippet below:

int[] x = alloc_array(int, 0);

x[0] += 1 / 0;

And an elaborated abstract syntax tree of the program:

declare(x, int[],seq (assign(x,alloc_array(int, 0)),

asnop(x[0], plus, binop(1, div, 0)))

)

Provide a trace using dynamic semantics rules from lecture to determine what the cor-
rect outcome is. If a step has side conditions (e.g. n ≥ 0, etc.) explicitly justify them1. Your
trace should have exactly 10 steps.

H; ·; · `
declare(x, int[], seq(assign(x, alloc array(int, 0)), asnop(x[0], plus, binop(1, div, 0)))) I ·

→ ?; ?; ? `?

→ . . .

1See the lecture notes on mutable store and structs for the updated dynamic semantic rules, be careful
about the += operation.

ASSIGNMENT 4 TUESDAY, MARCH 19, 2024 (11:59PM)

Memory and Dynamic Semantics A4.3

Problem 2: Enums (20 points)

Many programming languages contain enumerations or sets of named constants. These
enum constructs appear in languages such as C, C++, and Java, among others.

In C, enumeration types u can be declared as

enum u;

or defined as

enum u {v1, . . . , vn};

where v1, . . . , vn are distinct identifiers, and u is an identifier. Enum values are introduced
by named constants vi, which are now valid expressions. Enum values can be used in
switch statements, which take the form

switch(e){v1 7→ s1 | . . . | vn 7→ sn}

Informally, a switch statement inspects the enum value that e evaluates to and branches
accordingly. In the above example, if e steps to the constant v1, then the statement s1 will
be executed. If e steps to v2, then s2 will be executed. The pattern continues.

Below are a couple of rules that begin to describe the static semantics of enumerations.

?

Σ; Γ ` switch(e){v1 7→ s1 | . . . | vn 7→ sn} :?
(S1) ?

Σ; Γ ` v :?
(S2)

The rules use an enumeration signature Σ that contains all defined enumerations. You
can assume that every enumeration u and every element v appears at most once in the
signature.

Σ ::= · | enum u {v1, . . . , vn}; ,Σ

(a) Complete the type rules for enumerations to maintain the type safety of C0. Hint:
one thing that the premises for the rule S1 should check is that the named constants
v1, . . . , vn are distinct and exhaustive.

(b) Extend the dynamic semantics for expressions and statements to describe the evalu-
ation of named constants and the execution of switch statements. You should only
need two rules.

ASSIGNMENT 4 TUESDAY, MARCH 19, 2024 (11:59PM)

Memory and Dynamic Semantics A4.4

Problem 3: Polymorphism (20 points)

The C0 language has very few mechanisms for polymorphic function definitions. C pro-
vides a more expressive, but inherently unsafe, mechanism by allowing pointers of type
void*. A pointer of this type can reference data of any type. The programmer uses explicit
casts to convert to and from this type. In this problem we explore a safe version of void*
which implements runtime tag-checking of types—which, incidentally, is the approach
taken in C0’s successor C1.

Tagging and Untagging Data

The key to making coercions from the void* type-safe is to tag pointers of type void* with
the contained data’s type. When the runtime encounters a cast from type void* to another
pointer type, the tag is checked to ensure that the cast is safe.

In the source language, we introduce new tagging and untagging constructs:

e ::= . . . | tag(τ∗, e) | untag(τ∗, e)

with the following typing rules

Γ ` e : τ∗ τ∗ 6= void∗

Γ ` tag(τ∗, e) : void∗

Γ ` e : void∗ τ∗ 6= void∗

Γ ` untag(τ∗, e) : τ∗

Tagging will never cause an error: regardless of the type of a pointer value, we can always
weaken its type to void* and create a tag. Untagging a value (as in untag(τ∗, v)) should
raise a runtime error if v is the result of tagging a non-null pointer with a type differing
from τ∗. For example, if p : int∗ is a non-null value, then the following is an expression
that will typecheck but whose evaluation will raise a runtime error:

untag(bool∗, tag(int∗, p))

Untagging the result of tagging a null pointer should succeed regardless of the type the
null pointer is tagged with. For example, the evaluation of this expression should succeed:

untag(bool∗, tag(int∗, NULL))

ASSIGNMENT 4 TUESDAY, MARCH 19, 2024 (11:59PM)

Memory and Dynamic Semantics A4.5

A Safe Implementation

In our safe implementation, a value p of type void∗ will always be either null (0), or a
pointer to 16 bytes of memory on the heap. The first 8 bytes on the heap are the tag for the
type τ∗, and the second 8 contain a representation for p (which is an address).

Assume we have a function tagof(τ), which takes as argument a type τ and returns an
8-byte tag w uniquely representing τ 2. The default value for type void∗ is null (0).

(a) Provide the formal dynamic semantics for tag(τ∗, e). Your answer should consist of
one or more transition rules. At least one of the rules should have the form

H;S; η ` tag(τ∗, e) �K → ?; ?; ? `?

Some of your transitions will involve allocation on the heap H .

(b) Provide the formal dynamic semantics for untag(τ∗, e). As with part (a), your answer
should consist of one or more transition rules. At least one of the rules should have
the form

H;S; η ` untag(τ∗, e) �K → ?; ?; ? `?

2Formally, C0 allows for unboundedly many unique types to be defined, but let’s pretend that there is a
limit of 264.

ASSIGNMENT 4 TUESDAY, MARCH 19, 2024 (11:59PM)

